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Abstract

Water is a vital, finite resource whose quantity and quality are deteriorating as the world pop-

ulation increases. The current study aims to investigate the concentration of heavy metals

(HM) in surface water for irrigation purposes with associated human health risks and pollu-

tion sources near the marble industry in Malakand, Pakistan. Twenty-seven water samples

were randomly collected and analyzed for HM concentration by inductively coupled

plasma–optical emission spectrometry (ICP–OES). pH, electrical conductivity (EC), total

dissolved solids (TDS), biological oxygen demand (BOD), and chemical oxygen demand

(COD) were measured using standard methods of American Public Health Association

(APHA). Irrigation suitability was assessed using specific water quality parameters. The

associated health risks from ingestion and dermal exposure to heavy metals were calcu-

lated by USEPA health risk indices. Pollution sources and spatial distribution mapping were

studied using compositional data analysis (CoDa) and the application of a geographic infor-

mation system (GIS) to understand the changing behavior of heavy metals in surface

waters. The concentrations of BOD (89%), COD (89%), Al (89%), Ca (89%), Cr (56%), Cu

(78%), Fe (56%), K (34%) Mg (23%), Mn (56%), Na (89%), Ni (56%), P (89%), and Zn

(11%) exceeded the safety limits of National Environmental Quality standards (NEQs) of

Pakistan. The results of Kelly’s ratio (KR) classified surface water as unsuitable for irrigation.

The average daily doses (ADD, mg/kg/day) for Al, Cu, Cr, Fe, Mn, Ni, and Zn were higher in

children than in adults. The hazard index (HI) for children and adults was above the thresh-

old (HI > 1), indicating a significant risk of non-carcinogenic toxicity. The carcinogenic risk

values for Cr and Ni were above the USEPA limit (1 × 10−6 to 1 × 10−4), suggesting a poten-

tial carcinogenic risk for the target population. Principal component analysis (PCA), biplot

(CLR), and the CoDa-dendrogram allowed for the identification of elemental associations,

and their potential source was anthropogenic rather than natural in origin. Regular monitor-

ing and phytoremediation strategies are proposed to safeguard crops and human health.
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Introduction

Water is a vital, finite resource whose quantity and quality are deteriorating with an increase

in world population [1]. The process of industrialization and urbanization is beneficial, espe-

cially in terms of shaping demographic characteristics. However, rapid, unplanned, and

uncontrolled changes in the physical landscape can lead to degradation and scarcity of water

resources [2, 3]. The agricultural sector consumes approximately 70% of all water resources,

and by 2025, almost 60% of the world population could face physical water stress from over-

consumption [4]. The increasing demand for water to meet the food needs of a growing popu-

lation is one of the main reasons for reusing wastewater for urban and peri-urban irrigation

[5]. Reusing wastewater for irrigation can alleviate the intense pressure on freshwater abstrac-

tion and provide nutrients to plants and crops [6]. Without proper management, a significant

amount of wastewater can affect water availability, general economic conditions, quality of life,

and even the cultural and religious values of human society [7].

Heavy metal (HM) pollution and the associated safety of freshwater reservoirs and human

health are major global concerns today [8, 9]. HM such as arsenic (As), chromium (Cr), copper

(Cu), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) are major pollutants in

freshwater reservoirs. Heavy metals are persistent in the environment and nonbiodegradable [10].

Heavy metals can enter and bioaccumulate the human body through a series of food chains, even-

tually leading to kidney disease, hormonal imbalances, hair loss, cardiovascular failure, neurologi-

cal and endocrine disorders, cancer, and respiratory and digestive problems [11]. In addition, the

distribution of heavy metals in aquatic environments affects the biotic community through bio-

geochemical interactions and the formation of pollutant complexes from organic matter [12]. A

long-term follow-up study showed that using contaminated water to irrigate agricultural land

increases the relative risk, leading to the accumulation of heavy metals in the soil and tissues of

food crops that support the living system [13]. Monitoring and assessment of heavy metals in

water, soil, and food crops are important aspects considered to protect public health [14].

Pakistan is the sixth largest nation in the world, with a population of approximately 208

million, and is expected to surpass the 240 million mark by 2030 [15]. This increase in popula-

tion can have several drastic impacts on freshwater availability, and water demand is projected

to far exceed supply [16]. Pakistan, formerly known as a water surplus country, is currently

suffering from water scarcity as the country is consuming its available freshwater resources at

a high rate. In Pakistan, water availability has dropped from 1299 m3 per capita to 1100 m3 in

1996–2006 and is projected to be less than 700 m3 per capita by 2025 compared to the interna-

tional standard of 1500 m3 [17]. In Pakistan, industries such as textile, steel, sugar, food pro-

cessing, tanneries, chemicals, refineries, and petrochemicals are the main contributors to

water pollution. These industries produce several thousand gallons of wastewater containing

vast amounts of potentially toxic metals such as Hg, Pb, Cd, Cr, Ni, Fe, Cu, and Co [18].

According to one estimate, more than 7.5708 ×109 liters of wastewater are discharged into

water drains daily without prior treatment [15].

Almost 70% of marble’s valuable mineral resources are lost during the quarrying, process-

ing, and refining process, and almost 40% of marble waste is released into the surrounding

atmosphere, leading to widespread environmental pollution [19, 20]. Processing a ton of mar-

ble releases almost a ton of slurry, which is 70% water and 30% powder [21]. After some reten-

tion in a sedimentation tank, water in the slurry is reused. However, the waste marble powder

in the slurry remains a source of contamination for water, soil, and air [22] The direct dis-

charge of the untreated marble effluents into nearby streams and rivers alters its physicochemi-

cal properties. Overall, it causes problems for farmers, fish farmers, pastoralists and the general

public, as water is unsuitable for irrigation and drinking purposes [23, 24].
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Wastewater treatment can improve the quality of industrial effluents, but financial con-

straints and the implementation of effective waste management policies are major challenges

for proper quality control in developing countries [25, 26]. In Pakistan, wastewater collection

and treatment schemes at the secondary or tertiary level are lacking, and only a fraction

(< 8%) of industrial wastewater is properly treated [27]. The rest is discharged directly into

rivers, streams, irrigation canals, and other bodies of water without mandatory treatment per

environmental protection agency requirements [3]. Protecting the availability of sufficient

amounts of high-quality water is a major technological and societal challenge that needs to be

addressed [28, 29]. In Pakistan, the concept of using constructed wetlands to remove toxic

metals from wastewater was recently introduced [30]. The use of biochar is also one of the

most advanced techniques for removing toxic compounds from water and soil [31]. In addi-

tion, biological and chemical remediation technologies such as plant growth-promoting rhizo-

bacteria (PGPR) and the use of diatomite are effective in heavy metal remediation [32, 33].

In developing countries, including Pakistan, poor farmers often rely on the use of wastewa-

ter to grow various crops for short-term economic benefits, ignoring the environmental and

related health risks due to a lack of basic knowledge [3]. Wastewater contains pathogens (bac-

teria, viruses, protozoa, and molds) and potentially toxic elements in excessive concentrations

that can cause significant health problems [34, 35]. Exposure to wastewater can occur through

ingestion, dermal, and inhalation routes while working in wastewater-generating industries,

using wastewater for irrigation and swimming [36, 37]. Therefore, the use of wastewater for

irrigation and household purposes can pose short- and long-term risks [34]. In the Malakand

Division, the marble industry generates waste in a variety of forms that are discharged directly

into rivers and irrigation canals, rendering the surface water unsuitable for irrigation and

household purposes [23]. This increasing trend of surface water pollution has become a serious

problem [38]. Health risk assessments such as hazard index and cancer risk could be used to

determine noncarcinogenic and carcinogenic health risks from exposure to potentially toxic

elements through ingestion, inhalation, and dermal contact [39].

Similarly, in large industrial areas where point and diffuse sources of pollution are mixed,

the sources are difficult to distinguish. Therefore, different approaches to defining geochemical

baselines are required [40]. The geochemical factors associated with water, soil, and sediments

should be considered compositional data, as they contain valuable information based on ele-

mental ratios [41]. In the case of sole interest in the relative structure of geochemical informa-

tion, the application of classical statistical tools to the input concentrations can lead to

spurious results, since compositional data follow different geometric rules [42]. It is well

known that traditional statistical methods based on Euclidean distance and covariance struc-

ture are not relevant for geochemical concentrations, leading to a spurious correlation of ele-

ment associations [43, 44]. In brief, geochemical data are positive vectors that are usually

represented as summing to a constant value [43] and are different from those in real Euclidean

space [45]. A family of log-ratio transformations, such as additive log-ratio (ALR), centered

log-ratio (CLR), and isometric log-ratio (ILR), can handle element concentration data that are

inherently compositional [46–48]. The centered log-ratio (CLR) transformation provides a

compositional alternative to raw data that uses the average of all variables but results in collin-

earity, while the isometric log-ratio (ILR) transformation avoids collinearity [48, 49]. The cen-

tered log-ratio (CLR) transformation developed by [44] was applied to the data set in

combination with compositional data analysis (CoDa) principles such as the variation matrix,

CLR biplot, and CoDa dendrogram to establish a linear relationship between the CLR variables

and differentiate the source of geochemical compounds [50–52]. In addition, it is important to

identify the unusual patterns that might be related to heavy metal pollution in an area of inter-

est. Traditional geochemical modelling methods mainly focus on the statistical aspects of
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geochemical data and neglect the spatial distribution of geochemical samples [53]. Therefore,

both spatial and statistical aspects of geochemical anomalies are considered. Likewise, expo-

sure to chemical elements through ingestion and dermal route, assessment, and monitoring of

water quality is critical to understanding, protecting, and managing environmental resources

and human health and well-being [54]. In conjunction with the above context, the current

study aimed (i) to investigate heavy metal pollution in surface water near marble processing

plants. (ii) To evaluate the associated health risks from exposure to surface water through

ingestion and dermal contact and (iii) to identify potential sources of heavy metal contamina-

tion in surface water by compositional data analysis (CoDa) and spatial distribution mapping.

Material and methods

Description of the study area

The study area lies within geographic coordinates 35N and 72E (Fig 1), which represent a gate-

way to the districts of Swat, Dir, and Chitral and the merged tribal districts of Bajaur and Moh-

mand. It is bounded to the north by the Swat foothills, to the south by the Mohmand Melange

complex and Charsadda District, and to the west by the Kot Melange complex [55]. Malakand

District covers a total area of 952 km2 with a population density of 475 people per km2 [56].

Climatically, the area falls into the subtropical and humid temperate zone, which is dominated

by chir pine, olive, oak, and acacia species [57]. The study area receives an average annual

Fig 1. The map of the study area shows the sampling sites.

https://doi.org/10.1371/journal.pone.0279083.g001
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rainfall of 600 to 650 mm. The maximum summer temperature reaches 41.9˚C, while the mini-

mum winter temperature can drop to –2˚C. The hottest months of the year are June and July,

with average temperatures of 40˚C and 38˚C, respectively [58].

Geologically, the area studied consisted of alluvial deposits, Malakand granite, Chakdara gran-

ite, Dir metasediments, Stream deposits, Kashala formation, Peshmal schist, Indus suture

melange, and Kohistan batholith and granite formation. These deposits are enriched with valuable

minerals, and rocks contain a combination of graphitic phyllite with garnet grains finely overlaid

with marble beds [38]. Malakand granite, Dargai chromite, marble, mica, quartz, and other valu-

able mineral resources have been reported at various geographic points in the study area [59].

Experimental site selection

The Marble Processing Plants (MPP) in the study area discharge their effluents directly into

the nearby irrigation canals originating from the Swat River (Fig 1). Surface runoff, municipal

wastewater, and atmospheric deposition of heavy metals further contribute to irrigation canal

pollution in the study area [60]. The people of the study area are primarily associated with the

agricultural sector and grow various crops and vegetables on the river water [61]. Therefore,

the quality of the irrigation water and the associated health risks are extremely important due

to the daily exposure to contaminated surface water. Considering this, a preliminary field sur-

vey of the irrigation canals near the Marble Processing Plants in Malakand, District of Paki-

stan, was conducted (Fig 2A and 2B). Irrigation channels derived from the river were observed

for at least six months from April 2019 to August 2019. The study area was divided into three

main sites: (i) upstream control (C), which is lacking in the MPP; (ii) industrial sites (S1-S7),

where the MPP is operational; and (iii) downstream (S8), which collects most of the marble

wastewater and is distant from the MPP (Fig 1). The coordinates of the sampling points were

recorded by GPS (GERMIN ETREX10, China). A map of the study area (Fig 1) was generated

using ArcGIS version 10.2.2.

Collection of samples of surface water

From September to December 2019, twenty-seven samples of surface water used for irrigation

and household purposes were collected in clean 500 mL polyethylene bottles at the selected

Fig 2. (a) Effluent discharge from the marble industry into the irrigation canal (b) Water sample collection by the author (Asghar Khan) from the study area.

https://doi.org/10.1371/journal.pone.0279083.g002
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sites (Fig 1). Before sampling, the bottles were prewashed and rinsed with deionized water con-

taining 20% HNO3 [62]. The bottles containing the surface water samples were then pre-

treated with a few drops of concentrate (HNO3, 65%) to prevent microbial degradation of

heavy metals [24]. The bottles were capped, labelled, and shipped to the Botany Department

Laboratory, Islamia College Peshawar, and stored at 4˚C until further analysis.

Analytical methods

Physiochemical properties such as pH, temperature, electrical conductivity (EC), and total dis-

solved solids (TDS) were measured using a pH meter (Model PH-2012 China) and TDS/EC

meter (Model-WT01 China) using standard operating protocols [63]. Standard titration meth-

ods were used for the measurement of chlorides (Cl-) and CaCO3 by titrating the sample with

H2SO4, EDTA, and AgNO3 [64]. The sulfate (SO4
2-) concentration was determined by UV

spectrophotometry (HACH-2800) [65]. Biological oxygen demand (BOD) and chemical oxy-

gen demand (COD) were measured using standard methods [63].

Analytical grade chemicals (HNO3, H2SO4) were used for acid digestion of the collected

samples. First, 5 mL of concentrated HNO3 was added to 250 mL Erlenmeyer flasks containing

100 mL of a contaminated surface water sample. The flasks were covered with a ribbed watch

glass and boiled slowly on a hot plate, and the sample volume was reduced to 20 mL [63]. After

cooling, concentrated HNO3 and H2SO4 were further added to the flasks at a ratio of 5 to 10

mL and evaporated on a hot plate until dense white fumes appeared. All samples were cooled,

filtered with Whatman no. 0.45 μm filter paper, and diluted to 50 ml with distilled water [66].

Concentrations of aluminum (Al), calcium (Ca), chromium (Cr), copper (Cu), iron (Fe), mag-

nesium (Mg), potassium (K), manganese (Mn), sodium (Na), nickel (Ni), phosphorous (P), sil-

icon (Si), strontium (Sr), titanium (Ti), and zinc (Zn) were measured using ICP–OES

spectrometer (Thermo Scientific, iCAP 6000, UK) according to the measurement protocols of

[67, 68].

Quality control and quality assurance

Special attention was given to the collection, preservation, and each experimental technique of

the samples. The samples were analyzed according to the standard certified analytical quality

control method [69–72]. All analytical reagents used in the laboratory analysis were pure. The

standard reference material (SRM) used for the preparation of calibration curves was Multiele-

ment Plasma Standard Solution 4, Refractory Metals Plasma Standard, and Phosphorus

Atomic Absorption Standard produced by Thermo Fisher Scientific, USA. Seven different lin-

ear concentration standards were prepared. All metals with a good linear graph with a correla-

tion coefficient > 0.999 were observed in the preparation of standard curves. Before sample

analysis, groundwater, and wastewater pollution standard solution 1 and 5, Specpure (Thermo

Fisher Scientific, USA) were run immediately after calibration. The recoveries were within the

EPA limits of 95–105% (S1 Table). The accuracy of the ICP–OES analytical technique was veri-

fied by analyzing certified reference materials (CRMs) NIST SRM 1643F and 2781 (S1 Table).

The limit of detection (LOD) for each element was determined by digesting five blanks (S1

Table). Each sample was analyzed in triplicate, and its mean was used for result interpretation.

The relative standard deviation (RSD) values of the elements analyzed were� 2.0% (S1 Table).

Assessment of surface water quality for irrigation

Water quality assessment was primarily developed to determine the mineral composition of

water [73]. In the current study, the suitability of surface water for irrigation purposes was

evaluated using the sodium adsorption ratio (SAR) in conjunction with the sodium percentage

PLOS ONE Irrigation suitability and heavy metal screening of surface water

PLOS ONE | https://doi.org/10.1371/journal.pone.0279083 December 21, 2022 6 / 26

https://doi.org/10.1371/journal.pone.0279083


(Na%), Kelly’s ratio (KR), and magnesium adsorption ratio (MAR) by using Eqs (1–4) [38, 74–

77].

SAR ¼
Naþ

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2þþMg2þÞ

p

2

ð1Þ

Na %ð Þ ¼
Naþ

ðNaþ þ Kþ þ Ca2þÞ
X 100 ð2Þ

MAR ¼
Mg2þ X 100

Ca2þ þMg2þ
ð3Þ

KR ¼
Naþ

Ca2þ þMgþ
ð4Þ

The water quality and suitability for irrigation according to the above criteria are defined in

S2 Table.

Health risk assessment

Human health risk assessment is an approach commonly used to calculate the nature and like-

lihood of adverse health effects on humans [78]. Workers in the marble industry and farmers

in agricultural fields are more exposed to contaminated surface water through ingestion and

dermal pathways during irrigation and stone crushing [28, 79]. In addition, surface water with

marble runoff intrudes into shallow aquifers and contaminates freshwater resources [23]. Con-

sequently, assessment of the carcinogenic and noncarcinogenic risks to individual health from

exposure to heavy metal-contaminated surface water via ingestion and dermal routes is of par-

amount importance. Therefore, metal concentrations in surface water were used to calculate

human health risks through ingestion and dermal exposure routes. The adult and child popu-

lation groups were considered based on their exposure frequency [28, 79].

Noncarcinogenic health risk

The potential noncarcinogenic health risks from exposure to contaminated surface water via

ingestion and dermal route were calculated according to the guidelines of [80] using Eqs 5 and

6.

ADDing ¼
Cw x IR x EF x ED

BW x AT
ð5Þ

ADDderm ¼
ðCw x SA x Kp x EF x ET x ED x CFÞ

BW x AT
ð6Þ

where ADDing, and ADDderm is the average daily absorbed dose through ingestion and dermal

contact [81]. The input parameters of Eqs 5 and 6 with relevant values are presented in S3 Table.

The hazard quotient (HQ) is a measure of potential noncarcinogenic health risk estimated

by comparing the daily average absorbed dose (ADD) from the ingestion and dermal routes of

exposure to the respective reference dose (RfD) by the following relationship [82].

HQing ¼
ADDing

RfDing
ð7Þ
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HQderm ¼
ADDderm

RfDderm
ð8Þ

where HQing and HQderm refer to the hazard quotient from ingestion and dermal absorption

route and AADing and ADDderm are the average daily absorbed doses derived from Eqs 5 and

6. RfDing and RfDderm are ingestion and dermal reference doses and can be defined as the max-

imum tolerable risks for the human population while maintaining a vulnerable group through-

out life [83]. The oral reference doses for Al, Cr, Cu, Fe, Mn, Ni and Zn were 1.0, 0.003, 0.04,

0.7, 0.02, 0.02 and 0.3 mg/kg/day; the dermal reference doses were 0.2, 0.000075, 0.012, 0.045,

0.0008, 0.0054 and 0.06 mg/kg/day [80, 84–87]. The noncarcinogenic health risk was neglected

at HQ < 1.0 and taken into account at HQ > 1.0 [78].

The hazard index (HI) measures the total noncarcinogenic risk posed by multiple heavy

metals present in the sample and is the sum of the hazard quotients of all heavy metals [82].

The HI can be calculated by the following equations:

HIing ¼
Xn

i¼1
HQing¼HQAlþHQCrþHQCuþHQFeþHQMnþHQNiþHQZn

ð9Þ

HIderm ¼
Xn

i¼1
HQderm¼HQAlþHQCrþHQCuþHQFeþHQMnþHQNiþHQZn

ð10Þ

HI ¼ HIing þHIderm ð11Þ

HI, values greater than one (HI > 1) indicate a potential for adverse human health effects

or the need for additional studies [80].

Carcinogenic risk assessment

The carcinogenic risk from exposure to the potentially toxic elements was estimated by inges-

tion and dermal route using incremental lifetime cancer risk (ILRC) [88]. ILCR is the incre-

mental probability that a person will develop a type of cancer over their lifetime as a result of

exposure to a carcinogenic hazard [84]. Cancer risk can be calculated using the following equa-

tions developed by [80].

ILCR ¼ ADD x CSFABS ð12Þ

SFABS ¼
CSF0

ABSGI
ð13Þ

where ADD is the average daily dose (mg/kg/day), CSFABS is the absorbed cancer slope factor,

and CSFO is the oral cancer slope factor, which represents the risk posed by the lifetime aver-

age amount of one mg/kg/day of a chemical carcinogen and toxin specific [11]. ABSGI is the

absorption fraction in the gastrointestinal tract (USEPA, 2004). Among the elements exam-

ined, Cr and Ni were identified as potentially carcinogenic to humans and included in the list

of the International Agency for Research on Cancer [86]. The oral slope factors (CSFO) and

gastrointestinal absorption fraction (ABSGI) were 0.5 mg/kg/day and 2.5% for Cr and 0.84 mg/

kg/day and 4% for Ni [80, 86, 89]. An ILCR value above 1 × 10−6 is considered harmful, while

a value below 1 × 10−6 is accepted as a nonsignificant risk [28].
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Statistical analysis

Descriptive statistical analysis were performed for the investigated physicochemical parame-

ters and heavy metals with related health risks using SPSS statistical package (version 25) and

Excel 2016 software (Tables 1–5). Compositional data analysis (CoDa) techniques, such as cen-

tered log-ratio transformation (CLR), were applied to raw data. A log ratio-variation matrix

(Table 6), CLR covariance biplots (Fig 5), CoDa-PCA (Table 7) and a CoDa-dendrogram (Fig

4) were constructed to find the linear relationship between elements and source attribution

[50–52]. For these calculations, the CoDaPack software [90] and R package ‘compositions’

[91] were used. The spatial distribution of elements in water samples near the marble industry

was obtained by inverse distance-weighted interpolation (IDW) in ArcGIS version 10.2.2 [92].

Table 1. Mean concentrations of physicochemical parameters of water (n = 27) used for surface irrigation near the marble industry in District Malakand.

Sampling sites Statistics Standard

Parameters C S1 S2 S3 S4 S5 S6 S7 S8 Mean Min Max SD NEQs WHO USEPA Increase (%)

pH 7.4 8.1 7.8 7.7 7.9 8.2 8.1 8.1 8.3 7.96 7.4 8.3 0.28 6–9 6.5–8.5 6–8.4 -

EC μs/cm 175.7 472.3 467.7 585.3 638.3 557.3 443.3 323.0 274.7 437.51 175.7 638.3 152.82 400 400 700 67%

TDS mg/L 112.0 302.0 299.0 375.0 409 357.0 284.0 207.0 176.0 280.11 112.0 409.0 98.00 3500 450 - -

Tem C˚ 23.6 27.7 28.0 31.2 31.8 27.5 31.3 29.7 29.0 28.87 23.6 31.8 2.56 40 - - -

BOD mg/L 74.0 181.7 197.0 182.0 91.3 102.0 168.3 98.7 184.3 142.14 74.0 197.0 49.18 80 - 30 89

COD mg/L 98.3 174.7 212.7 172.0 209.7 182.3 174.0 248.7 232.0 189.38 98.3 248.7 43.86 150 - 120 89

Cl- mg/L 36.8 44.6 86.6 46.9 55.1 61.9 86.0 70.2 69.8 61.99 36.8 86.6 17.76 1000 105 98 -

SO4
2- mg/L 90.0 407.3 188.3 295.0 380.7 462.3 229.0 270.3 455.0 308.66 90.0 462.3 127.59 600 - - -

CaCO3 mg/L 60.7 126.3 122.0 86.0 120.0 195.0 114.0 134.3 122.0 120.03 60.7 195.0 36.38 - 500 - -

Ca2+ mg/L 76.5 521.0 378.0 205.0 331.0 185.2 455.0 852.0 112.0 346.19 76.5 852.0 243.13 100 - - 89

Mg2+ mg/L 8.75 413.0 113.0 32.7 92.0 36.9 187.0 37.0 15.7 104.01 8.75 413.0 129.20 150 - - 23

Na+ mg/L 131.8 301.5 278.0 220.3 334.0 236.6 264.7 410.3 376.3 283.72 131.8 410.3 84.52 200 - - 89

K+ mg/L 8.31 9.55 51.0 9.89 46.1 19.6 11.5 7.3 7.5 18.97 7.3 51.0 17.21 12 - - 34

SD = Standard deviation, NEQs = National environmental Quality standard, EPA = Environmental protection agency, WHO = World Health organization

https://doi.org/10.1371/journal.pone.0279083.t001

Table 2. Classification of the irrigation water quality of the study area.

SAR (meq/L) EC μs/cm MAR (meq/L) KR (meq/L) Na% (meq/L)

Site Value Description Value Description Value Description Value Description Value Description

C 3.81 Excellent 175.70 Excellent 15.89 Suitable 0.79 Suitable 56.44 Permissible

S1 2.60 Excellent 472.30 Good 53.47 Unsuitable 34.57 Unsuitable 20.59 Good

S2 3.22 Excellent 467.70 Good 32.95 Suitable 9.91 Unsuitable 32.24 Permissible

S3 3.86 Excellent 585.30 Good 22.23 Suitable 3.73 Unsuitable 44.17 Permissible

S4 4.19 Excellent 638.30 Good 31.56 Suitable 8.45 Unsuitable 39.42 Permissible

S5 4.15 Excellent 557.30 Good 24.67 Suitable 4.16 Unsuitable 46.61 Permissible

S6 2.63 Excellent 443.30 Good 40.47 Suitable 15.93 Unsuitable 23.44 Good

S7 3.74 Excellent 553.70 Good 6.65 Suitable 3.45 Unsuitable 28.33 Good

S8 8.92 Excellent 274.70 Good 19.06 Suitable 4.33 Unsuitable 70.23 Unsuitable

Mean 4.13 - 463.14 - 27.44 9.64 - 40.16

Min 2.60 - 175.70 - 6.65 0.79 - 20.59

Max 8.92 - 638.30 - 53.47 34.57 - 70.23

SD 1.9 - 150.54 - 14.0 10.3 - 16.2

SAR = Sodium adsorption ratio, MAR = Magnesium adsorption ratio, KR = Kelly’s ratio, EC = Electrical conductivity

https://doi.org/10.1371/journal.pone.0279083.t002
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Results and discussion

Assessment of surface water quality for irrigation

The data for evaluating surface water quality for irrigation purposes near marble industry was

analyzed statistically and their results are summarized in Tables 1 and 2, respectively. The pH

values ranged from 7.4 to 8.3, with a mean of 7.96, indicating a slightly alkaline nature

(Table 1). All water samples were within the standard safe pH limit (6.5–8.5) for irrigation pur-

poses [93, 94]. pH is a term commonly used to express the intensity of a solution’s acidic or

alkaline state [95]. pH values above 6.5 to 8.5 are suitable for irrigation but lead to nutrient

Table 3. Heavy metal load (mg/L) in contaminated surface water (n = 27) used for irrigation of food crops.

Sampling sites Statistics Standard

Elements C S1 S2 S3 S4 S5 S6 S7 S8 Mean Min Max SD FAO/NEQS Increase (%)

Al 3.13 7.14 565 129 469 10.9 9.39 5.05 7.79 134.04 3.13 565 222.06 5.0 89

Cr 0.11 0.07 0.31 0.07 0.54 0.11 0.11 0.14 0.09 0.17 0.07 0.54 0.16 0.1 56

Cu 0.12 0.28 1.27 0.23 0.97 0.20 0.39 0.67 1.07 0.58 0.12 1.27 0.43 0.2 78

Fe 1.97 2.93 93.6 15.7 113 5.0 7.15 21.5 2.96 29.31 1.97 113 42.72 5.0 56

Mn 0.09 0.15 1.57 0.2 0.72 0.14 0.39 0.54 0.29 0.45 0.09 1.57 0.47 0.2 56

Ni 0.17 0.31 0.30 0.09 0.27 0.09 0.43 0.65 0.11 0.27 0.09 0.65 0.18 0.2 56

P 1.79 12.8 12.3 14.4 12.1 26.5 11.9 11.7 30.5 14.89 1.79 30.5 8.58 5 89

Si 4.36 2.29 1.20 2.31 1.41 4.46 3.71 7.09 1.29 3.12 1.2 7.09 1.96 - -

Sr 0.25 0.35 2.29 0.65 2.18 0.95 1.79 1.36 0.41 1.14 0.25 2.29 0.8 - -

Ti 0.04 1.1 10.13 1.41 12.9 0.31 0.11 0.09 0.14 2.91 0.04 12.9 4.95 - -

Zn 1.78 2.26 1.51 1.49 1.47 1.79 1.71 1.45 1.49 1.66 1.45 2.26 0.26 2.0 11

SD = Standard deviation, NEQS = National environmental Quality standard, FAO = Food and agricultural organization

https://doi.org/10.1371/journal.pone.0279083.t003

Table 4. Non-carcinogenic risk assessment for children and adults from heavy metal exposure via ingestion and dermal pathways.

Adults

Elements ADD ingestion ADD dermal HQ ingestion HQ dermal HQ total

Al 3.67E+00 1.92E-02 3.67E+00 9.58E-02 3.77E+00

Cr 4.72E-03 4.92E-05 1.57E+00 6.57E-01 2.23E+00

Cu 1.58E-02 8.27E-05 3.96E-01 6.89E-03 4.03E-01

Fe 8.03E-01 4.20E-03 1.15E+00 9.31E-02 1.24E+00

Mn 1.25E-02 6.51E-05 6.23E-01 8.13E-02 7.04E-01

Ni 7.37E-03 1.54E-04 3.68E-01 2.85E-02 3.97E-01

Zn 4.55E-02 1.43E-04 1.52E-01 2.38E-03 1.54E-01

Total 4.56E+00 2.39E-02 HI 7.93E+00 9.65E-01 8.90E+00

Child

Elements ADD ingestion ADD dermal HQ ingestion HQ dermal HQ total

Al 5.48E+00 5.65E-02 5.48E+00 2.83E-01 5.77E+00

Cr 7.05E-03 1.45E-04 2.35E+00 1.94E+00 4.29E+00

Cu 2.36E-02 2.44E-04 5.91E-01 2.03E-02 6.11E-01

Fe 1.20E+00 1.24E-02 1.71E+00 2.75E-01 1.99E+00

Mn 1.86E-02 1.92E-04 9.30E-01 2.40E-01 1.17E+00

Ni 1.10E-02 4.54E-04 5.50E-01 8.40E-02 6.34E-01

Zn 6.80E-02 4.20E-04 2.27E-01 7.01E-03 2.34E-01

Total 6.81E+00 7.04E-02 HI 1.18E+01 2.85E+00 1.47E+01

https://doi.org/10.1371/journal.pone.0279083.t004
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imbalances and alter the solubility of many toxic substances [96]. Temperature values ranged

from 23.60 to 31.80˚C with a mean of 28.87˚C and are within the safe limit (40˚C) for irriga-

tion [93]. According to [97], an increase in water temperature decreases dissolved oxygen

(DO) solubility and has a strong impact on nutrient recycling and the productivity of aquatic

biodiversity.

The BOD of wastewater is a valuable criterion for assessing its suitability for irrigation [98].

High BOD in wastewater depletes the oxygen content of the water and leads to the death of

aquatic organisms [99]. Similar to BOD, COD is also used to represent overall water quality

[100]. The BOD and COD concentrations in the current study ranged from 74 to 197 mg/L

and 98.30 to 248.70 mg/L, with mean values of 142.14 and 189.38 mg/L, respectively (Table 1).

The permissible limits for BOD and COD in wastewater are 80 and 150 mg/L, respectively

[93]. The concentrations of BOD and COD in the water sample (89%) exceeded the safety lim-

its for irrigation (Table 1). High BOD and COD levels were also obtained by [64] when study-

ing the impact of marble runoff on the Barandu River in Pakistan. Alkalinity is essential to

aquatic life due to its buffering capacity against rapid pH changes that occur naturally as a

result of the photosynthetic activity of plants [101]. In the current study, alkalinity ranged

from 60.7 to 195 mg/L with a mean of 120.03 mg/L CaCO3 (Table 1). The alkalinity levels of

all water samples were within the safe limit (500 mg/L) for irrigation purposes [93].

Concentrations of the cations including Ca2+, Na+, Mg2+, and K+ ranged from 76.5 to 852,

131.8 to 410.3, 8.75 to 413, and 7.3 to 51 mg/L with mean values of 346.19, 283.72, 104.01 and

18.97 mg/L, respectively (Table 1). The permissible limits of Ca2+, Na+, Mg2+, and K+ in waste-

water used for irrigation are 100, 200, 150, and 12 mg/L, respectively [93]. Due to these

Table 5. Carcinogenic risk (CR) of Cr and Ni for adult and children through ingestion and dermal exposures pathways.

Adult Children

Element CRingestion CRdermal CRtotal CRingestion CRdermal CRtotal

Cr 2.4 x 10−3 2.5 x 10−5 2.4 x 10−3 3.5 x 10−3 7.3 x 10−5 3.6 x 10−3

Ni 6.6 x 10−3 1.4 x 10−4 6.8 x 10−3 9.9 x 10−3 4.1 x 10−4 1.0 x 10−2

Total 9.0 × 10−3 1.6 × 10−4 9.2 × 10−3 1.34 × 10−2 5 × 10−4 1.39 × 10−2

https://doi.org/10.1371/journal.pone.0279083.t005

Table 6. Normalized variation matrix of data in table (3).

Al Ca Cr Cu Fe K Mg Mn Na Ni p Si Sr Ti Zn

Al

Ca 2.12

Cr 1.31 0.50

Cu 1.64 0.50 0.3

Fe 0.67 1.36 0.73 1.04

K 1.09 0.52 0.17 0.39 0.95

Mg 2.12 0.34 0.89 0.88 1.95 0.71

Mn 1.39 0.50 0.37 0.20 0.84 0.47 0.87

Na 2.04 0.21 0.36 0.42 1.42 0.41 0.65 0.54

Ni 2.47 0.19 0.44 0.60 1.48 0.63 0.58 0.56 0.3

P 2.69 0.82 0.77 0.80 2.13 0.94 1.32 0.90 0.46 0.57

Si 3.26 0.49 0.74 0.98 2.12 0.86 1.13 1.16 0.38 0.4 0.78

Sr 1.40 0.36 0.25 0.41 0.79 0.31 0.75 0.46 0.44 0.47 1.03 0.79

Ti 0.49 2.19 1.47 1.71 1.08 1.23 1.92 1.63 2.24 2.56 3.0 3.46 1.56

Zn 2.25 0.36 0.40 0.59 1.63 0.43 0.73 0.74 0.13 0.33 0.43 0.23 0.55 2.37

https://doi.org/10.1371/journal.pone.0279083.t006
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permissible limit values, the percentages (%) of water samples with Ca2+ (89), Na+ (89), Mg2+

(23) and K+ (34) are unsuitable for irrigation (Table 1). Likewise, the concentrations of anions

such as SO4
2- and Cl- were between 90 and 462.3, 36.8, and 86.6 mg/L with mean values of

308.66 and 61.99 mg/L, respectively (Table 1). The permissible limits set by [93] for SO4
2- and

Cl- in wastewater used for irrigation are 600 and 1000 mg/L, respectively (Table 1). According

to the classification standards, all the water samples are suitable for irrigation in terms of SO4
2-

and Cl- (Table 1).

Investigating salinity risk is very important for irrigation water, as a high salt content ren-

ders the soil saline and affects the ability of plants to absorb water through their roots [102].

Electrical conductivity (EC) is a measure of water’s ability to conduct electricity and indicates

the number of total dissolved solids (TDS) [103]. Therefore, the salinity hazard of the current

study was assessed by EC and TDS, and their concentrations varied from 175.7 to 638.3 μs/cm

and 112 to 409 mg/L with mean values of 437.51 μs/cm and 280.11 mg/L, respectively

(Table 1). Based on the EC level, 67% of the surface water samples were above the permissible

limits (400 μs/cm) set by [93, 94] for irrigation. However, the TDS concentration in all samples

is within the permissible limit (450–3500 Mg/L) set by [93, 94] for wastewater (Table 1). In

addition, the long-term use of this slightly saline water for irrigation may increase the salinity

risk in the soils of the study area.

An assessment of the sodium hazard of water is required to determine its suitability for irri-

gation. Excessive sodium levels in the water sample reduce the permeability and availability of

water for the plant [104]. One of the most important criteria in determining sodium hazard is

the sodium adsorption ratio (SAR). In addition, Kelly’s ratio (KR) and Na% are used to assess

the adverse effect of sodium (Na) on irrigation water quality [105]. The SAR ranged from 2.60

to 8.92 meq/L, with a mean of 4.13 (Table 2). In the current study, SAR values < 10 classify the

water samples as good for irrigation (S2 Table). However, the Kelly’s ratio (KR> 1) indicates

excess sodium in water. Water with Kelly’s ratios (K< 1) is considered suitable for irrigation

Table 7. Principal component analysis (PCA) based on centered log ratio (CLR) transformed data.

CLR (variables) Components

PC1 PC2

Al 0.52 -0.05

Ca -0.16 0.22

Cr 0.01 -0.19

Cu -0.02 -0.13

Fe 0.32 -0.43

K 0.05 0.05

Mg -0.09 0.72

Mn 0.03 -0.13

Na -0.17 -0.01

Ni -0.22 0.04

P -0.25 -0.25

Si -0.35 -0.10

Sr 0.01 -0.04

Ti 0.53 0.32

Zn -0.21 -0.01

Eigen 14.17 2.41

% Variance 64.00 11.00

Total variance 64.00 75.00

https://doi.org/10.1371/journal.pone.0279083.t007
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while K> 1 is considered as unsuitable [95]. Kelly’s ratios in the present study ranged from

0.79 to 34.57 meq/L, with a mean of 9.64 meq/L (Table 2). Based on these values, 89% of the

water samples were classified as unsuitable for irrigation (K> 1) (Table 2). The Na% ranged

from 20.59 to 70.23 meq/L, with a mean of 40.16 meq/L (Table 2). Na% is plotted against con-

ductivity, called the Wilcox diagrams, shown in Fig 3. The water sample (52%) falls into the

categories excellent, 40% good and 8% admissible. The magnesium adsorption ratio (MAR)

values ranged from 6.65 to 53.47, with a mean of 27.44 meq/L (Table 2). Based on MAR, 88%

of the water sample was suitable for irrigation while the remaining 12% was considered as

unsuitable (Table 2). In general, calcium and magnesium maintain a state of equilibrium in

most water bodies, while increased concentrations of magnesium in the water reduce crop

yield [106].

Heavy metal (HM) concentration in surface water

The HM concentrations in surface water, including marble runoff, are summarized in Table 3.

The concentrations of Al, Fe, P, Ti, and Si ranged from 3.13 to 565.0, 1.97 to 113, 1.79 to 30.5,

0.04 to 12.90, and 1.20 to 7.09 mg/L with mean values of 134.04, 29.31, 14.89, 2.91 and 3.12

mg/L, respectively. Likewise, the concentrations of Zn, Sr, Cu, Mn, Ni, and Cr range from 1.45

to 2.26, 0.25 to 2.29, 0.12 to 1.27, 0.09 to 1.57, 0.09 to 0.65, and 0.07 to 0.54 mg/L, with mean

Fig 3. The Wilcox diagram shows the suitability of surface water for irrigation.

https://doi.org/10.1371/journal.pone.0279083.g003
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values of 1.66, 1.14, 0.58, 0.45, 0.27 and 0.17 mg/L, respectively. The permissible limits for Al,

Cr, Cu, Fe, Mn, Ni, P, and Zn in wastewater were 5.0, 0.1, 0.2, 5.0, 0.2, 0.2, 5.0, and 11 mg/L,

respectively (Table 3). The proportions of Al (89%), Cu (78%), Fe (56%), Mn (56%), Ni (56%),

Cr (56%), and Zn (11%) were above the safety limits for irrigation [93]. Due to unavailability

of threshold values for Si, Sr, and Ti in wastewater. Consequently, their assessment for irriga-

tion and health risk was not reported in the present study. According to [107] elevated Al con-

centrations in water are toxic to gill-breathing animals and lead to loss of their osmoregulatory

function. Likewise, increased levels of Cr, Fe, and Pb lead to severe histopathological changes

in fish liver, gills, and kidneys [108, 109]. Concentrations of Fe and Zn above the permissible

limit in aquatic ecosystems reduce aquatic biodiversity and cause necrosis in the flora [110,

111]. However, excessive Fe concentrations in the human body lead to gastrointestinal tract

disorders and an unnecessary rise in blood pressure [112]. Additionally, Cu, Ni, and Zn above

safe limits damage the liver, kidneys, and pancreas and cause nausea, fever, and skin problems

[113, 114]. Elevated Mn concentrations in water are associated with mining and industrial

effluents, fossil fuel burning, and the steel and marble industries [23, 115]. Prolonged exposure

to Mn can target the mitochondria and cause neurotoxicity, followed by liver cirrhosis in

Fig 4. Dendrogram of the association of the fifteen elements in the water sample reproduced by the R-package

‘compositions’ and ‘hclust.

https://doi.org/10.1371/journal.pone.0279083.g004
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humans [116]. Similarly, Ni levels above the safe limit can cause lung, throat, and stomach can-

cers in humans [117].

Health risk assessment

Noncarcinogenic risk assessment. The average daily dose (ADD mg/kg/day), hazard

quotient (HQ), and hazard index (HI) values of Al, Cr, Cu, Fe, Mn, Ni, and Zn were calculated

and are presented in Table 4. The ADDing values for Al (5.48E+00), Fe (1.20E+00), Zn (6.80E-

02), Cu, (2.36E-02), Mn (1.86E-02), Ni (1.10E-02) and Cr (7.05E-03) were higher in children

than in adults (Table 4). For adults, the ADDing values of Al (3.67E+00), Fe (8.03E-01), Zn

(4.55E-02), Cu (1.58E-02), Mn (1.25E-02), Ni (7.37E-02) and Cr (4.72E-03) were above the

ADDderm calculated for children (Table 4). The ADDderm values for Al (5.65 E-02), Fe (1.24E-

02), Ni (4.54E-04), Zn (4.20E-04), Cu (2.44E-04), Mn (1.92E-04), and Cr (1.45E-04) in chil-

dren were higher than the estimated ADDderm for adults (Table 4). The trend of ADDtotal for

both population through exposure routes showed a decreasing order of ADDing (child) >

ADDing (adult)> ADDderm (child) > ADDdem (adult) (Table 4). Similarly, ingestion and der-

mal exposure to heavy metals were in decreasing order: Al> Fe > Ni > Zn> Cu > Mn> Cr.

The current results from ADDing and ADDderm revealed that children were more exposed to

higher doses of heavy metals through ingestion and dermal routes than adults.

Fig 5. Centered log ratio (CLR) transformation covariance biplots shows clustering of elements on PC1 versus PC2.

https://doi.org/10.1371/journal.pone.0279083.g005
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The mean values of HQing ranged from 1.52E-01 to 3.67E+00 for adults and 2.38E-03 to

5.48E+00 for children (Table 4). HQ > 1.0 for Al, Cr, and Fe indicated adverse health effects

in children and adults via the ingestion route of exposure (Table 4). However, HQderm > 1.0

for Cr indicates potential health hazards for children via the dermal contact route. The risk of

heavy metal exposure was in decreasing order of HQing (adult) > HQderm (child) > HQing

(child) > HQderm (adult) (Table 4). The HQtotal (HQing + HQderm) values for Al, Cr, Cu, and

Fe were above one (HQtotal > 1) (Table 4). Therefore, adverse health effects were suggested for

the exposed population groups. In addition, the HI (HQing + HQderm) for the heavy metals in

adults and children was also above one (HI > 1) (Table 4), indicating a significant risk of non-

carcinogenic toxicity. The contribution from heavy metal (HM) to hazard index (HI)

decreased in the order Al> Cr> Fe > Mn> Cu >Ni > Zn. Similar results were obtained by

[28], who reported that irrigation with industrial wastewater is 180 times more hazardous than

groundwater. Our current study results agree well with those of [38], who also calculated a

noncarcinogenic risk to humans from heavy metal exposure via ingestion and dermal contact

with contaminated surface water.

Carcinogenic Risk Assessment (CRA). The carcinogenic risk of Cr and Ni for children

and adults through ingestion and dermal contact was calculated and ranged from 2.5×10−5 to

9.9×10−3 (Table 5). The minimum cancer risk value for Cr (2.5×10−5) from dermal exposure

in adults exceeded the acceptable level of 1×10−6–1×10−4 [118]. Likewise, the maximum cancer

risk value of Ni (9.9×10−3) for children by the ingestion route is 10–1000 times higher than the

[118] acceptable value of 1×10−6–1×10−4. The total cancer risk value of Ni and Cr was higher

in children (1.39×10−2) than in adults (9.2×10−3), suggesting that children are more susceptible

Fig 6. Spatial distribution pattern of elements in irrigation water near the marble processing plants.

https://doi.org/10.1371/journal.pone.0279083.g006
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to carcinogenic risk. According to [89], a carcinogenic risk of less than 1×10−6 for individual

heavy metals is insignificant and above 1×10−4 can be quantified as harmful and of concern.

Table 3 shows that higher concentrations of Cr and Ni in surface water, including marble run-

off, pose a risk to human health. In addition, the cumulative cancer risk of the elements is

more threatening than the individual element risks (Table 5).

Looking for associations and identification of heavy metal sources in

irrigation water

The normalized variation matrix suggests a linear association between sub compositional parts

of a compositional data set [119]. Variations smaller than 0.2 indicate proportionality or linear

association, and variations greater than 1.0 indicate a lack of linear association or proportion-

ality [50]. In the current study, the smallest contribution from Na to Zn (0.13), Cr to K (0.17),

Ca to Ni (0.19), and Cu to Mn (0.2) (Table 6), indicates that these pairs of elements are propor-

tional and can easily be explained by the fact that sampling sites where Na is available are also

rich in Zn, and the same is true for Cr and K, Ca and Ni, Cu and Mn. The largest contributor

to variability is derived from the log ratios of Al, Ti, Fe, Mg, Si, and P relative to most elements

(Table 6). The relatively large variation in the log ratios of Al, Ti, and Fe with Si, P, Ni, Zn, Na,

Ca, Mg, and Cu (Table 6) separated Fe, Al, and Ti first in the cluster dendrogram (Fig 4). Dis-

proportionate log ratios of Mg to Ca (0.34), Ni (0.58), Na (0.65), and Zn (0.73) removed Mg

from their respective clusters (Fig 4). The associations of the remaining elements were Cu–

Mn, K-Cr–Sr, P-Si, Na-Zn, and Ca-Ni (Fig 4). According to [120], metals falling into the same

cluster lead to the same source of origin.

Principal component analysis (PCA) based on centered log ratio (CLR) transformation

explains the inter elemental association and determines the pollution sources [121]. The result

of the CLR biplot (Fig 5) represents 75% of the total variability (Table 7). The PCI was domi-

nated by high loadings of Ti (0.53), Al (0.52), and Fe (0.32). PCII was dominated by high load-

ings of Mg (0.72), Ti (0.32), and Ca (0.22) (Table 7), indicating that these elements are from

the same source. In Fig 5, the K, Ti, Al, and Fe variables form a clear association due to the

same ray direction and the close layout of their vertices, implying that the association could

have a combination of anthropogenic and geogenic origins [122]. Fig 5 also shows a close asso-

ciation between Na-Zn-Ni and Ca-Mg due to their close vertices and the same direction of the

rays. Magnesium (Mg) and Si vectors are proportional to Na, Ca, Ni and Zn, indicating their

dominance in carbonate rocks [123]. Copper (Cu), Mn, Cr, and Sr develop different associa-

tions as their vertices are positioned close together and the rays point in the same direction,

possibly related to soil erosion, fertilizer, pesticides, and waste disposal from the municipal

and industrial sectors [124, 125]. Silicon and phosphorus form a clear association due to the

close location of their vertices, and the rays in the same direction are likely associated with soil

erosion and phosphate fertilizer [123]. A similar study [64] reported that elements such as Al,

Fe, Ca, K, and Ni are released in the form of dust from marble and granite rocks during mining

activities, sculpting, and manufacturing of slabs. [53] also reported that the main anthropo-

genic sources of soil pollution from Cr, Pb, Mn, Ni, Cu, Mn, and Zn were the leather industry,

brick factories, and road traffic and therefore strongly agree with our current study results.

Spatial patterns of elements in surface water

The spatial distribution map is a valuable tool to identify hotspots of heavy metal pollution and

delineate the safe and hazardous corners in a study area [69]. The spatial distribution of ele-

ments in surface water near the marble industry is shown in Fig 6. High concentration patterns

of Al, K, Ti, and Fe were observed near the sampling sites (S2 to S5), indicating the
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contribution of the marble industry to surface water pollution. Similarly, high concentration

trends for Ca, Si, and Ni were recorded near sites S6 and S7 and could be a major contribution

due to industrial and intensive agricultural practices along the water sources [126, 127]. An

increase in the spatial distribution patterns of Cu, Na, P, and Sr was observed from control (C)

to sites (S1 to S8), also indicating that marble runoff is an important source of surface water

contamination. Cr, Mg, Mn, and Zn show analogous trends and high anomalies at sites S1 to

S3 and S5, suggesting vehicle emissions and marble dust as major pollution sources [21, 128].

It has been reported that the main sources of K, Al, and Fe in surface water are potash fertiliz-

ers, weathering of potash silicate reserves, rainwater, and discharge of domestic sewage [38]. In

addition, abundant concentrations of Na, P, and Sr in an aquatic environment reflect the inte-

gration of anthropogenic and crustal contributions [129].

Conclusions

The current study assessed water quality for irrigation, heavy metal concentrations with associ-

ated human health risks, and identification of sources of pollution. The summarized results

concluded that the surface water was heavily polluted by Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, P,

and Zn and posed considerable carcinogenic and noncarcinogenic health hazards from inges-

tion and dermal routes to the target groups. Effluents from the marble industry are the main

source of surface water pollution in the study area. Therefore, it is strongly recommended to

move the marble processing plants from the nearby river canals (Swat River) and agricultural

land to the industrial area. Regular monitoring to assess pollution levels in surface waters is

needed, and the implementation of phytoremediation strategies is helpful to reduce pollution

contributions to their default levels. For future improvements in the agricultural sector, the

use of biochar and diatomite (chemical soil remediation agents) is recommended for the recla-

mation of heavy metal-contaminated soils. It is highly recommended to implement safe work-

ing practices such as sewage treatment plants and safety measures during irrigation and work

in the marble industry without affecting the environmental resources. The findings of the cur-

rent study are of great value to countries where marble runoff generally enters freshwater

resources and is particularly helpful to the Government of Khyber Pakhtunkhwa, Pakistan, in

formulating policies prohibiting industrial activities near and on freshwater bodies and agri-

cultural land to protect aquatic and terrestrial life.
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