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Irrigated areas drive irrigation water withdrawals
Arnald Puy 1,2✉, Emanuele Borgonovo3, Samuele Lo Piano4, Simon A. Levin 1 & Andrea Saltelli 5

A sustainable management of global freshwater resources requires reliable estimates of the

water demanded by irrigated agriculture. This has been attempted by the Food and Agri-

culture Organization (FAO) through country surveys and censuses, or through Global

Models, which compute irrigation water withdrawals with sub-models on crop types and

calendars, evapotranspiration, irrigation efficiencies, weather data and irrigated areas, among

others. Here we demonstrate that these strategies err on the side of excess complexity, as

the values reported by FAO and outputted by Global Models are largely conditioned by

irrigated areas and their uncertainty. Modelling irrigation water withdrawals as a function of

irrigated areas yields almost the same results in a much parsimonious way, while permitting

the exploration of all model uncertainties. Our work offers a robust and more transparent

approach to estimate one of the most important indicators guiding our policies on water

security worldwide.
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I
rrigation agriculture is at the forefront of global food security.
With the potential to provide crop yields more than two times
as large as dryland agriculture1,2, irrigation agriculture cur-

rently produces ~40% of all food consumed worldwide in just
20% of the total cultivated land3. Its capacity to maximise yields
per unit of terrain is conditional upon the investment of high
labour inputs per surface unit and the provision of a steady
freshwater supply, which relaxes the dependency of crops on
rainwater seasonality4,5. This allows for year-round harvests while
reducing adverse impacts on crops from dry spells. Such features
make irrigation agriculture a key resource to buffer population
growth in our context of climate change.

The demand of water by irrigation has been constantly rising
over the last decades6. In general, it is expected to increase even
further in the coming years due to changes in precipitation pat-
terns, higher temperatures and the expansion of irrigated areas to
meet the projected boost in food demands7–12. Acquiring reliable
estimates of irrigation water withdrawals is thus regarded as a first
step towards a more informed management of global freshwater
resources13,14, ultimately endowing us with better tools to ensure
food security without damaging the water system. At present,
there are two main approaches to calculate global irrigation water
withdrawals:

1. FAO’s/Aquastat’s approach. This is based on country
surveys, questionnaires and censuses, literature reviews
and coordination among relevant national and interna-
tional agencies15. Its drawbacks include unreliability of data
due to bureaucratic and political constraints16, national
interests17,18, difficulties in homogenising water withdrawal
data reported through different methods, and missing data
points (not all countries provide information or the
reported data does not pass Aquastat’s quality check)19.

2. Through Global Hydrological Models, Land Surface Models
or Land Earth Systems Models20. Here we collectively refer
to all these models as Global Models (GMs). They are
spatially-distributed algorithms that simulate, among
others, past, present and future hydrological processes on
a global scale. Irrigation water withdrawals are generally
computed at a specific time step and spatial resolution with
sub-models on evapotranspiration processes, crop types,
agrarian calendars, irrigation efficiencies, fertilisation,
meteorological forcings and irrigated areas7,21–24. Some
limitations of GMs are their high computational demands,
poor calibration and a complex design that precludes a
thorough assessment of output uncertainties25,26.

These drawbacks are amplified by uncertainties in crop types,
growing seasons, agrarian practices, irrigated areas and local soil
and climatic conditions27. Global irrigation water withdrawal
estimates are therefore highly sensitive to the selection of the
FAO’s or the GMs’ approach, and even the choice of a specific
GM is a source of bias7. The reliance on multi-model ensembles
of GMs allows for the obtainment of probabilistic estimates, yet it
exacerbates the computational, opacity and uncertainty-related
problems mentioned above28. Such flaws limit the utility of global
irrigation water withdrawal estimates in the policy realm, where
stakeholders and non-experts alike should be able to swiftly
replicate the results or, at least, understand the main assumptions
upon which the analysis is based29–31.

Here we show that global irrigation water withdrawals can
simply be obtained as a function of irrigated areas. We submit
eight GMs and two FAO-based datasets to uncertainty and sen-
sitivity analysis methods and demonstrate that the variability of
irrigation water withdrawals is mostly described by the extension
of irrigation19,23,24,32–37. This paves the way to an easier, cheaper
and more transparent estimation of global irrigation water

demands and permits a systematic examination of all crucial
uncertainties for water security. It also suggests that GMs can
improve by better acknowledging the relevance of irrigated areas
in their simulations. Our results align with recent works arguing
that simple models may be more robust and of greater use than
more elaborate approaches, especially when the estimation of
interest is fraught with irreducible uncertainties31,38.

Results
Irrigated areas and irrigation water withdrawals are strongly
related. Irrigated areas in GMs are parametrised with the Global
Map of Irrigated Areas (FAO-GMIA)39, a gridded product that
documents the extension of irrigation at a 5 arcmin resolution. A
linear trend between the areas reported by the FAO-GMIA and
the irrigation water withdrawals simulated by GMs is apparent at
the country level from 1900 up to 2005–2010, the last period for
which there is systematic data available for both variables. This
pattern holds regardless of the GM used (Figs. S1–S8). Here we
focus on data from 2005 as it adequately summarises this his-
torical relationship and facilitates comparison with two different
FAO-based datasets, which reflect country-based irrigation water
withdrawals in 2010–201219,24.

For most combinations of continent and irrigation water
withdrawal dataset (except some particular cases for Europe, see
Figs. S9–S11), the trend between irrigated areas and irrigation
water withdrawals is well modelled by a linear regression in which
irrigated areas are the predictor x and water withdrawal is the
response y (Fig. 1). Such an approach fits well with previous
works connecting these variables both empirically and
theoretically14,40. Other parameters or intermediate outputs of
GMs used to compute irrigation water withdrawals, such as
irrigation efficiencies, total evapotranspiration or potential
evaporation, do not appear to have any significant influence
(Figs. S12–S14).

The strength of the relationship between irrigated areas and
irrigation water withdrawals can be assessed with the coefficient
of determination r2, which measures how much variance in y can
be predicted from x. We check how r2 changes when the main
uncertainties conditioning its computation vary within reasonable
bounds: for c= 1, 2,...,m countries, we vary in a Monte-Carlo
setting (see Methods):

● X1: The selection of the GM or FAO-based dataset to
characterise yc.

● X2: The multivariate method used to model a distribution
for yc in case it is a missing value.

● X3: The final sampled value from that distribution to
impute yc.

● X4: The use of a robust or non-robust regression to estimate
r2, as some yc values are outliers (Fig. S11).

The coefficient of determination r2 leans towards high values
for Africa (0.75 ≤ r2 ≤ 0.9, P2.5, P97.5), Asia (0.68 ≤ r2 ≤ 0.92) and
the Americas (0.68 ≤ r2 ≤ 0.95) (Fig. 2a). The distribution of r2 for
these continents is clearly left skewed, with the smaller mode at
approximately r ≤ 0.8 produced by the simulations conducted
with just one or two GMs (CLM45 for Africa, CLM45 and MPI-
HM for the Americas, and CLM45 and VIC for Asia) (Fig. 2b).
The goodness of fit for Europe shows the largest spread (0.5 ≤
r2 ≤ 0.89) and a three-modal distribution, with the highest r2

values produced by MPI-HM and VIC and the lowest by PCR-
GLOBWB.

For all continents, the most influential factor conditioning r2 is
the selection of the GM or FAO-based dataset to parametrise yc
(X1) (Fig. 2c). X1 explains from 72% (Africa) to 95% (Asia) of the
variance in r2 values. In the case of the Americas, the use of a
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Fig. 1 Scatterplots of irrigated areas against irrigation water withdrawals. Irrigated area data are provided by the FAO-GMIA37, which reflects the

extension of irrigation in 2005. Irrigation water withdrawals are retrieved from GMs (CLM45, DBHM, H08, LPJmL, MPI-HM, PCR-GLOBWB, VIC,

WaterGap) and from FAO-based datasets (Aquastat, Liu et al. 19). GM data is from 2005 and FAO-based data from 2012. Each dot is a country. The

abscissa is x and the ordinate y in Eq. (1) (see Methods).

Fig. 2 Uncertainty and sensitivity analysis. a Empirical distribution of r2 at the continental level. b Boxplots of r2 values yielded by each GM (in bold) and

FAO-based dataset (centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). c Sobol' indices. Si and Ti

refer respectively to Sobol' first and total order indices. Si measures the influence of a parameter in the model output (r2 in this case), while Ti measures the

influence of a parameter jointly with its interactions. The bars reflect the mean value and the error bars display the 95% confidence intervals, computed

with the normal method after bootstrapping (R= 1000).
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robust or non-robust approach to compute r2 (X4) conveys an
extra 12% of the uncertainty in the goodness of fit, with the
robust option yielding slightly higher r2 values on average (Fig.
S15). The rest of the variance is due to second and third-order
effects. For instance, the third-order effect between (X1, X2, X3)
conveys ~5%, ~10% and ~10% of the variance in r2 for the
Americas, Europe and Africa, respectively. An important fraction
of the ambiguity in the goodness of fit is hence largely irreducible
for it emerges as the joint effect of three different structural
uncertainties (Fig. S16).

Estimating irrigation water withdrawals from irrigated areas.
Such linear relation and high r2 values suggest that irrigated areas
might fairly predict irrigation water withdrawals, especially for
countries in Africa, Asia and the Americas. We thus combine Eq.
(1) with an uncertainty analysis to estimate irrigation water
withdrawals as a function of irrigated areas and compare the
predictions with the ten point estimates yielded by all GMs and
FAO-based datasets considered (see Methods).

The results show that GMs and FAO-based estimates fall nicely
within the ranges defined by our predictions for a very large
majority of countries (Figs. 3 and 4). Ninety-nine countries out of
139 (71%) present seven or more estimations bounded by the
error bars of our regressions, while 26 countries (18%) have all
ten point estimates fully framed. Examples of the latter are Egypt,
South Africa, the United States, Mexico, Brazil, Afghanistan,
India, Pakistan, Italy, Spain or France, all of them top-ranking
countries in irrigation water consumption. For China, also a
major consumer of irrigation water, our approach frames nine
out of ten point estimates, with VIC falling outside our interval.
Figures 3 and 4 thus offer a realistic impression of the uncertainty
associated to these predictions.

The number of point estimates framed by our predictions
increases with the number of countries in all four continents (Fig.
S17). Malta is the only country for which our ranges do not
embed any previous estimate. Other countries for which our
predictions fit the preexisting estimates poorly are Seychelles
(only one estimation framed), Cuba and Kuwait (2), or Ethiopia,
Puerto Rico, Indonesia and the Philippines (3). All these

Fig. 3 Comparison between our predictions and the GMs estimations. The black dots and the error bars show the median, the minimum and the

maximum irrigation water withdrawal values predicted from the irrigated areas reported by the FAO-GMIA96 (Methods). The coloured dots show the

irrigation water withdrawal estimates outputted by the GMs (DBHM, H08, LPJmL, MPI-HM, PCR-GLOBWB, VIC, CLM45, WaterGap) or reported by the

FAO-based datasets (Aquastat, Liu et al.19). a Africa. b Americas.
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countries share a large uncertainty with regard to the irrigation
water withdrawal estimates produced by FAO and GMs. The
datasets that show the most point estimates beyond or above our
error bars are VIC in the case of Africa (~51%), Asia (~58%) and
Europe (~43%), and CLM45 (~33%) in the case of the Americas
(Fig. S18).

Our approach also replicates the irrigation water withdrawal
estimates produced by GMs for 2050 in a context of climate
change, regardless of the social context or the Representative
Concentration Pathway (RCP) selected (Figs. S19 and S20,
RCP2.6, RCP6, RCP8.5; see Methods). For most countries, our
ranges encompass the estimates that GMs simulate for the future
as nicely as those they yield for the present. This is shown in
Fig. 5, with a large majority of countries clustering on the upper
right side of the plot. This area includes 80% of the countries and
contains the largest agricultural water consumers (e.g. China,
India, Spain, Italy, Egypt or the United States, among others). In
the case of Kuwait, Moldova or Angola, our approach mimics
future estimates better than current estimates, while the opposite
is true for Chile, Croatia or Finland.

The relation may scale down. The trend between irrigated areas
and irrigation water withdrawals detected at the country level also
emerges at smaller geographical scales. To illustrate this phe-
nomenon, we show independent data at three levels: (1) at the
irrigation system level, from the Australian National Committee
on Irrigation and Drainage (ANCID)41,42; (2) for every county of
Colorado (a state whose farm water use exceeds USA’s national
average43), from the Colorado Water Conservation Board44; and
(3) for every state of the USA, from the US Department of
Interior45. In all three cases, the proportion of the variability in
irrigation water withdrawals that is described by irrigated areas
(circa 0.7–0.9, 95% CI) is very similar to the results obtained at
the national level with the FAO-based and GMs datasets (Fig. 6).

Irrigated areas drive water withdrawals even at the grid cell
level, the minimum geographical unit in which GMs simulate
irrigation water withdrawals. This is especially the case with
CLM45 and MPI-HM, which operate like a linear model despite
their computational complexity46, pp. 346–365 (Figs. S23–S54).
The same can be said regardless of the GM for the cells of Egypt,
Morocco, Sudan, South Africa and Zimbabwe in Africa; of most

Fig. 4 Comparison between our predictions and the GMs estimations. The black dots and the error bars show the median, the minimum and the

maximum irrigation water withdrawal values predicted from the irrigated areas reported by the FAO-GMIA96 (Methods). The coloured dots show the

irrigation water withdrawal estimates outputted by the GMs (DBHM, H08, LPJmL, MPI-HM, PCR-GLOBWB, VIC, CLM45, WaterGap) or reported by the

FAO-based datasets (Aquastat, Liu et al.19). a Asia. b Europe.
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countries in Asia (including China and India); of Mexico, the
USA, Colombia, Argentina or Peru in the Americas; and of Spain,
France, Italy and Russia in Europe. Given that irrigated water
withdrawals at the grid cell level are often aggregated to produce
estimates at the river basin or at the agro-ecological level23,47,
irrigated areas may also drive irrigation water withdrawals at
these scales in the countries and GMs just mentioned.

How do irrigation water withdrawals scale with irrigated areas?
The tight relation between irrigated areas and irrigation water

withdrawals enables the assessment of how the latter responds to
changes in the former. This is expressed by β, the slope of the
linear regression of log ðyÞ against log ðxÞ (see Methods, Eq. (1)). If
β < 1 (β > 1), every increase in the extension of irrigation leads to
marginal (accelerated) increases in irrigation water consumption.
This framework is known as scaling48,49, and allows to explore (1)
whether larger irrigated areas are, on average, less water efficient
than smaller ones (β > 1), and (2) whether the complexity behind
irrigation water withdrawals can be further simplified to a single
β value.

Fig. 5 Proportion of current and future irrigation water withdrawal values yielded by GMs that are framed by our predictions. The proportion in the

y axis is taken over eight GMs (e.g., a dot closer to y= 1 means that our range of predictions covers all eight estimates yielded by GMs), whereas in the x

axis it is taken over four GMs running on different combinations of the Shared Socioeconomic Pathway 2 (SSP2) and RCPs (e.g., two combinations for PCR-

GLOBWB, five for LPJmL, five for H08, two for MPI-HM). See Puy95, p. 45 for a full specification of the combinations. A dot closer to x= 1 means that our

range of predictions covers all these 14 estimates. Only the countries showing <50% in either the x or the y axis are labelled.

Fig. 6 Examples of the relation between irrigated areas and irrigation water withdrawals at smaller geographical scales. a Scatterplots presenting data

for circa 60 Australian irrigation systems41,42, Colorado counties44 and North-American States45. b Distribution of r2 after bootstrapping (R= 5000). The

blue lines show the 95% confidence intervals, calculated with the bias-corrected and accelerated (bca) method97. See Figs. S21 and S22 for the regression

diagnostics.
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At the continental level, β > 1, β ≈ 1 or β < 1 depending on the
GM or FAO-based dataset selected to characterise yc. This is
exemplified by Africa, which shows β > 1 under DBHM, H08,
LPJmL and PCR-GLBWB, VIC and WaterGap, β < 1 under MPI-
HM, and β ≈ 1 under Liu et al.19 and CLM45 (Fig. 7). Such
volatility originates from the uncertainty in yc and currently
prevents from inferring the existence of a consistent scaling
relationship between both variables. For Australian irrigation
systems and Colorado counties, β is indistinguishable from 1,
indicating that irrigation water withdrawals tend to become twice
as large if irrigated areas at the system or the county level are
doubled in size. This contrasts with the USA, whose β > 1 suggests
that states with a larger extension of irrigation have a
disproportionate consumption of irrigation water given the size
of their irrigated areas (Fig. S55).

Discussion
The present paper shows that irrigated areas describe a large
degree of variability in irrigation water withdrawals, and that the

latter can be approximated as a function of the former. These
results are grounded on annual irrigation water withdrawal esti-
mates outputted at the national level by eight Global Models
(GMs) and reported by two FAO-based datasets. They are also
based on independent data retrieved at the state, county and
irrigation system level. Hence there is a great potential for the
simplification of methods to calculate irrigation water with-
drawals, especially with regard to those employed at larger geo-
graphical scales.

That a complex variable such as the volume of water with-
drawn for irrigation is nicely described by just a single factor may
appear surprising given the large space of relevant factors influ-
encing its behaviour (e.g., crop type and calendars, growing
seasons, irrigation efficiency, climate, crop evapotranspiration,
soil texture). Yet several degrees of freedom are often determined
or summarised by a small set of constraints or even by a single
parameter. Size is one of such parameters: for animals, it defines
their strength, metabolic rate, life span or population density50,51;
for cities, its pace of innovation, number of patents or total

Fig. 7 Distribution of β after accounting for all the uncertainties in the computation of Eq. (1) (X1, X2, X3, X4). Each distribution is formed by a population

of 240 β values. The histogram in the Liu et al.16 facet for Asia consists of 17 different yet very similar β values and hence its single bin. The vertical, dashed

line is at β= 1 (see Methods).
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electrical consumption48,52. The size of irrigated areas (their
extension) appears to be a similar driving force for irrigation
water withdrawals.

The irrigation module of GMs contains parameters or sec-
ondary outputs whose influence in the calculation of water
withdrawals is very minor or inconsequential [e.g., total evapo-
transpiration, potential evaporation or irrigation efficiency once
controlled for irrigated area, Figs. S12–S14)]. The effect of para-
meters such as crop coefficients or crop calendars, which vary as a
function of time, or of complex sub-models such as fertilisation
schemes or the climate driver33–35,53, is much harder to check.
However, if a linear regression can nicely fit the input-output
mapping of complex irrigation algorithms, other similar fast-
running statistical emulators may be able to work in the com-
putationally expensive sub-models nested within GMs. Sub-
stituting these sub-models with time-effective emulators can be
an effective way to save computational resources and bridge
model realism with computational efficiency. This may allow
modellers to focus on answering relevant water policy questions
without the extra burden of managing unneeded complexity.

The strong influence of irrigated areas makes GMs very sen-
sitive to the FAO-GMIA39, the gridded map used by GMs to
parametrise global irrigated areas. Yet the FAO-GMIA is just one
of the five datasets currently available on the extension of
irrigation18,54–57. Depending on the dataset selected, the irrigated
area of a given country can differ by up to four orders of
magnitude8, a range that reflects our limited knowledge on the
current size of irrigated agriculture. The FAO-GMIA was the only
map available when most GMs were initially designed, but
research conducted over the last ten years has broadened the
range of products available and increased the uncertainty
range18,56,57. By relying exclusively on the FAO-GMIA, GMs
discount this source of ambiguity and yield estimates that are
critically conditioned by a structural model design.

Let us illustrate this issue with the case of China and India, for
instance. According to the FAO-GMIA, their irrigated areas
extend over 61 Mha. This point estimate turns into ranges that
respectively span 43–74 Mha and 15–88 Mha if the other irrigated
area datasets are taken into account18,56,57. These divergences are
explained by the different methodological approaches mobilised
to map irrigated areas, including the definition of what is con-
sidered an “irrigated area” and the degree of reliance on official
statistics. Given the strong weight of the extension of irrigation,
the already large variance in irrigation water withdrawals dis-
played in Figs. 3 and 4 will become much larger if GMs factor this
uncertainty in. The same will apply to the estimates of future
irrigation water withdrawals, because the uncertainty of global
irrigated areas in 2050 spans half an order of magnitude (300–800
Mha, with the most extreme values reaching 1800 Mha)8.

In light of these results, the addition of conceptual depth
aiming at making GMs more accurate (by modelling the human
influence, increasing the spatial resolution or running multi-
model ensembles) appears questionable20,58. The fastest way to
acquire more precise irrigation water withdrawal estimates seems
to be through a better appraisal of irrigated areas. This may also
provide sharper insights into the growth rate between irrigated
areas and water demands (i.e. whether β < 1, β ≈ 1, β > 1, see
Fig. 7). Scaling relationships might hold crucial information for
discerning the role of size in the sustainability of irrigated
agriculture40,59–61, as well as for our design of irrigation schemes.
Trivially, given 1000 ha potentially irrigable, should we promote
one system extending over the whole 1000 ha or 10 systems of
100 ha each? If size largely drives some properties of irrigated
agriculture, it may be that excess complexity delays—rather than

accelerates—our understanding of irrigation systems, thus posing
a hindrance to the design of robust water policy responses. This
observation resonates with a broad literature showing that too
much detail in model efforts undercuts reliable management62–64,
as well as with recent warnings against excess complexity in
mathematical modelling65.

That GMs are too complex given the quality of the data
available is also suggested by the ambiguity surrounding other
aspects of their irrigation module. Model inputs such as the crop
coefficient or the evapotranspiration equation, among others, are
also uncertain66–71. Their effect in the model output is likely to be
minor given the strong weight of irrigated areas, yet we can not
rule out their being influential through interactions. The com-
putation of irrigation water withdrawals in GMs relies on mul-
tiplications, divisions and exponentials (e.g., Eq. (1) in Wada
et al.32; Eqs. (1) and (2) in Döll and Siebert14, Eqs. (7)–(11),
A1–A3 in Jägermeyr et al.34). Such operations promote non-
additivities, whose effect on irrigation water withdrawals can only
be appraised with a global sensitivity analysis (GSA), i.e. by
moving all uncertainties at once. However, the literature on GMs
has relegated GSA in favour of ensemble, one-at-a-time or pie-
cewise sensitivity analysis7,72,73. These techniques are computa-
tionally affordable but severely underpowered to scrutinise the
input space, and are unable to detect interactions74,75.

The much parsimonious approach adopted here has a pre-
dictive power almost identical to that of FAO’s and eight GMs
combined. It has empirical support at several geographical scales,
allows to save personal, financial and computational resources,
and facilitates an appraisal of uncertainties and sensitivities,
including those related with irrigated areas. An extension of our
work is to explore why the trend between irrigated areas and
water withdrawals is the weakest in European countries. Another
direction is to assess whether irrigated areas drive irrigation water
withdrawals in other irrigation systems and/or in different sub-
regional contexts. This will help assess the extent to which this
trend scales down in a robust way.

Finally, we should stress that we are not proposing to substitute
approaches relying on crop, soil and climate parameters for linear
regressions of irrigated areas. At small granularities, for instance
at the plot or the scheme level, these methods nicely appraise
physical process and facilitate monitoring of water withdrawals
through time. What we argue is that so much detail may not be
warranted at larger scales or under strong uncertainties. The
debate between proponents of computationally-intensive meth-
ods and advocates of more simple approaches is vibrant in the
climate modelling community64,76. Both parties also need to be
heard in the field of global hydrology.

Methods
Data collection. We use irrigation water withdrawal values outputted by eight
GMs [six Global Hydrological Models (PCR-GLOBWB32,53, H0833, LPJmL34,
WaterGap35, MPI-HM22, DBHM23), one Land Surface Model (VIC77) and one
Land Earth System Model (CLM4546)]. For PCR-GLOBWB, H08, LPJmL and
WaterGap we rely on the products generated by Huang et al.21, who downscaled
the data yielded by these four GMs between 1971-2010 with Aquastat water
withdrawal estimates. For DBHM, MPI-HM, VIC and CLM45 we use the data
produced by the Inter-Sectoral Impact Model Inter-comparison Project (ISI-
MIP)78. Our analysis focuses on the values reported for 2005 in all the cases. All
GMs datasets used are forced by WFDEI climate data except MPI-HM and
CLM45, which are forced by MIROC5 and GFDL respectively.

We also retrieve irrigation water withdrawal data from two FAO-based datasets.
We use the Aquastat country-level data produced by Frenken and Gillet24 for 2012
and the dataset elaborated by Liu et al.19, who filled out missing values in the
Aquastat dataset using inverse distance weighting, nearest neighbour or linear
interpolation based on associated variables.

For irrigated areas, we collect the data generated by the FAO-GMIA at the
national level from Meier et al.57, which documents the extension of irrigation at c.
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2005. In order to assess the influence of the FAO-GMIA at the cell level, we retrieve
the data produced by the Historical, gridded land use (HYDE 3.2) product from
ISI-MIP78. The HYDE 3.2 relies on the FAO-GMIA and the MIRCA 2000 to
parametrise irrigated areas79, with the MIRCA 2000 being also a gridded product
grounded on the FAO-GMIA80, p. 5).

To investigate whether our approach replicates the irrigation water withdrawal
estimates produced by GMs for 2050, we retrieve from ISI-MIP the data produced
by PCR-GLOBWBW, LPJmL, H08 and MPI-HM under five different social,
climatic, and CO2 scenarios81:

● rcp26/rcp26: Water abstraction and land use (including irrigated areas)
change according to the Shared Socioeconomic Pathway 2 (SSP2, “Middle
of the road”). Future climate and CO2 concentration evolve as outlined by
the Representative Concentration Pathway 2.6 (RCP2.6, mean temperature
increase of 1°C up to 2065, CO2 emissions declining by 2020).

● rcp60/rcp60: Water abstraction and land use (including irrigated areas)
change according to SSP2. Future climate and CO2 concentration evolve as
outlined by the Representative Concentration Pathway 6.0 (RCP6.0,
increase of 1.4 °C, CO2 declining by 2080).

● 2005soc/rcp26: Land use (including irrigated areas), nitrogen deposition
and fertilizer input are fixed at 2005 values. Future climate and CO2

concentration as in RCP2.6.
● 2005soc/rcp60: Land use (including irrigated areas), nitrogen deposition

and fertilizer input are fixed at 2005 values. Future climate and CO2

concentration as in RCP6.0.
● 2005soc/rcp85: Land use (including irrigated areas), nitrogen deposition

and fertilizer input are fixed at 2005 values. Future climate and CO2

concentration as in RCP8.5.

Data treatment. The GMs just mentioned have a spatial resolution of 0.5° × 0.5°
and compute irrigation water withdrawals in each cell at a monthly time step. For
each GM, we retrieve the data from 2005 and allocate each cell to a specific country
given its geospatial information (longitude and latitude). We produce annual
irrigation water withdrawal values at the national level by adding the values of all
cells within the same country. We then bind all GMs datasets with the Aquastat
and the Liu et al.19 datasets and pair each country with the national irrigated areas
reported by the FAO-GMIA. This procedure yields missing values in water
withdrawal for 28 unique countries, a total of 69 missing data points (Table S1,
Fig. S56).

To calculate the relation between irrigated areas and water withdrawal at the
cell level, we merge the HYDE 3.2 with all the GMs and pair only the cells that
show the same coordinates in both products.

The model. Following the linear trend between irrigated area and irrigation water
withdrawals at the country level (Fig. 1), we model their relation as

log ðycÞ ¼ αþ βlog ðxcÞ ; ð1Þ

where yc and xc are respectively the irrigation water withdrawal and the irrigated
area of country c, for c= 1, 2, ...,m countries. α is a constant and β the scaling
exponent describing the growth rate between xc and yc.

Uncertainty analysis. There are four main sources of uncertainty that condition
the goodness of fit of Eq. (1), estimated with the r2 value. We treat these uncer-
tainties as triggers (X1, X2, X3, X4), i.e. random parameters that explore the
uncertainty in the model design space. They are the following:

● X1: The selection of the GM or FAO-based dataset to characterise irrigation
water withdrawals at the country level (yc in Eq. (1)). There are ten
different alternatives (eight GMs and two FAO-based datasets, see Fig. 1).

● X2: The multiple imputation methods used to impute missing values. After
pairing the eight GMs and two FAO-based datasets with the irrigated areas
reported by the FAO-GMIA, some countries showed missing irrigation
water withdrawal values. To ensure that x and y have the same individual
data points across all data sets, we replace missing values with substituted
values using multiple imputation methods. Unlike single imputation, which
treats the imputed value as the “true” value, multiple imputation accounts
for the uncertainty about the prediction of the missing value by randomly
drawing d values from a distribution specifically modelled for each missing
entry82. This creates d different completed datasets or imputations.
Given the linear trend observed in Fig. 1, we assess how three different
regression-based, multiple imputation methods affect the estimation of yc:
Bayesian regression, linear regression ignoring the model error, and linear
regression with bootstrap. The Bayesian regression method imputes yc by the
normal model defined by Rubin83, while the linear regression with bootstrap
method draws a bootstrap sample from x and y, calculates regression
weights and imputes with normal residuals84.

● X3: The selection of the completed dataset to compute r2. The number of
imputations d to obtain an appropriate estimation of the true missing value
has long been a topic of discussion. Graham et al. 85 recommend 20

imputations for 20–30% missing data and 40 imputations for 50% missing
data. The number of missing data points in our study is smaller than 10%
for almost all continents and datasets, except for Aquastat in the Americas
(c. 40%) (Fig. S56). In order to ensure enough statistical power, we set the
number of imputations at d= 40 and create 40 different completed datasets
in each iteration.

● X4: The eventual use of corrective measures to calculate the line of best fit
in case yc is an outlier. Outliers can bias the estimation of r2. We document
their presence for some continents depending on the irrigation water
withdrawal dataset used (Fig. S11). The classic estimator of r2 when there is
an intercept term in the linear model is

r2 ¼
∑

m
c¼1ðyc � �yÞðŷc �

�̂yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
m
c¼1 yc � �y

� �2
∑

m
c¼1 ŷc �

�̂y
� �2

q

0

B

@

1

C

A

2

; ð2Þ

where yc is the observed irrigation water withdrawal value for the country c,
�y the mean, ŷ the fitted value and �̂y the mean predicted responses. In order
to account for the effect of applying corrective measures to outliers, we
consider the consistency-corrected formula by Renaud and Victoria-
Feser86,

r2 ¼
∑

m
c¼1 wc ŷc �

�̂yw
� �2

∑
m
c¼1 wc ŷc �

�̂yw
� �2

þ a∑m
c¼1 wc yc � ŷc

� �2 ; ð3Þ

where �̂yw ¼ ð1=∑wcÞ∑wcŷc, a is a correction factor set at 1.2 and the
weights wc and the predicted values yc are produced by the fast S-algorithm
of Salibian-Barrera and Yohai87.

To assess how X1…, X4 condition the final r2 value, we conduct a Monte–Carlo-
based uncertainty analysis. We design a (N, 2k)Q sample matrix using Sobol’
Quasi-Random Numbers88,89. The Sobol’ sequence is a base-2 sequence that
explores the uncertainty space more effectively than random numbers, for it leaves
smaller unexplored volumes. After a few experiments we decided to set the number
of rows at N= 213 to handle a sample size large enough to ensure the convergence
of the Sobol’ indices (see section “Sensitivity analysis” below).

We allocate the leftmost k columns of Q to an A matrix and the rightmost k
columns to a B matrix. In these matrices each row is a sample point and each
column a trigger described with a probability distribution according to its
uncertainty (Fig. S57). Any point in either A or B can be referred to as xvi, where v
and i respectively index the row (from 1 to N) and the column (from 1 to k). We

also create kA
ðiÞ
B matrices, where all the columns come from the A matrix except the

i-th, which comes from the B matrix (Fig. S58). The A
ðiÞ
B matrices are required to

compute the Sobol’ indices of the triggers (see section “Sensitivity analysis”
below)90. Overall, this design has a computational cost C of C=N(k+ 2)= 213

(4+ 2)= 49, 152 model runs per continent.
Our algorithm runs rowwise, as follows: for v= 1, 2, ... , C rows, it selects the

irrigation water withdrawal dataset according to X1v
, fills the missing values in yc

given the conditions set by X2v
and X3v

, and finally computes Eq. (1) + Eq. (2) or

Eq. (1) + Eq. (3) depending on the criteria defined by X4v
. The model output in the

v-th row is therefore a specific r2v value calculated according to the conditions
established by X1v

; ¼ ;X4v
. To obtain the range of predictions shown in Figs. 3 and

4, we retrieve xc from the FAO-GMIA and compute Eq. (1) with the 2,400 paired αv
and βv coefficients obtained from the simulations.

Sensitivity analysis. We conduct a global sensitivity analysis using Sobol’
indices91,92, which decompose the variance of the model output V(y) into fractions
that are attributed to the model inputs, as

VðyÞ ¼ ∑
k

i¼1
V i þ∑

i
∑
i<j
V ij þ :::þ V1;2;:::;k ; ð4Þ

where

V i ¼ Vxi
Ex�i

ðyjxiÞ
h i

V ij ¼Vxi ;xj
Ex�i;j

ðyjxi; xjÞ
h i

� Vxi
Ex�i

ðyjxiÞ
h i

� Vxj
Ex�j

ðyjxjÞ
h i

ð5Þ

and so on up to the kth order. Vi is the conditional variance of xi on V(y), Vij the
conditional variance of xi and xj on V(y), etc. The notation Ex�i

ðyjxiÞ means that

the mean y value, represented by the E(.) operator, is taken over all inputs except xi.
Sobol’ indices are then calculated as

Si ¼
V i

VðyÞ
Sij ¼

V ij

VðyÞ
: ð6Þ

Si represents the first-order effect of xi; Sij is the second-order effect of (xi, xj)
(formed by the first-order effect of xi and xj and their interaction), etc. Si, Sij, ... can
be interpreted as the reduction in variance that will be obtained in the model
output if xi, (xi, xj),... are fixed to their “true value”, i.e., if they are no longer
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uncertain. These reductions are of course averaged over all the possible values of
the unknown “true” value.

We also calculate the total-order index Ti, which assesses the first-order effect of
a model input jointly with its interactions92. When Ti > Si, xi is involved in
interactions. Ti is calculated as

T i ¼ 1�
Vx�i

Exi
ðyjx�iÞ

h i

VðyÞ
¼

Ex�i
Vxi

ðyjx�iÞ
h i

VðyÞ
: ð7Þ

There are several estimators available to compute Eqs. (6) and (7). Here we use
the Jansen93 estimators, considered best practice in sensitivity analysis74,94. The
Jansen estimators make use of the model output y produced after running the

model f in the vth row of the A, B and A
ðiÞ
B matrices. This is indicated as f(A)v, f(B)v

and f ðA
ðiÞ
B Þv :

Si ¼
VðyÞ � 1

2N
∑

N
v¼1 f ðBÞv � f ðA

ðiÞ
B Þv

h i2

VðyÞ
; ð8Þ

T i ¼

1
2N
∑

N
v¼1 f ðAÞv � f ðA

ðiÞ
B Þv

h i2

VðyÞ
: ð9Þ

Data availability
The irrigation water withdrawal data generated in this study, as well as the datasets

needed to reproduce our results, are available in Puy 95 and in https://github.com/

arnaldpuy/achilles_heel. The irrigation water withdrawal estimates produced by GM can

be retrieved in https://www.isimip.org.

Code availability
The R code to replicate our results is available in Puy95 and in https://github.com/

arnaldpuy/achilles_heel.
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