# IRROTATIONAL FLOW ABOUT SHIP FORMS 

by<br>L. Landweber and M. Macagno

Sponsored by
Office of Naval Research
Contract Nonr - 1611(07)

IIHR Report No. 123

Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa

December 1969

This document has been approved for public release and sale; its distribution is unlimited.

## Introduction

A method of computing the potential flow about ship forms would, in spite of the neglect of viscous effects, be valuable in the preliminary design of a ship, or in investigating means of improving the performance of an existing ship. If an efficient procedure for performing such calculations were available, one could determine, without recourse to model tests, whether the streamlines along the forebody are such that bilge vortices would be generated and what would be the effect on these streamlines of various modifications of the bow. If separation at the stern is not severe and the bow not too blunt near the free surface, useful results could be obtained for the wavemaking of a ship form on the assumptions of irrotational flow and the linearized free-surface condition, but with the exact boundary condition on the hull. The last condition is significant since it would enable the effects of local modifications of form, especially at the bow, to be studied.

A well-known method of calculating the potential flow about a threedimensional form is that of Hess and Smith [1]*. In common with the HessSmith approach, the method to be described herein determines a distribution of sources on the surface of a given body by solving the basic integral equation of potential theory for such a Neumann problem [2]. The methods differ in the treatment of the singularity of the kernel of the integral equation, the selection of an iteration formula for solving the integral equation, the quadrature formula used to reduce the integral equation to a set of linear equations, and the procedure employed to calculate the velocity distribution along the hull once the source distribution has been determined.

Although the procedure to be described has been available as a computer program for several years, and early results with a body of revolution (a spheroid) and a three-dimensional form (an ellipsoid) showed very good agreement with the exact solutions, publication has been delayed because anomalous results were obtained when the method was applied to a

[^0]mathematical form with parabolic lines and sections, having sharp edges at the bow, stern and keel. Presently an attempt is being made to apply the method to a Series -60 model [3]; but since this form is serving as a vehicle for development of a procedure for fitting a mathematical equation to an arbitrary ship form, the hull coordinates and direction cosines of the normals to the hull, required as input in the potential flow program, are not yet available. Consequently it has been decided to present the method and the computer program without further delay, since others may be more efficient in obtaining the required input for their ship forms.

## Statement of Problem

Our problem is to develop means of computing the flow about a ship form, including free-surface effects. We shall assume the fluid to be incompressible and inviscid, and the flow irrotational. We shall suppose that a ship form has been prescribed, and that its draft and trim are known. We shall assume that the surface disturbance is sufficiently small that the boundary condition on the free surface may be linearized. The boundary condition on the hull will be satisfied exactly.

An obvious criticism of these assumptions is that, in neglecting the effects of viscosity and sinkage and trim, and employing the approximate linearized form of the free-surface boundary condition, in comparison with the elegant, classical, thin-ship theory, only one of several equally important corrections will have been made. Our view is that the solution of the present problem can be made the basis for incorporating additional corrections by iterative techniques. For example, the resulting pressure distribution can be used to calculate the equilibrium trim and sinkage of the ship, which can then be applied to obtain a second approximation for the flow about it.

Let $f(x, y, z)=0$ be the equation of the hull surface $S$, with $x$ in the direction of the stream $U$, and $z$ positive upwards, with the origin in the undisturbed level of the free surface. Denote the velocity potential by

$$
\begin{equation*}
\Phi=U x+\phi \tag{1}
\end{equation*}
$$

where $\phi$ is the disturbance potential which, as well as $\Phi$, satisfies the

Laplace equation

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{2}
\end{equation*}
$$

The boundary condition on $S$ is then

$$
\begin{equation*}
\frac{\partial \phi}{\partial N}=-U \frac{\partial x}{\partial N} \tag{3}
\end{equation*}
$$

where $\mathbb{N}$ denotes distance in the direction of the outward normal to S . The free-surface boundary condition will be taken in the linearized form

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+k_{0} \frac{\partial \phi}{\partial z}=0 ; \quad k_{0}=\frac{g}{U^{2}}, \quad z=0 \tag{4}
\end{equation*}
$$

For a source of unit strength at the point $P(\xi, \eta, \zeta)$ in the same uniform stream, the velocity potential $\Phi_{S}$ which satisfies (2) and boundary condition (4) may be written in the form

$$
\begin{equation*}
\Phi_{S}=U x-\frac{1}{R}-\frac{1}{R},+H(P, Q) \tag{5}
\end{equation*}
$$

where $Q$ is a point $Q(x, y, z)$ below the free surface, $R$ is the distance from $P$ to $Q, R^{\prime}$ is the distance from $P^{\prime}(\xi, \eta,-\zeta)$, the mirror image of $P$ in the free surface, to $Q$,
$R=\left[(x-\xi)^{2}+(y-n)^{2}+(z-\zeta)^{2}\right]^{\frac{7}{2}}, R^{\prime}=\left[(x-\xi)^{2}+(y-n)^{2}+(z+\zeta)^{2}\right]^{\frac{7}{2}}$
and $H(P, Q)$ is regular harmonic in the lower half space $z<0$ and given by
$H(P, Q)=\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{e^{k(z+\zeta)+i k[(x-\xi) \cos \theta+(y-\eta) \sin \theta]}}{k-k_{0} \sec ^{2} \theta} k d k d \theta$
$-4 k_{0} \int_{0}^{\pi / 2} e^{k_{0}(z+\zeta) \sec ^{2} \theta} \sin \left[k_{0}(x-\xi) \sec \theta\right] \cos \left[k_{0}(y-n) \tan \theta \sec \theta\right]$

$$
\begin{equation*}
\sec ^{2} \theta \cdot d \theta \tag{7}
\end{equation*}
$$

where $f$ denotes the "Cauchy principal part". The velocity potential of (5) and (6) also satisfies the "radiation condition", that waves are propagated downstream from the source [4].

Now let $M(P)$ denote the strength of a source distribution on $S$. The velocity potential of this source distribution which satisfies the freesurface condition (4) and the radiation condition, by (5), is given by

$$
\begin{equation*}
\Phi(Q)=U x-\int_{S+S} \frac{M(P)}{R} d S_{P}+\int_{S} M(P) H(P, Q) d S_{P} \tag{7}
\end{equation*}
$$

where $S^{\prime}$ denotes the mirror image of $S$ in the plane $z=0$. Taking into account the discontinuity in the normal derivative of the potential at a surface distribution, the boundary condition on the hull surface $S$ then yields
$M(Q)=-\frac{U}{2 \pi} \frac{\partial x}{\partial N_{Q}}+\frac{1}{2 \pi} \int_{S+S^{\prime}} M(P) \frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right) d S_{P}-\frac{1}{2 \pi} \int_{S} M(P) \frac{\partial H(P, Q)}{\partial N_{Q}} d S_{P}$
a Fredholm integral equation of the second kind. The development of a procedure for solving this integral equation numerically for a given ship form is our principal objective.

An essential difficulty in the numerical solution of (8) is that both of the integrands are singular. A means of removing these singularities will be described and justified in the following two sections.

## Treatment of Double-Model Integral

At points of $S$ where the normal is continuous, we have by Gauss's flux theorem

$$
\begin{equation*}
-\int_{S+S^{\prime}} \frac{\partial}{\partial N_{P}}\left(\frac{1}{R}\right) d S_{P}=2 \pi \tag{9}
\end{equation*}
$$

This enables us to write

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{S^{\prime}+S^{\prime}} M(P) \frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right) d S_{P}=\frac{1}{2 \pi} \int_{S+S^{\prime}}\left[M(P) \frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right)-M(Q) \frac{\partial}{\partial N_{P}}\left(\frac{1}{R}\right)\right] d S_{P}-M(Q) \tag{10}
\end{equation*}
$$

We shall now show that the singularity of the left member of (10) when $P$ coincides with $Q$ is not present in the right member.

The direction cosines at the point $Q$ of $S$ are given by

$$
\begin{equation*}
\ell_{Q}=\left(\frac{\partial n}{\partial N}\right)_{Q}=\frac{f_{x}}{D_{Q}}, \quad M_{Q}=\frac{f^{\prime}}{D_{Q}}, \quad n_{Q}=\frac{f_{z}}{D_{Q}} \tag{11}
\end{equation*}
$$

where $f_{x}, f_{y}, f_{z}$ denote partial derivatives of $f(x, y, z)$ with respect to $x, y, z$, and

$$
D_{Q}=\left[f_{x}^{2}+f_{y}^{2}+f_{z}^{2}\right]^{\frac{1}{2}}
$$

Then we have

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right) & =-\frac{1}{R^{3}}\left[(x-\xi) l_{Q}+(y-n) m_{Q}+(z-\zeta) n_{Q}\right] \\
& =-\frac{1}{R^{3} D_{Q}}\left[(x-\xi) f_{x}+(y-\eta) f_{y}+(z-\zeta) f_{z}\right] \tag{12}
\end{array}\right\}
$$

and

$$
\begin{align*}
M(P) \frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right)-M(Q) \frac{\partial}{\partial N_{P}}\left(\frac{1}{R}\right)= & -\frac{1}{R^{3}}\left\{\frac{M(P)}{D_{Q}}\left[(x-\xi) f_{x}+(y-\eta) f_{y}+(z-\zeta) f_{z}\right]\right. \\
& \left.+\frac{M(Q)}{D_{P}}\left[(x-\xi) f_{\xi}+(y-n) f_{n}+(z-\zeta) f_{\zeta}\right]\right\} \tag{13}
\end{align*}
$$

When $P$ is near $Q$, we can write the Taylor expansion

$$
\begin{aligned}
f(\xi, \eta, \zeta) & =f(x, y, z)-(x-\xi) f_{x}-(y-\eta) f_{y}-(z-\zeta) f_{z}+\frac{z}{2}\left[(x-\xi)^{2} f_{x x}\right. \\
& \left.+(y-\eta)^{2} f_{y y}+(z-\zeta)^{2} f_{z z}+2(y-n)(z-\zeta) f_{y z}+\cdots\right]+\cdots
\end{aligned}
$$

Since

$$
f(x, y, z)=f(\xi, \eta, \zeta)=0
$$

we obtain
$(x-\xi) f_{x}+(y-\eta) f_{y}+(z-\zeta) f_{z}=\frac{z_{2}}{2}\left[(x-\xi)^{2} f_{x x}+\cdots\right]+3 r d$ order terms

Similarly we have
$(\xi-x) f_{\xi}+(\eta-y) f_{\eta}+(\zeta-z) f_{\zeta}=\frac{\pi}{2}\left[(x-\xi) f_{\xi \xi}+\cdots\right]+3$ rd order terms or
$(x-\xi) f_{\xi}+(y-\eta) f_{\eta}+(z-\zeta) f_{\zeta}=-\frac{7}{2}\left[(x-\xi)^{2} f_{x x}+\cdots\right]+3$ rd order terms

Also we have

$$
\begin{equation*}
M(P)=M(Q)+(\xi-x) M_{x}+(\eta-y) M_{y}+(\zeta-z) M_{z}+\cdots \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{I}{D_{P}}=\frac{1}{D_{Q}}+(\xi-x) \frac{\partial}{\partial x}\left(\frac{1}{D_{Q}}\right)+\cdots \tag{17}
\end{equation*}
$$

Substituting the results in (14), (15), (16) and (17) into (13), we observe that terms of the first and second order in $(x-\xi),(y-n),(z-\zeta)$ cancel, leaving antisymmetric terms of the third order in the numerator. Since the denominator $R^{3}$ is also of the third order, the ratio is indeterminate as $R$ approaches zero. The integral of this ratio over a small area symmetric about $Q$, however, is zero. For this reason we propose to set the integrand of the right member of (10) equal to zero when $P$ coincides with $Q$.

## Treatment of Wave Integral

As in the prior case, let us consider the integral of the transposed kernel, $\partial H(Q, P) / \partial N_{P}$. For points $Q$ below the free surface $(z<0)$, $H(Q, P)$ is a regular harmonic function of $P(\xi, \eta, \zeta)$ for $\zeta \leqq 0$. Hence, by Gauss's flux theorem, the flux of $H(Q . P)$ through the closed surface, consisting of $S$ and the surface $S_{0}$ of the plane $z=0$ capping $S$, is zero; i.e.

$$
\begin{equation*}
\int_{S} \frac{\partial H(Q, P)}{\partial N_{P}} d S_{P}=-\left.\int_{S_{0}} \frac{\partial H(Q, P)}{\partial \zeta}\right|_{\zeta=0} d S_{P} \tag{18}
\end{equation*}
$$

Then we can write the wave integral in (8) in the form

$$
\begin{align*}
\int_{S} M(P) \frac{\partial H(P, Q)}{\partial N_{Q}} d S_{P}=\int_{S}\left[M(P) \frac{\partial H(P, Q)}{\partial N_{Q}}\right. & \left.-M(Q) \frac{\partial H(Q, P)}{\partial N_{P}}\right] d S_{P} \\
& -\left.M(Q) \int_{S_{0}} \frac{\partial H(Q, P)}{\partial \zeta}\right|_{\zeta=0} d S_{P} \tag{19}
\end{align*}
$$

From (6) we have

$$
\begin{gathered}
\frac{\partial H(P, Q)}{\partial N_{Q}}=\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{e^{k(z+\zeta)+i k[(x-\xi) \cos \theta+(y-n) \sin \theta]}}{k-k_{0} \sec ^{2} \theta} k^{2} \\
\\
\quad\left[n_{Q}+i\left(\ell_{Q} \cos \theta+m_{Q} \sin \theta\right)\right] d \theta d k \\
+4 k_{0}^{2} \int_{0}^{\pi / 2} \sec ^{3} \theta \cdot e^{k_{0}(z+\zeta) \sec ^{2} \theta}\left\{\ell_{Q} \cos \left[k_{0}(x-\xi) \sec \theta\right]\right. \\
\\
\cos \left[k_{0}(y-n) \tan \theta \sec \theta\right]
\end{gathered}
$$

$$
\begin{align*}
& -m_{Q} \tan \theta \sin \left[k_{0}(x-\xi) \sec \theta\right] \sin \left[k_{0}(y-n) \tan \theta \sec \theta\right] \\
& \left.+n_{Q} \sec \theta \sin \left[k_{0}(x-\xi) \sec \theta\right] \cos \left[k_{0}(y-n) \tan \theta \sec \theta\right]\right\} d \theta \tag{20}
\end{align*}
$$

By comparison of the double integral in (20) with that in the relation

$$
\begin{aligned}
& 2 \frac{\partial}{\partial N_{Q}}\left[(z+\zeta)^{2}+(x-\xi)^{2}+(y-n)^{2}\right]^{-\frac{1}{2}}= \\
& \frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{2 \pi} e^{k(z+\zeta)+i k[(x-\xi) \cos \theta+(y-n) \sin \theta]} \quad \\
& k\left[n_{Q}+i\left(\ell_{Q} \cos \theta+n_{Q} \sin \theta\right)\right] d k d \theta
\end{aligned}
$$

the integrands of which are asymptotically equal for very large values of $k$, we see that the former integral is singular only at the free surface $z=\zeta=0$ when $P$ coincides with $Q$. As in the previous section, this singularity is removed from the first integral on the right of (19) by subtracting the transpose from the original integrand, although the problem of treating the last integral of (19), which is also singular, remains.

Next let us consider the second integral of (20). With the substitution $\lambda=\tan \theta$, the integral becomes

$$
\begin{align*}
& \int_{0}^{\infty} \sqrt{1+} \lambda^{2} \\
& e^{k_{0}(z+\zeta)\left(1+\lambda^{2}\right)}\left\{\ell_{Q} \cos \left[k_{0}(x-\xi) \sqrt{1+\lambda^{2}}\right] \cos \left[k_{0}(y-n) \lambda \sqrt{1+\lambda^{2}}\right]\right. \\
&-m_{Q} \lambda \sin \left[k_{0}(x-\xi) \sqrt{1+\lambda^{2}}\right] \sin \left[k_{0}(y-n) \lambda \sqrt{1+\lambda^{2}}\right.  \tag{21}\\
&\left.+n_{Q} \sqrt{1+\lambda^{2}} \sin \left[k_{0}(x-\xi) \sqrt{1+\lambda^{2}}\right] \cos \left[k_{0}(y-n) \lambda \sqrt{1+\lambda^{2}}\right]\right\} d \lambda
\end{align*}
$$

Convergence problems arise only when $z=\zeta=0$. For this case let us expand the integrand of (21) in powers of $I / \lambda$. We have, with

$$
\begin{aligned}
\alpha= & k_{0}(x-\xi), \quad \beta=k_{0}(y-n) \\
\cos \left(\alpha \sqrt{1+\lambda^{2}}\right) & =\cos \left[\alpha\left(\lambda+\frac{1}{2 \lambda}-\frac{1}{8 \lambda^{3}}+\cdots\right)\right] \\
= & \cos \alpha \lambda \cos \left[\alpha\left(\frac{1}{2 \lambda}-\frac{1}{8 \lambda^{3}}+\cdots\right)\right] \\
& -\sin \alpha \lambda \sin \left[\alpha\left(\frac{1}{2 \lambda}-\cdots\right)\right]
\end{aligned}
$$

Hence, for very large values of $\lambda$, we have

$$
\begin{equation*}
\cos \left(\alpha \sqrt{1+\lambda^{2}}\right) \approx\left(1-\frac{\alpha^{2}}{4 \lambda^{2}}\right) \cos \alpha \lambda-\frac{\alpha}{2 \lambda} \sin \alpha \lambda \tag{22a}
\end{equation*}
$$

## Similarly

$$
\begin{align*}
& \sin \left(\alpha \sqrt{1+\lambda^{2}}\right) \approx\left(1-\frac{\alpha^{2}}{4 \lambda^{2}}\right) \sin \alpha \lambda+\frac{\alpha}{2 \lambda} \cos \alpha \lambda  \tag{22b}\\
& \cos \left(\beta \lambda \sqrt{1+\lambda^{2}}\right) \approx \cos \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right]+\frac{\beta}{8 \lambda^{2}} \sin \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right]  \tag{22c}\\
& \sin \left(\beta \lambda \sqrt{1+\lambda^{2}}\right) \approx \sin \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right]+\frac{\beta}{8 \lambda^{2}} \cos \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right] \tag{22d}
\end{align*}
$$

The the terms of the integrand of (21) become asymptotically

$$
\sqrt{1+\lambda^{2}} \cos \left[\alpha \sqrt{1+\lambda^{2}}\right] \cos \left[\beta \lambda \sqrt{1+\lambda^{2}}\right] \approx \lambda \cos \alpha \lambda \cos \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right]
$$

$$
\begin{equation*}
-\frac{\alpha}{2} \sin \alpha \lambda \cos \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right] \tag{23a}
\end{equation*}
$$

$\left.\lambda \sqrt{1+\lambda^{2}} \sin \left[\alpha \sqrt{1+\lambda^{2}}\right] \sin \left[\beta \lambda \sqrt{1+\lambda^{2}}\right] \approx \lambda^{2}-\frac{\alpha^{2}}{4}+\frac{1}{2}\right) \sin \alpha \lambda \sin \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right]$

$$
\begin{equation*}
+\frac{\alpha \lambda}{2} \cos \alpha \lambda \sin \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right]-\frac{\beta}{8} \sin \alpha \lambda \cos \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right] \tag{23b}
\end{equation*}
$$

$\left(1+\lambda^{2}\right) \sin \left[\alpha \sqrt{1+\lambda^{2}}\right] \cos \left[\beta \lambda \sqrt{1+\lambda^{2}}\right] \approx\left(\lambda^{2}-\frac{\alpha^{2}}{4}+1\right) \cos \alpha \lambda \sin \left[\beta\left(\lambda^{2}+\frac{2}{2}\right)\right]$

$$
\begin{equation*}
+\frac{\alpha \lambda}{2} \cos \alpha \lambda \cos \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right]+\frac{\beta}{8} \sin \alpha \lambda \sin \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right] \tag{23c}
\end{equation*}
$$

Considering $\sin \left[\beta\left(\lambda^{2}+\frac{y}{2}\right)\right]$ and $\cos \left[\beta\left(\lambda^{2}+\frac{1}{2}\right)\right]$ in the forms

$$
\begin{aligned}
& \sin \left[\beta\left(\lambda^{2}+\frac{j}{2}\right)\right]=\sin \left(\beta \lambda^{2}\right) \cos \frac{\beta}{2}+\cos \left(\beta \lambda^{2}\right) \sin \frac{\beta}{2} \\
& \cos \left[\beta\left(\lambda^{2}+\frac{\pi}{2}\right)\right]=\cos \left(\beta \lambda^{2}\right) \cos \frac{\beta}{2}-\sin \left(\beta \lambda^{2}\right) \sin \frac{\beta}{2}
\end{aligned}
$$

it is seen that, with $z=\zeta=0$, the asymptotic form of the integrand of (21) is a linear combination of the terms

$$
\begin{equation*}
\sin \alpha \lambda \frac{\sin }{\cos }\left(\beta \lambda^{2}\right), \quad \lambda \cos \alpha \lambda \sin _{\cos }\left(\beta \lambda^{2}\right), \quad \lambda^{2} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) \tag{24}
\end{equation*}
$$

But from the table of definite integrals by Grobner and Hofreiter [5], we have

$$
\begin{equation*}
\int_{0}^{\infty} \sin \alpha \lambda \sin \cos \left(\beta \lambda^{2}\right) d \lambda=0, \quad \beta \neq 0 \tag{25}
\end{equation*}
$$

Since the derivatives of the first member of (24) with respect to $\alpha$ and $\beta$ yield the second and third members, one is tempted to conclude from these
derivations of (25) that the infinite integrals of the second and third members are also zero. However, since the integrals resulting from these differentiations are not uniformly convergent, this conclusion may not be valid, as is also shown by the integration by parts

$$
\begin{equation*}
\int_{0}^{L} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda=-\left.\frac{1}{\alpha} \cos \alpha L \sin \beta L^{2}\right|_{0} ^{\amalg}+\frac{2 \beta}{\alpha} \int_{0}^{L} \lambda \cos \alpha \lambda \cos \left(\beta \lambda^{2}\right) d \lambda \tag{26}
\end{equation*}
$$

Although the limit of the left member as $L \rightarrow \infty$ is zero, the oscillation of the first term on the right between $\pm 1 / \alpha$ indicates that the last integral is indeterminate. The mean value of the last integral would, however, be zero in the limit.

If $z$ and $\zeta$ were not zero, the asymptotic forms occurring in (24) would have been multiplied by $e^{k_{0}(z+\zeta) \lambda^{2}}$. With this factor the integral of the first member of (24) and its derivatives would be uniformly convergent, and consequently the derivative of the integral would be equal to the integral of the derivative. For example we would have
$\frac{\partial}{\partial \alpha} \int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda=\int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \lambda \cos \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda$
with a determinate value for the right member, no matter how close $z+\zeta$
is to zero. Again integrating by parts, we have
$\int_{0}^{L} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda=-\left.\frac{1}{\alpha} e^{k_{0}(z+\zeta) L^{2}} \cos \alpha L \sin \beta L^{2}\right|_{0} ^{L}$
$+\frac{2}{\alpha} \int_{0}^{L}\left[k_{0}(z+\zeta) \sin \left(\beta \lambda^{2}\right)+\beta \cos \left(\beta \lambda^{2}\right)\right] \lambda e^{k_{0}(z+\zeta) \lambda^{2}} \cos \alpha \lambda d \lambda$
Now the oscillation of the first member on the right with increasing values of $L$ is damped by the exponential factor and yields in the limit

$$
\begin{array}{r}
\int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda=\frac{2}{\alpha} \int_{0}^{\infty}\left[k_{0}(z+\zeta) \sin \left(\beta \lambda^{2}\right)+\beta \cos \left(\beta \lambda^{2}\right)\right] \cdot \\
\lambda e^{k_{0}}(z+\zeta) \lambda^{2} \cos \alpha \lambda d \lambda \tag{28}
\end{array}
$$

which, when $z+\zeta$ is very small, becomes
$\int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda \sin \left(\beta \lambda^{2}\right) d \lambda z \frac{2 \beta}{\alpha} \int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \lambda \cos \alpha \lambda \cos \left(\beta \lambda^{2}\right) d \lambda$
Hence, since by (25) the limit of the integral on the left of (29), as $z+\zeta \rightarrow 0$, is zero, we see that

$$
\begin{align*}
\lim _{z+\zeta} & \rightarrow 0 \int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \lambda \cos \alpha \lambda \sin \cos \left(\beta \lambda^{2}\right) d \lambda \\
& =\text { M.V.O. } \int_{0}^{L} \lambda \cos \alpha \lambda \frac{\sin }{\cos }\left(\beta \lambda^{2}\right) d \lambda=0 \tag{30}
\end{align*}
$$

where M.V.O. denotes the "mean value of the oscillation" for large values of L. Clearly the foregoing result applies to either $\sin \left(\beta \lambda^{2}\right)$ or $\cos \left(\beta \lambda^{2}\right)$, as is indicated in (30). Similarly, by integrating the last integrals in (26) and (27) again by parts, we can show that

$$
\begin{align*}
& \lim _{z=}^{\lim } \int_{0}^{\infty} e^{k(z+\zeta) \lambda^{2}} \lambda^{2} \sin \alpha \lambda \\
& \sin  \tag{31}\\
& \operatorname{sos}\left(\beta \lambda^{2}\right) d \lambda \\
&=\text { M.V.O. } \int_{0}^{L} \lambda^{2} \sin \alpha \lambda \sin _{\operatorname{sos}}\left(\beta \lambda^{2}\right) d \lambda=0
\end{align*}
$$

In the above analysis it was assumed in (25) that $\beta=k_{0}(y-n) \neq 0$. If $\beta=0, \alpha \neq 0$, the terms of (24) become

$$
\sin \alpha \lambda, \quad \lambda \cos \alpha \lambda, \quad \lambda^{2} \sin \alpha \lambda
$$

and we can show by integration by parts that

$$
\begin{align*}
\lim _{z+\zeta \rightarrow 0} \int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda d \lambda & =\lim _{z+\zeta \rightarrow 0} \int_{0}^{\infty} \lambda e^{k_{0}(z+\zeta) \lambda^{2}} \cos \alpha \lambda d \lambda \\
& =\frac{\lim }{z+\zeta \rightarrow 0} \int_{0}^{\infty} \lambda^{2} e^{k_{0}(z+\zeta) \lambda^{2}} \sin \alpha \lambda d \lambda=0 \tag{32}
\end{align*}
$$

If $\alpha=0$ also, then we have

$$
\int_{0}^{\infty} e^{k_{0}(z+\zeta) \lambda^{2}} \lambda d \lambda=\frac{1}{2 k_{0}|z+\zeta|}
$$

which indicates that the second of the limits in (32) does not exist.

Our conclusion is that the integral in (21) is determinate except when $P$ and $Q$ coincide and are at the free surface. When $P$ and $Q$ are at the free surface, but not coincident, the integral must be determined as the limiting value as $z+\zeta \rightarrow 0$ through negative values. Finally, the singularity when $P$ and $Q$ coincide is removed from the first integral on the right of (19) by subtracting the transpose from the original integrand, although, as for the double integral of (20), the last integral of (19) remains to be treated.

Let us now consider the last integral in (19),

$$
\left.\int_{S_{0}} \frac{\partial H(Q, P)}{\partial \zeta}\right|_{\zeta=0} d S_{P}=\frac{1}{\pi} \int_{S_{0}} \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{e^{k z-i k[(x-\xi) \cos \theta+(y-n) \sin \theta]}}{k-k_{0} \sec ^{2} \theta} .
$$

$k^{2} d \theta d k d S_{P}$

$$
-4 k_{0}^{2} \int_{S_{0}} \int_{0}^{\pi / 2} \sec ^{4} \theta \cdot e^{k_{0} z \sec ^{2} \theta} \sin \left[k_{0}(x-\xi) \sec \theta\right] \cos \left[k_{0}(y-n) \tan \theta \sec \theta\right]
$$

Let $n= \pm \eta(x)$ be the equation of the hull waterplane at $\zeta=0$. Take the origin at the midship section and let $\ell$ denote the half length of the ship. Then, interchanging the order of integration in (33) with the integration over $S_{0}$ taken first, we are led to consider the integral,

$$
\begin{equation*}
F(k, \theta)=\int_{-\ell-\eta(x)}^{\ell} \int^{\eta(x)} e^{i k(\xi \cos \theta+n \sin \theta)} d n d \xi \tag{34}
\end{equation*}
$$

This becomes

$$
\begin{equation*}
F(k, \theta)=\frac{2 \csc \theta}{k} \int_{-\ell}^{\ell} e^{i k \xi \cos \theta} \sin [k \eta(\xi) \sin \theta] d \xi \tag{35}
\end{equation*}
$$

or, integrating by parts and noting that $\eta(\ell)=\eta(-\ell)=0$, we obtain

$$
\begin{equation*}
F(k, \theta)=\frac{2 i \sec \theta}{k} \int_{-\ell}^{\ell} e^{i k} \xi \cos \theta_{\eta^{\prime}}(\xi) \cos [k \eta(\xi) \sin \theta] d \xi \tag{36}
\end{equation*}
$$

where $\eta^{\prime}(\xi)$ denotes the derivative of $\eta$ with respect to $\xi$.

Along the parallel middle body of a ship form, $n^{\prime}(\xi)=0$, and near the bow and stern, $n(\xi)$ is very small. This suggests the approximation

$$
\begin{equation*}
F(k, \theta)=\frac{2 i \sec \theta}{k} \int_{-\ell}^{\ell} e^{i k \xi \cos \theta_{\eta^{\prime}}(\xi)\left[1-\frac{i}{2} k^{2} \eta(\xi)^{2} \sin ^{2} \theta\right] d \xi} \tag{37}
\end{equation*}
$$

Additional terms may be taken in the expansion of $\cos [k \eta(\xi) \sin \theta]$ if required for greater accuracy. If the parallel middle body extends over the range $a \leq \xi \leq b$, (37) may be written

$$
\begin{aligned}
& F(k, \theta)=\frac{2 i \sec \theta}{k}\left\{\int_{-\ell}^{a}+\int_{b}^{\ell}\right\} e^{i k} \xi \cos \theta . \\
& {\left[n^{\prime}(\xi)-\frac{1}{2} k^{2} n^{\prime}(\xi) n(\xi)^{2} \sin ^{2} \theta\right] d \xi}
\end{aligned}
$$

or, introducing $\mu=\frac{\xi-a}{l+a}$ in the first integral, and $\mu=\frac{\xi-b}{l-b}$ in the second,

$$
\begin{gather*}
F(k, \theta)=\frac{2 i \sec \theta}{k}\left\{e^{i k a \cos \theta} \int_{-1}^{0} e^{i k(l+a) \mu \cos \theta} .\right. \\
{\left[\eta^{\prime}(\xi)-\frac{7}{2} k^{2} \eta^{\prime}(\xi) \eta(\xi)^{2} \sin ^{2} \theta\right] d \mu} \\
\int_{0}^{i k b} \cos \theta e^{1} e^{i k(l-b) \mu \cos \theta}\left[\eta^{\prime}(\xi)-\frac{7}{2} k^{2} \eta^{\prime}(\xi) \eta(\xi)^{2} \sin ^{2} \theta\right] d \mu \tag{38}
\end{gather*}
$$

One can now fit either Fourier series or polynomials in $\mu$ to the functions $\eta^{\prime}(\xi)$ and $\eta^{\prime}(\xi) \eta(\xi)^{2}$, the choice depending upon the particular form. If $n^{\prime}(\xi)$ becomes infinite at the bow and stern, as it will if the radii of curvature are not zero at the extremities, a suitable fit which can satisfy this condition can be obtained from a polynomial for $n(\xi)^{2}$ of the form

$$
\begin{equation*}
n(\xi)^{2}=\left(1-\mu^{2}\right) p(\mu) \tag{39}
\end{equation*}
$$

where $p(\mu)$ is a polynomial such that $p( \pm 1) \neq 0$. For then

$$
\eta^{\prime}(\xi)=\left[\frac{1}{2}\left(1-\mu^{2}\right) p^{\prime}(\mu)-\mu p(\mu)\right] \frac{d \mu / d \xi}{\eta(\xi)}
$$

is seen to become infinite at $\mu= \pm 1$. In this way $F(k, \theta)$ can be expressed as a series of functions of $k$ and $\theta$, each of which is regular even as $z$ approaches zero.

Although not evident from the form of the last integral in (33), by returning to the complex exponential form from which its integrand was derived one finds that the function $F(k, \theta)$ of (34), with $k=k_{0} \sec ^{2} \theta$, applies to this integral as well. This will not be developed here in detail, nor will the analysis of the wave kernel be carried any further, since the application to a particular case, on which, it has been seen, the nature of the subsequent analysis would depend, has not yet been performed.

## Convergence of Iteration Formulas

Hereafter we shall consider only the case where the boundary condition on the plane $z=0$ is

$$
\begin{equation*}
\frac{\partial \Phi}{\partial z}=0, \quad z=0 \tag{40}
\end{equation*}
$$

i.e., the case of "zero" Froude number. The integral equation (8) then reduces to

$$
\begin{equation*}
M(Q)=F(Q)+\int_{S+S^{\prime}} M(P) K(P, Q) d S_{P} \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
K(P, Q)=\frac{1}{2 \pi} \frac{\partial}{\partial N_{Q}}\left(\frac{1}{R}\right), \quad F(Q)=-\frac{U}{2 \pi} \ell_{Q} \tag{42}
\end{equation*}
$$

Equation (9) shows that the homogeneous integral equation

$$
f(Q)=\lambda \int_{S^{\prime}+S^{\prime}} K(Q, P) f(P) d S_{P}
$$

has the eigenfunction $f(P)=1$ when $\lambda=-1$. Thus $\lambda=-1$ is an eigenvalue of the kernel $K(Q . P)$, and hence also of its transpose $K(P, Q)$.

Consider the inhomogeneous integral equation

$$
\begin{equation*}
M(Q)=F(Q)+\lambda \int_{S^{\prime} S^{\prime}} M(P) K(P, Q) d S_{P} \tag{43}
\end{equation*}
$$

which reduces to (41) when $\lambda=1$. The theory of this integral equation states that $M(Q)$, considered as a function of the complex variable $\lambda$, is regular in the unit circle about $\lambda=0$, and has a simple pole at $\lambda=-1$. Writing

$$
\begin{equation*}
M(Q)=F(Q)+\lambda F_{1}(Q)+\lambda^{2} F_{2}(Q)+\cdots, \quad|\lambda|<1 \tag{44}
\end{equation*}
$$

and substituting (44) into (43), yields the relation

$$
\begin{equation*}
F_{n+l}(Q)=\int_{S+S^{\prime}} F_{n}(P) K(P, Q) d S_{P} \tag{45}
\end{equation*}
$$

Put

$$
\begin{equation*}
M_{n}(Q)=F(Q)+\lambda F_{1}(Q)+\cdots+\lambda^{n} F_{n}(Q) \tag{46}
\end{equation*}
$$

Then, by (45), we obtain the iteration formula

$$
\begin{equation*}
M_{n+1}(Q)=F(Q)+\lambda \int_{S+S^{\prime}} M_{n}(P) K(P, Q) d S_{P} \tag{47}
\end{equation*}
$$

According to (44), however, the sequence of functions $M_{n+1}(Q)$ defined by (47) may not converge when $\lambda=1$.

$$
\begin{align*}
& \text { We can eliminate the pole at } \lambda=-1 \text { by considering } \\
& (1+\lambda) M(Q)=F(Q)+\lambda\left(F+F_{1}\right)+\lambda^{2}\left(F_{1}+F_{2}\right)+\cdots,|\lambda|<\left|\lambda_{2}\right| \tag{48}
\end{align*}
$$

where $\lambda_{2}$ denotes the next eigenvalue of $K(P, Q)$, arranged in the order of increasing absolute magnitude. Defining

$$
\begin{equation*}
M_{n}^{\prime}=\frac{1}{1+\lambda}\left[F(Q)+\lambda\left(F+F_{1}\right)+\cdots+\lambda^{n}\left(F_{n-1}+F_{n}\right)\right] \tag{49}
\end{equation*}
$$

then, by (45),

$$
\begin{equation*}
M_{n}^{\prime}(Q)=F(Q)+\lambda \int_{S+S^{\prime}} M_{n}^{\prime}(P) K(P, Q) d S_{P} \tag{50}
\end{equation*}
$$

Comparison with (47) shows that the sequences $M_{n}$ and $M_{n}^{\prime}$ are obtained from the identical iteration formula, but these sequences differ because of the change in the initial approximations,

$$
\begin{equation*}
M_{0}(Q)=F(Q), \quad M_{0}^{\prime}(Q)=\frac{F(Q)}{1+\lambda} \tag{51}
\end{equation*}
$$

Thus, when $\lambda=1, M_{0}^{\prime}(Q)=\frac{1}{2} F(Q)$. Alternatively, if we observe from (44) and (49) that

$$
\begin{equation*}
M_{n}^{\prime}=\frac{1}{1+\lambda}\left(M_{n}+\lambda M_{n-1}\right) \tag{52}
\end{equation*}
$$

we obtain when $\lambda=1$

$$
M_{n}^{\prime}=\frac{2}{2}\left(M_{n}+M_{n-1}\right)
$$

i.e., the arithmetic means of successive pairs of members of the sequence $M_{n}(Q)$ form a convergent sequence.

Let us consider the modification of the iteration formula (50),

$$
\begin{equation*}
2 M_{n+1}^{\prime \prime}(Q)=M_{n}^{\prime \prime}(Q)+F(Q)+\lambda \int_{S+S^{\prime}} M_{n}^{\prime \prime}(Q) K(P, Q) d S_{P} \tag{53}
\end{equation*}
$$

with $M_{0}^{\prime \prime}=M_{0}^{\prime}$ given by (51). We have, by (50),

$$
\begin{gathered}
M_{1}^{\prime \prime}=\frac{1}{2}\left[M_{0}^{\prime}+F+\lambda \int M_{0}^{\prime} K d S\right]=\frac{1}{2}\left(M_{0}^{\prime}+M_{1}^{\prime}\right) \\
M_{2}^{\prime \prime}=\frac{1}{2}\left[\frac{1}{2}\left(M_{0}^{\prime}+M_{1}^{\prime}\right)+F+\lambda \int \frac{2}{2}\left(M_{0}^{\prime}+M_{1}^{\prime}\right) K d S\right]=\frac{3}{4}\left(M_{0}^{\prime}+2 M_{1}^{\prime}+M_{2}^{\prime}\right)
\end{gathered}
$$

We can now show by mathematical induction that

$$
\begin{equation*}
M_{n}^{\prime \prime}=\frac{1}{2^{n}}\left[M_{0}^{\prime}+\binom{n}{1} M_{1}^{\prime}+\binom{n}{2} M_{2}^{\prime}+\cdots+\binom{n}{n} M_{n}^{\prime}\right] \tag{54}
\end{equation*}
$$

For if (54) is valid, then by (53)
$2 M_{n+1}^{\prime \prime}=\frac{1}{2^{n}}\left\{\left[M_{0}^{\prime}+\binom{n}{I} M_{1}+\cdots+M_{n}^{\prime}\right]+2^{n} F+\lambda \int\left[M_{0}^{\prime}+\binom{n}{1} M_{1}^{\prime}+\cdots+M_{n}^{\prime}\right] K d S\right\}$
But

$$
2^{n} F \equiv(1+1)^{n} F=\left[1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}\right] F
$$

Then, by (50),
$2^{n} F+\lambda \int\left[M_{0}^{\prime}+\binom{n}{1} M_{1}^{\prime}+\cdots+M_{n}^{\prime}\right] K d S=M_{1}^{\prime}+\binom{n}{I} M_{2}^{\prime}+\binom{n}{2} M_{3}^{\prime}+\cdots+M_{n+1}^{\prime}$
Thus we have
$2 M_{n+1}^{\prime \prime}=\frac{1}{2^{n}}\left\{M_{0}^{\prime}+\left[\binom{n}{0}+\binom{n}{1}\right] M_{1}^{\prime}+\left[\binom{n}{1}+\binom{n}{2}\right] M_{2}^{\prime}+\cdots+\left[\binom{n}{n-1}+\binom{n}{n}\right] M_{n}^{\prime}+M_{n+1}^{\prime}\right\}$
or since

$$
\binom{n}{n}+\binom{n}{n+1}=\binom{n+1}{n+1}
$$

then

$$
M_{n+1}^{\prime \prime}=\frac{1}{2^{n+1}}\left[M_{0}^{\prime}+\binom{n+1}{1} M_{1}^{\prime}+\binom{n+1}{2} M_{2}^{\prime}+\cdots+M_{n+1}^{\prime}\right]
$$

as we wished to show to complete the proof by induction.

In order to investigate the convergence of the sequence $\left\{M_{n}^{\prime \prime}\right\}$, let us take $\mathbb{N}$ sufficiently large so that, for $r>N,\left|M_{r}^{\prime}-M\right|<\varepsilon / 2$, where $M$ is the limit of the sequence $\left\{M_{n}^{\prime}\right\}$. From (54) we have $M_{n}^{\prime \prime}-M=\frac{1}{2^{n}}\left[\left(M_{0}^{\prime}-M\right)+\binom{n}{I}\left(M_{1}^{\prime}-M\right)+\cdots+\binom{n}{N}\left(M_{N}^{\prime}-M\right)+\cdots+\binom{n}{n}\left(M_{n}^{\prime}-M\right)\right]$

Then

$$
\begin{aligned}
\left|M_{n}^{\prime \prime}-M\right|<\frac{1}{2^{n}} & {\left[\left|M_{0}^{\prime}-M\right|+\binom{n}{I}\left|M_{1}^{\prime}-M\right|+\cdots+\left|M_{N}^{\prime}-M\right|\binom{n}{N}\right] } \\
& +\frac{\varepsilon}{2^{n+1}}\left[\binom{n}{N+1}+\binom{n}{N+2}+\cdots+\binom{n}{n}\right]
\end{aligned}
$$

But
$\frac{1}{2^{n}}\left[\binom{n}{N+1}+\binom{n}{N+2}+\cdots+\binom{n}{n}\right]<\frac{1}{2^{n}}\left[1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}\right]=1$
Then, if $\rho$ is an upper bound of $\left|M_{i}^{\prime}-M\right|, i=0,1,2, \cdots N$, and $n \ll 2 N$, we have

$$
\begin{aligned}
\left|M_{n}^{\prime \prime}-M\right|<\frac{\rho}{2^{n}}\left[1+\binom{n}{1}\right. & \left.+\binom{n}{2}+\cdots+\binom{n}{\mathbb{N}}\right]+\frac{\varepsilon}{2}<\frac{\rho}{2^{n}}(\mathbb{N}+1)\binom{n}{N}+\frac{\varepsilon}{2} \\
& <\frac{\rho(\mathbb{N}+1)}{N!} \frac{n^{N}}{2^{n}}+\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

by taking $n$ sufficiently large. Hence the sequence $\left\{M_{n}^{\prime \prime}\right\}$ also converges to M.

The alternative iteration formulas for $M^{\prime}$ or $M^{\prime \prime}$ arise when relation (10) is applied to remove the singularity of the kernel in the integral equation (41). We obtain

$$
\begin{equation*}
M(Q)=F(Q)-M(Q)+\int_{S+S^{\prime}}[M(P) K(P, Q)-M(Q) K(Q, P)] d S_{P} \tag{55}
\end{equation*}
$$

and the iteration formulas

$$
\begin{equation*}
M_{n+1}=F-M_{n}+\int\left[M_{n}(P) K(P, Q)-M_{n}(Q) K(Q, P)\right] d S_{P} \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
2 M_{n+1}=F+\int\left[M_{n}(P) K(P, q)-M_{n}(Q) K(Q, P)\right] d S_{P} \tag{57}
\end{equation*}
$$

By (9), the first of these is seen to be of the form (50), the second of the form (53). Both begin with the same initial approximation which, by (51), is given by

$$
\begin{equation*}
M_{0}(Q)=\frac{\frac{3}{2}}{2} F(Q)=-\frac{U}{4 \pi} Q_{Q} \tag{58}
\end{equation*}
$$

Although there is no a-priori basis for preferring one iteration formula over the other, comparison of the numerical results with the known exact solution for the case of an ellipsoid has shown that the sequence given by (57) converged much more rapidly than that obtained from (56).

At points where the normal to $S$ is not continuous, the integral equation (8), and of course the above iteration formulae, are not valid. At such points we can either set $M(Q)=0$, as can be justified, or round sharp edges with small, nonzero curvature and continue to use the iteration formula (57).

## Distribution of Velocity Potential on S

Once the source distribution $M$ has been found, the velocity potential $\Phi$ can be computed from (7). For points $Q$ on $S$ we again encounter a singularity when $P$ coincides with $Q$. This singularity may be removed as follows:

Let $\mathbb{N}(P)$ be a source distribution on $S+S^{\prime}$ which makes the surface an equipotential of potential $\phi_{0}$. This distribution satisfies the homogeneous integral equation

$$
\begin{equation*}
\int_{S+S^{\prime}} N(P) K(P, Q) d S_{P}=-N(Q) \tag{59}
\end{equation*}
$$

with the same kernel as in (42). In fact, $\mathbb{N}(P)$ is the eigenfunction of $K(P, Q)$ associated with the eigenvalue $\lambda=-1$. This equation can be solved by means of the iteration formula

$$
\mathbb{N}_{n+1}(Q)=-\int_{S+S^{\prime}} \mathbb{N}_{n}(P) K(P, Q) d S_{P}
$$

which, by applying (9), may be written in the singularity-free form

$$
\begin{equation*}
N_{n+1}(Q)=N_{n}(Q)-\int_{S+S^{\prime}}\left[N_{n}(P) K(P, Q)-\mathbb{N}_{n}(Q) K(Q, P)\right] d S_{P} \tag{60}
\end{equation*}
$$

Since the matrices occurring in (60) have already been obtained for the numerical evaluation of $M(Q)$ from (57), the corresponding values of $\mathbb{N}(Q)$ can be obtained from (60) with little additional computer time. Since the potential is constant in the interior of an equipotential surface, its value may conveniently be computed at the origin as

$$
\begin{equation*}
\phi_{0}=-\int_{S+S^{1}} \frac{N(P)}{\left[x^{2}+y^{2}+z^{2}\right]^{\frac{1}{2}}} d S_{P} \tag{61}
\end{equation*}
$$

We can now apply the solution of this Dirichlet problem to eliminate the singularity from the expression for the velocity potential ( 7 ), by writing

$$
\begin{gather*}
\Phi(Q)=U x-\int_{S+S^{\prime}} \frac{1}{R}\left[M(P)-N(P) \frac{M(Q)}{N(Q)}\right] d S_{P}+\phi_{O} \frac{M(Q)}{N(Q)} \\
+\int_{S} M(P) H(P, Q) d S_{P} \tag{62}
\end{gather*}
$$

Here also we can justify setting the first integrand of (62) equal to zero when $P$ coincides with $Q$, by the same argument as was used in equation (10).

## Application to a Double Ship Model - Zero Froude Number

Since the $x-y$ and $x-z$ planes are planes of symmetry, it is necessary to determine the source distribution over only one-fourth of the hull surface of the double model. Let us consider only points $Q$ for $y, z, \leqq 0$. Denote by $S_{1}, S_{2}, S_{3}, S_{4}$ the parts of $S+S^{\prime}$ for which $y, z>0 ; y<0$, $\mathrm{z}>0 ; \mathrm{y}<0, \mathrm{z}<0 ; \mathrm{y}>0, \mathrm{z}<0$, respectively. Put

$$
\begin{aligned}
& R_{1}=\left[(x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}\right]^{\frac{3}{2}} \\
& R_{2}=\left[(x-\xi)^{2}+(y+n)^{2}+(z-\zeta)^{2}\right]^{\frac{3}{2}} \\
& R_{3}=\left[(x-\xi)^{2}+(y+\eta)^{2}+(z+\zeta)^{2}\right]^{\frac{3}{2}} \\
& R_{4}=\left[(x-\xi)^{2}+(y-\eta)^{2}+(z+\zeta)^{2}\right]^{\frac{3}{2}}
\end{aligned}
$$

the distances from $Q(x, y, z)$ to the congruent points $P \equiv P_{1}(\xi, \eta, \zeta)$, $P_{2}(\xi,-\eta, \zeta), P_{3}(\xi,-\eta,-\zeta), P_{4}(,,-)$. At congruent points we have

$$
M(P)=M\left(P_{2}\right)=M\left(P_{3}\right)=M\left(P_{4}\right)
$$

and, denoting the direction cosines at $P_{i}$ by $l_{i}, m_{i}, n_{i}, i=1,2,3,4$, we obtain the following relations:

$$
\begin{aligned}
& l_{p} \equiv l_{1}=l_{2}=l_{3}=l_{4} \\
& m_{p} \equiv m_{1}=-m_{2}=-m_{3}=m_{4} \\
& n_{p} \equiv n_{1}=n_{2}=-n_{3}=-n_{4}
\end{aligned}
$$

If the values of the integrand of (57) at congruent points $P$ are collected, the resulting integral would extend only over $S_{1}$ and is found to be of the form

$$
\begin{equation*}
M_{n+1}(Q)=F(Q)+\frac{1}{4 \pi} \int_{S_{1}}\left[M_{n}(P) J(P, Q)-M_{n}(Q) J(Q, P)\right] d S_{p} \tag{63}
\end{equation*}
$$

where

$$
\begin{gather*}
J(P, Q)=\left[(\xi-x) l_{Q}+(n-y) m_{Q}+(\zeta-z) n_{Q}\right]\left(\frac{1}{R_{1}^{3}}+\frac{1}{R_{2}^{3}}+\frac{1}{R_{3}^{3}}+\frac{1}{R_{4}^{3}}\right) \\
-2\left(\frac{m_{Q}^{n}}{R_{2}^{3}}+\frac{m_{Q} n+n_{Q} \zeta}{R_{3}^{3}}+\frac{n_{Q} \zeta}{R_{4}^{3}}\right) ; P \neq Q \tag{64}
\end{gather*}
$$

and, since the integrand of (63) vanishes when $P$ coincides with $Q$, we may set

$$
\begin{equation*}
J(Q, Q)=0 \tag{65}
\end{equation*}
$$

Similarly the integrations over $S+S^{\prime}$ in connection with the Dirichlet problem in (60), (61) and (62) can be expressed in terms of integrals over $S_{1}$. Thus (60) becomes

$$
\begin{equation*}
N_{n+1}(Q)=N_{n}(Q)-\int_{S_{1}}\left[N_{n}(P) J(P, Q)-N_{n}(Q) J(Q, P)\right] d S_{P} \tag{66}
\end{equation*}
$$

in which $J(P, Q)$ and $J(Q, Q)$ are given in (64) and (65), (61) becomes

$$
\begin{equation*}
\phi_{0}=-4 \int_{S_{1}} \frac{N(P)}{\left[x^{2}+y^{2}+z^{2}\right]^{\frac{1}{2}}} d S_{P} \tag{67}
\end{equation*}
$$

and (62), without the wave integral, assumes the form

$$
\begin{equation*}
\Phi(Q)=U x-\int_{S_{1}} L(P, Q)\left[M(P)-N(P) \frac{M(Q)}{N(Q)}\right] d S_{P}+\phi_{O} \frac{M(Q)}{N(Q)} \tag{68}
\end{equation*}
$$

where
and

$$
\left.\begin{array}{c}
L(P, Q)=\frac{1}{R_{1}}+\frac{I}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}} ; P \neq Q  \tag{69}\\
L(Q, Q)=0
\end{array}\right\}
$$

## Application to an Ellipsoid

With the equation of the ellipsoid in the alternative forms
or

$$
\left.\begin{array}{c}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1  \tag{70}\\
y=\frac{b}{a} \sqrt{a^{2}-x^{2}} \cos \theta, z=\frac{c}{a} \sqrt{a^{2}-x^{2}} \sin \theta
\end{array}\right\}
$$

the direction cosines are

$$
l_{Q}=\frac{A(Q) x}{a^{2}}, \quad m_{Q}=\frac{A(Q) y}{b^{2}}, \quad n_{Q}=\frac{A(Q) z}{c^{2}}
$$

where

$$
A(Q)=\left[\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{z}}{c^{4}}\right]^{-\frac{1}{2}}
$$

Also we have

$$
\begin{equation*}
(\xi-x) l_{Q}+(\eta-y) m_{Q}+(\zeta-z) n_{Q}=-A(Q)\left[\frac{(\xi-x)^{2}}{a^{2}}+\frac{(\eta-y)^{2}}{b^{2}}+\frac{(\zeta-z)^{2}}{c^{2}}\right] \tag{71}
\end{equation*}
$$

The right member of (71) is preferable to the first for numerical computations, especially when $P$ is near $Q$, since all terms on the right are then of second order of smallness, and a loss of numerical accuracy would be expected if the same result were obtained from the sum of the first-order terms on the left. In terms of $x$ and $\theta$ as the independent variables, the element of area $d S_{P}$ becomes

$$
d S_{P}=\left[\frac{b^{2} c^{2} x^{2}}{a^{4}}+\left(1-\frac{x^{2}}{a^{2}}\right)\left(b^{2} \sin ^{2} \theta+c^{2} \cos ^{2} \theta\right)\right]^{\frac{2}{2}} d \theta d x
$$

with $\theta$ varying from 0 to $2 \pi$ and $x$ from $-a$ to $a$.
Exact solutions of the foregoing integral equations for the ellipsoid are expressible in terms of the Lamé ellipsoidal coordinates $(\rho, \mu, \nu)$, which are related to the rectangular coordinates ( $x, y, z$ ) by [6]
$x=\frac{\rho \mu \nu}{h k}, \quad y^{2}=\frac{\left(\rho^{2}-k^{2}\right)\left(k^{2}-\mu^{2}\right)\left(k^{2}-v^{2}\right)}{k^{2}\left(k^{2}-h^{2}\right)}, \quad z^{2}=\frac{\left(\rho^{2}-h^{2}\right)\left(\mu^{2}-h^{2}\right)\left(h^{2}-v^{2}\right)}{h\left(k^{2}-h^{2}\right)}$

When $\rho=a, k=\sqrt{a^{2}-b^{2}}, h=\sqrt{a^{2}-c^{2}},(72)$ is equivalent to the equation of the ellipsoid (70). Here

$$
k^{2} \leq p^{2}<\infty, \quad h^{2} \leq \mu^{2} \leq k^{2}, 0 \leq v^{2} \leq h^{2}
$$

Solutions of the present problem can be expressed in terms of the Lame functions of the first and second kind, $E_{n}^{m}$ and $F_{m}^{n}$. For the source distribution we find

$$
\begin{equation*}
M(Q)=\frac{3 U \mu \nu}{4 \pi a h k F_{1}^{1}(a) \sqrt{\left(a^{2}-\mu^{2}\right)\left(a^{2}-\nu^{2}\right)}}=-\frac{U}{4 \pi}\left[1-\frac{F_{1}^{1}(a)}{F_{1}^{1}(a)}\right]_{Q} \tag{73}
\end{equation*}
$$

and for the velocity potential,

$$
\begin{equation*}
\Phi=\left[1-\frac{F^{1}(a)}{\frac{1}{1}(a)}\right] U x \tag{74}
\end{equation*}
$$

Here $\dot{F}_{l}^{l}$ denotes the derivative of $F_{1}^{l}$ with respect to its argument, and

$$
\begin{gather*}
F_{1}^{l}(a)=3 a \int_{a}^{\infty} \frac{d \rho}{\rho^{2} \sqrt{\left(\rho^{2}-h^{2}\right)\left(\rho^{2}-k^{2}\right)}}=\frac{3 a}{k^{2}}[F(\phi, \lambda)-E(\phi, \lambda)]  \tag{75}\\
\phi=\arccos \frac{b}{a}, \quad \lambda=\frac{h}{k}
\end{gather*}
$$

where $F(\phi, \lambda), E(\phi, \lambda)$ are the Legendre incomplete elliptic integrals of modulus $\lambda$ and amplitude $\phi$ of first and second kinds.

Exact solutions of the equipotential problem are also of interest. If the total strength of the distribution over the ellipsoid is $G$, the source strength $N(Q)$ is given by

$$
\begin{equation*}
N(Q)=\frac{G A(Q)}{4 \pi a b c} \tag{76}
\end{equation*}
$$

On and within the ellipsoid the potential has the constant value

$$
\phi_{0}=\frac{G}{2} \int_{0}^{\infty} \frac{d s}{\left[\left(a^{2}+s\right)\left(b^{2}+s\right)\left(c^{2}+s\right)\right]^{\frac{1}{2}}}=\frac{G}{k} F(\phi, \lambda)
$$

Calculations have been performed for the case $\mathrm{a}=1, \mathrm{~b}=0.25$, $c=0.50$, for which

$$
1-\frac{\mathrm{F}_{1}^{1}(\mathrm{a})}{\mathrm{F}_{1}^{1}(\mathrm{a})}=1.12659
$$

Then

$$
\begin{aligned}
M(Q) & =-1.12659 \frac{U}{4 \pi} \times A(Q) \\
\Phi & =1.12659 \mathrm{Ux} \\
\mathbb{N}(Q) & =\frac{2}{\pi} \mathrm{GA}(Q) \\
\phi_{O} & =1.76984 \mathrm{G}
\end{aligned}
$$

## FORTRAN Program

In the FORTRAN program given in the Appendix, the Gauss 16-point quadrature formula was selected for purposes of illustration. Because of symmetry about the $x-z$ and $x-y$ planes, with this quadrature formula there are 16 i's but only 8 j 's, so that the matrices $J_{i j}, \mathrm{kl}$ and $L_{i j}, \mathrm{kl}$ contain $128 \times 128=16384$ elements. An advantage of the Gauss formula is that it gives finer intervals at the bow and stern than amidships, as is required by the rapid changes in form of the transverse sections at a ship's extremities. Nevertheless, for a particular form, it may be desired to use a quadrature formula of the Simpson-rule type, with a fine mesh near the bow and stern and a coarser one over the remainder of the hull.

The input data of the FORTRAN program are the coordinates ( $x_{i}, y_{i j}, z_{i j}$ ), the direction cosines $l_{i j}, m_{i j}, n_{i j}$, and the weighting factors of the selected quadrature formula, $A_{k}$ and $A_{l}$. The various do-loops in the program perform the following operations:

Loop 2 computes the first approximations for the iteration formulas (63) and (66), $\left(M_{0}\right)_{i j}=\operatorname{SDI}(I, J)$ and $\left(N_{0}\right)_{i j}=\operatorname{SDO}(I, J)$. Here is also computed the product of the area element $E_{i j}=E(I, J)$ by the weighting factors, $A_{i} A_{j} E_{i j}=F(I, J)$.

Loop 9 computes the kernel matrix of the integral equations (63) and (66), $J_{i j}, k l$ which, multiplied by the weighting factors, is denoted by C (IJ, KL). The program yields simultaneously the transpose of the matrix with its corresponding weighting factors, and then computes directly the diagonal terms of the matrix. Also computed in this loop is the matrix $L_{i j, k l}=P l(I J, K L)$, including the weighting factors and the element of area, used in computing $\phi_{i}$ from (68).

Loops 22-23 compute successive approximations to the source distribution $M_{n}=$ SDI from the iteration formula (63), for 10 iterations.

Loops 25-26 compute successive approximations to the source distribution for the equipotential problem, $N_{n}=$ SDO, from the iteration formula (66), for 20 iterations.

Loop 28 computes $\phi_{0}=$ PHO from (67).
Loop 35 computes $\phi_{i j}=$ PHI (I, J) from the expression for the velocity potential in (68).

## Results for an Ellipsoid

The program was tested by applying it to an ellipsoid with axes $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in the proportions

$$
a: b: c=4: 1: 2
$$

Input data are given in Table l, in which $\theta$ is the parametric angle of the equation of the ellipsoid, (70). The values of $x$ and $\theta$ in the table correspond to the abscissas of the Gauss 16 -point quadrature formula.

Values of the source distribution, $M(Q)$, computed from the exact expression as well as from the discretized iteration formula with 10 iterations, are given in Table 2. The results are seen to agree to within four significant figures for $\theta$ near zero, but to only three significant figures for $\theta$ near $\pi / 2$. Repetition of the calculations employing double-precision arithmetic showed essentially the same results, indicating that the errors are due principally to the discretization of the equations, rather than round-off errors by the computer.

Table 3 gives the results for the source distribution $N(Q)$ when the hull is treated as an equipotential surface. Since the total source
strength on the hull was not normalized in the iterations, an unknown constant factor is present in the values computed from the iteration formula. The ratios of the exact values to those computed with twenty iterations show consistency to five significant figures. The exact value of the constant potential on the hull, $\phi_{O E}=-1.76977$, and the value of the potential at the origin computed from the source distribution of the twentieth iteration, $\phi_{O C}=$ 4.07197, are in essentially the same ratio as that given in the Table, $\phi_{O E} / \phi_{O C}=0.434621$.

Finally, the distribution of the velocity potential over the hull is given in Table 4. The exact values are seen to agree with those computed from the previously calculated source distributions, $M(Q)$ and $\mathbb{N}(Q)$, to within at least five significant figures. This is remarkable in view of the aforementioned result that the values of the source distribution $M(Q)$ from the tenth iteration have considerably larger errors. A reexamination of the values of $M(Q)$ in Table 2 shows that the computed values tend to be larger than the exact ones at small values of $\theta$, and smaller than the exact ones at the large values of $\theta$, a possible explanation for the unexpectedly good agreement in the values of the velocity potential.

## References

[1] J. L. Hess and A. M. O. Smith, "Calculation of Potential Flow about Arbitrary Bodies", Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, New York, 1966.
[2] 0. D. Kellogg, Foundations of Potential Theory, Frederick Ungar Publishing.Company, New York, 1929.
[3] F. H. Todd, "Some Further Experiments on Single-Screw Merchant Ship Forms - Series 60", Transactions of the Society of Naval Architecture and Marine Engineering, Vol. 61, 1953.
[4] J. V. Wehausen, "Surface Waves", Encyclopedia of Physics, edited by S. Flügge, Vol. IX, Fluid Dynamics III, Springer Verlag, Berlin, 1960.
[5] W. Grobner and N. Hofreiter, Integraltafel, Zweiter Teil, Bestimmte Integrale, Springer-Verlag, Wien, New York, 1966.
[6] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.
[7] C. von Kerczek and E. O. Tuck, "The Representation of Ship Hulls by Conformal Mapping Functions", Joumal of Ship Research, vol. 13, no. 4, December 1969.

TABLE I

## INPUT DATA - COORDINATES AND DIRECTION COSINES

OF A 4 : 1 : 2 ELLIPSOID

$$
x=0.755404
$$

| $\theta$ | y | z | I | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.161994 | 0.048716 | 0.279081 | 0.957566 | 0.071991 |
| 0.442341 | 0.148048 | 0.140244 | 0.296377 | 0.929365 | 0.220094 |
| 0.719450 | 0.123216 | 0.215898 | 0.331168 | 0.864286 | 0.378599 |
| 0.970557 | 0.092529 | 0.270360 | 0.380958 | 0.746614 | 0.545380 |
| 1.186584 | 0.061402 | 0.303743 | 0.435264 | 0.566082 | 0.700069 |
| 1.359729 | 0.034320 | 0.320359 | 0.476405 | 0.346307 | 0.808152 |
| 1.483732 | 0.014244 | 0.326388 | 0.495196 | 0.149402 | 0.855839 |
| 1.554146 | 0.002727 | 0.327584 | 0.499237 | 0.028841 | 0.865985 |

$$
x=0.865631
$$

| $\theta$ | y | z | l | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.123773 | 0.037224 | 0.399553 | 0.914131 | 0.068726 |
| 0.442341 | 0.113123 | 0.107160 | 0.421931 | 0.882226 | 0.208931 |
| 0.719450 | 0.094149 | 0.164968 | 0.465774 | 0.810548 | 0.355059 |
| 0.970557 | 0.070701 | 0.206581 | 0.525660 | 0.686941 | 0.501791 |
| 1.186584 | 0.046917 | 0.232090 | 0.586995 | 0.509045 | 0.629532 |
| 1.359729 | 0.026224 | 0.244785 | 0.630642 | 0.305678 | 0.713338 |
| 1.483732 | 0.010884 | 0.249393 | 0.649769 | 0.130718 | 0.748808 |
| 1.554146 | 0.002084 | 0.250306 | 0.653818 | 0.025186 | 0.756233 |


| $\theta$ | y | z | l | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.081162 | 0.024407 | 0.587148 | 0.807201 | 0.060687 |
| 0.442341 | 0.074174 | 0.070265 | 0.612317 | 0.769333 | 0.182195 |
| 0.719450 | 0.061733 | 0.108169 | 0.658909 | 0.689016 | 0.301822 |
| 0.970557 | 0.046359 | 0.135455 | 0.716912 | 0.562963 | 0.411229 |
| 1.186584 | 0.030764 | 0.152180 | 0.769949 | 0.401221 | 0.496186 |
| 1.355729 | 0.017195 | 0.160505 | 0.804046 | 0.234186 | 0.546504 |
| 1.483732 | 0.007137 | 0.163526 | 0.818094 | 0.098895 | 0.566518 |
| 1.554146 | 0.001367 | 0.164125 | 0.821000 | 0.019004 | 0.570613 |

$$
x=0.989401
$$

| $\theta$ | y | z | l | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.035899 | 0.010796 | 0.864215 | 0.501707 | 0.037719 |
| 0.442341 | 0.032808 | 0.031079 | 0.877978 | 0.465817 | 0.110316 |
| 0.719450 | 0.027306 | 0.047845 | 0.900792 | 0.397762 | 0.174239 |
| 0.970557 | 0.020505 | 0.059914 | 0.925044 | 0.306740 | 0.224065 |
| 1.186584 | 0.013607 | 0.067311 | 0.943869 | 0.207696 | 0.256855 |
| 1.359729 | 0.007005 | 0.070993 | 0.954546 | 0.117401 | 0.273970 |
| 1.483732 | 0.003157 | 0.072330 | 0.958656 | 0.048936 | 0.280329 |
| 1.554146 | 0.000604 | 0.072595 | 0.959486 | 0.009378 | 0.281599 |

TABLE I, Continued
$x=0.095012$
$\theta$
0.149245 0.442341 0.719450 0.970557 1.186584 1.359729 1.483732 1.554146
y 0.246102
0.224910
0.187191
0.140571
0.093283
0.052139
0.021640
0.004144
z
0.074009
0.213060
0.327995
0.410734
0.461450
0.486692
0.495853
0.497669

1
0.024054
0.025683
0.029045
0.034092
0.039995
0.044815
0.047138
0.047648
m
0.996897
0.074948
0.972764
0.230372
0.915587
0.401071
0.807036
0.589518
0.628266
0.776970
0.393482
0.918240
0.171776
0.984008
0.998311

| $\theta$ | $y$ | $z$ | 1 | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.237216 | 0.071337 | 0.073784 | 0.994468 | 0.074766 |
| 0.442341 | 0.216794 | 0.205367 | 0.078753 | 0.970062 | 0.229732 |
| 0.719450 | 0.180432 | 0.316152 | 0.088994 | 0.912339 | 0.399648 |
| 0.970557 | 0.135495 | 0.395903 | 0.104319 | 0.803100 | 0.586642 |
| 1.186584 | 0.089915 | 0.444788 | 0.122155 | 0.624060 | 0.771769 |
| 1.359729 | 0.050256 | 0.469118 | 0.136646 | 0.390183 | 0.910542 |
| 1.483732 | 0.020859 | 0.477948 | 0.143600 | 0.170185 | 0.974893 |
| 1.554146 | 0.003994 | 0.479699 | 0.145126 | 0.032933 | 0.988865 |

$$
x=0.458017
$$

| $\theta$ | y | z | l | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.219765 | 0.066089 | 0.128809 | 0.988879 | 0.074345 |
| 0.442341 | 0.200846 | 0.190259 | 0.137376 | 0.963859 | 0.228263 |
| 0.719450 | 0.167159 | 0.232894 | 0.154966 | 0.904908 | 0.396393 |
| 0.970557 | 0.125528 | 0.366778 | 0.181103 | 0.794152 | 0.580107 |
| 1.186584 | 0.083300 | 0.412067 | 0.211201 | 0.614585 | 0.750052 |
| 1.359729 | 0.046559 | 0.434608 | 0.235364 | 0.382812 | 0.893341 |
| 1.483732 | 0.019324 | 0.442788 | 0.246862 | 0.166645 | 0.954615 |
| 1.554146 | 0.003700 | 0.444410 | 0.249376 | 0.032234 | 0.967870 |
|  | $x=0.617876$ |  |  |  |  |


| $\theta$ | y | z | c | m | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.149245 | 0.194384 | 0.058456 | 0.194329 | 0.978176 | 0.073541 |
| 0.442341 | 0.177649 | 0.168285 | 0.206949 | 0.952019 | 0.225459 |
| 0.719450 | 0.147853 | 0.259066 | 0.232674 | 0.890834 | 0.390228 |
| 0.970557 | 0.111030 | 0.324417 | 0.270396 | 0.777425 | 0.567888 |
| 1.186584 | 0.073680 | 0.364476 | 0.312994 | 0.597176 | 0.738522 |
| 1.359729 | 0.041182 | 0.384413 | 0.346471 | 0.369481 | 0.862231 |
| 1.483732 | 0.017092 | 0.391649 | 0.362157 | 0.160293 | 0.918231 |
| 1.554146 | 0.003273 | 0.393083 | 0.305566 | 0.030982 | 0.930270 |


onnconmo nNinNmint


 io 1101000000

 जッのMMOM～N

 응읃N․․․ o우웅우웅

へMましゃかにN いOOHmかNN NMNOLONN NNNMM N゙



 NコロさかNMM 00000000 $0_{1}^{0} 0^{\circ} 0_{1}^{0} 0_{0}^{0} 0^{\circ}$
NONH O NO
NMNコO心NN
$\infty \infty$ がいざい へべいNのが
 $0_{0}^{\circ} 0_{0}^{\circ} 0_{0}^{0} 0_{0}^{0} 0_{0}^{\circ}$

 Nにもんにばッシ

 $0_{1}^{0} 0_{0}^{0} 0_{0}^{0} 000$

 そNMU心NNN o웅ㅇㅇ웅


 C0002050 웅웅웅



M6LOHNNLMM Noom 00 NOMM N NOHOCIMM

 $m \pm= \pm \ln \ln \mathrm{Ln} \mathrm{Ln}$ －0000000



แNM以ONM $\omega$ NCMM का $\infty=$ L
 OMMNNルNN NNNNMMMM


Noんかわいい。

 のCLHMNMO
 $\therefore 000000$


Computed－20th Iteration



00000000 | NNNNNNN |  |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| $\sim$ | 0 |

 $\Rightarrow=\neg= \pm= \pm$ $000^{\circ} 0000000$

00000000 MNNNNMNG

 OOOOCCO

－MNNNNNNN NNNNNNNN



mNNNNNNN NNNNNNNN $\begin{array}{llll}0 & 0 & 0 & 0 \\ \rightarrow & \rightarrow & 0\end{array}$
 $\pm=-1= \pm \pm= \pm$ OOOOODO

| 0.107040 | 0.317252 | VELOCITY POTENTIAL ON SURFACE OF ELLIPSOID |  |  |  |  | 1.114649 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.515997 | 0.696093 | 0.851031 | 0.975211 | 1.064149 |  |
| Computed |  |  |  |  |  |  |  |
| 0.107038 | 0.317247 | 0.515989 | 0.696082 | 0.851017 | 0.975195 | 1.064130 | 1.114623 |
| 0.107038 | 0.317247 | 0.515989 | 0.696082 | 0.851017 | 0.975195 | 1.064129 | 1.114628 |
| 0.107038 | 0.317246 | 0.515988 | 0.696081 | 0.851016 | 0.975193 | 1.064127 | 1.114636 |
| 0.107038 | 0.317246 | 0.515988 | 0.696081 | 0.851016 | 0.975195 | 1.064134 | 1.114643 |
| 0.107039 | 0.317248 | 0.515991 | 0.696086 | 0.851023 | 0.975204 | 1.064146 | 1.114650 |
| 0.107040 | 0.317251 | 0.515997 | 0.696093 | 0.851033 | 0.975215 | 1.064156 | 1.114654 |
| 0.107041 | 0.317254 | 0.516001 | 0.696098 | 0.851038 | 0.975221 | 1.064161 | 1.114655 |
| 0.107041 | 0.317254 | 0.516002 | 0.696100 | 0.851040 | 0.975223 | 1.064162 | 1.114656 |

APPENDIX
FORTRAN IV(G) Program for IBM 360/
Program for Computing Source Distribution
and Velocity Potential on a Ship Surface

```
    DIMERSION X(16),Y(16,8),Z(16,8), EL(16,8), EM(16,8), EN(16, 8),A(16),
    1CAS(128),SD(128),S74(128),S73(128),SDF(16,8),SD\cap(16,8),SD1(16,8)
    2PHI}(16,8),C(128,128),P1(128,128),F(16,8),E(16,8
    P = 12.56037061
    READ(5,1) (X(1), 1=1,16)
1 FORTAT(8F10.8)
    READ (5,1) (A(1),1=1,16)
    REA)(5,1) (( Y (1, J), I=1, & ), J=1, &)
    REA)(5,1) (( Y(1, J), I=9,16), J=1, &)
    READ (5,1) (( Z ( I, J), I=1,8 ), J=1, \delta)
    READ (5,1) (( Z (1,J), I=9,16), J=1, &)
    READ(5,1) ((EL( }1,J),1=1,8), J=1, &
    REA)(5,1) ((EL(I,J), I=9,16), J=1,\delta)
    READ (5,1) ((EM( }1,j),1=1,8),j=1,8
    REA) (5,1) ((EM( }1,j),1=9,16),.j=1,8
    REA)(5,1) ((EN (1,J), l=1,8), J=1,8)
    READ (5,1) ((EN ( }1,J),I=9,16), J=1,8
    OC 2 1 = 1,16
    X2 = x(1) * x(1)
    DO 2 J = 1,8
    J1=J+8
    Y2 = Y(1,J) * Y(1,J)
    Z2 = Z(I,J) * Z(1,J)
    E(1,J) = ...........
    F(1,J) = E(1,J) * A(1) * A(J1)
    SD1(1,J) = - EL(I,J)/P
2S7O(1,J) = SORT(X2 + Y2 + Z2)
    KL = 0
    7) 9 K = 1,16
    70 9 L = 1,8
    KL = KL + 1
    Sn3(KL) = S70(K,L)
    CAS(KL) = Sn1(K,L)
    SD(KL) = SDI(K,L.)
    |J = 0
    Su:1 = 0.0
    DO & 1 = 1,16
    DO & J = 1,8
    IJ= IJ + 1
    XO = X(K) - X(1)
    YO = Y(K,L) - Y(1,J)
    YI = Y(K,L) + Y(I,J)
    ZO=Z(K,L)-Z(I,J)
    Z1 = Z(K,L) + Z(1,J)
    XO2 = XO * XO
    YO2 = YO * YO
    Y12 = Y1 * Y1
    ZO2 = Z0 * ZO
Z12 = Z1 * ZI
```


## APPENDIX, Continued

```
    R11 = SQRT (XO2 +YO2 + ZO2 )
    R22 = SCRT(XO2 + Y12 + ZO2 )
    R33 = SQRT(XO2 + Y12 + Z12)
    R44 = SQRT(XO2 + YO2 + Z12)
    R1 = R11 * R11 * R11
    R2 = R22 * R22 * R22
    R3 = R33 * R33 * R33
    R4 = R44 * R44 * R44
    V2 = (1.0/R2) + (1.0/R3)
    V3 = (1.0/R4) + (1.0/R3)
    W2 = EM(I,J) * Y(K,L) * V2
    W3 = EN(I,J) * Z(K,L) * V3
    PIJ = XO * EL(I,J) + YO * EM (I,J) + ZO * EN(I,J)
    IF(K.EQ.I.ANO.L.EQ.J) GO TO 10
    V11 = (1.0/R11) +(1.0/R22) +(1.0/R33) +(1.0/R44)
    V1 = (1.0/R1) + (1.0/R2) + (1.0/R3) + (1.0 / R4)
    Pl(IJ,KL) = V11
    BA = PIJ * V1 - 2.0 * (W2 + W3)
    BE = BA * F(I,J)
    CO TO 11
10 BA = 0.00000000
    BE = 0.00000000
    PI (IJ,KL) = BE
11C(IJ,KL) = BA * F(K,L)
    8 SUM = SUM + BE
    9C(KL,KL) = C(KL,KL) - SUIM
        LA = 1
13 DO 22 IJ = 1,128
    SUM = 0.0
    70 21 KL = 1,128
21 SUM = SIMM + SD(KL) * C(IJ,KL)
22 STA(IJ) = 0.125 * SUM4 + CAS(IJ)
    lJ = 0
    ก0 23 1 = 1,16
    D0 23 J = 1,8
    IJ = IJ + 1
    SD(IJ) = SDA(IJ)
23 STE(I,J) = STA(IJ)
    LA = LA + 1
    IF(LA.LE.10) GO TO 13
    WRITE(6,102)((SJE (I, J), I=1, &), J=1, &)
102 FORIAAT(40Fi SOJRCE DISTRIBUTION AFTER 10 ITERATIONS/(8F10.6))
    WRITE (6,110)((SDE (I, J),I=9,16), J=1, 8)
110 FDRMAT(1H///((8F10.6))
    IA = 1
27 DO 25 IJ = 1,128
    SUM = 0.0
    DO 24 KL = 1,128
24 SUMM = SUM + SD3(KL) * C(IJ,KL)
25 SD(IJ) = SD3(IJ) - 0.25 * SUM
    IJ = 0
    DO 26 1 = 1,16
    DO 2\sigma J = 1,8
    IJ = 1J + 1
ST3(IJ) = ST(IJ)
```

```
    26 S70(1,J) = SD(1J)
    LA = LA + 1
    IF(LA.LE.20) CO TO 27
    URITE}(6,104)((SDO(1,J),I= 1,8 ), J=1, &
104 FORMAT(40H DIRICHLET PRORLEM AFTER 20 ITERATIONS /(8F10.6))
    P!1O = 0.0
    D0 28 1 = 1,16
    DO 28 J = 1,8
    VV=S\capRT(X(I)*X(I) + Y(I,J)*Y(I,J) + Z(I,J)*Z(I,J))
    23 PHO = PHO - 4.0*SDO (1,J) * F(I,j) * P / VV
    1J = 0
    70 35 1 = 1,16
    00 35 J = 1,8
    |J= |J + 1
    COEF = SJE (1,J) / SOO (I,J)
    KL=0
    SUIA = 0.0
    DO }33\textrm{K}=1,1
    30 33 L = 1,8
    KL = KL + 1
33 SUl:4 = SUM + P1 (IJ,KL)*(SDA (KL)-SDJ (KL)*COEF) * F(K,L) *P
35 PHI (I,J) = X(1) - SUM + PHOO * COEF
    WR|TE}(6,107)(X(1),1=1,8
107 FORIAT(1H ///(8F10.E))
    WRITE (6,110)((PH| (1, J), I= 1, 8), J=1, 8)
    WRITE(6,107) (X(1),1=9,10)
    H2|TE (6,110)((PH| (1, J), I=9,16), J=1, &)
    CALI. EXIT
    END
```

DISTRIBUTION LIST FOR TECHNICAL REPORTS ISSUED UNDER CONTRACT Nonr-1611 (07) TASK 062-183 OFFICE OF NAVAL RESEARCH


Professor J. V. Wehausen
Department of Naval Architecture
Uníversity of California
Berkeley, California 94720
Professor J. R. Paulling
Department of Naval Architecture
University of California
Berkeley, California 94720
Professor E. V. Laitone
Department of Mechanical Engineering
University of California
Berkeley, California 94720
School of Applied Mathematics
Indiana University
Bloomington, Indiana 47401
Commander
Boston Naval Shipyard
Boston, Massachusetts 02129
Director
Office of Naval Research Branch Office
495 Summer Street
Boston, Massachusetts 02210
Professor M. S. Uheroi
Department of Aeronautical Engineering
University of Colorado
Boulder, Colorado 80303
Naval Applied Science Laboratory
Technical Library
Bldg. I Code 222
Flushing and Washington Avenues
Brooklyn, New York 11251
Professor J. J. Foody
Chairman, Engineering Department
State University of New York
Maritime College
Bronx, New York 10465
Dr. Irving C. Statler, Head
Applied Mechanics Department
Cornell Aeronautical Laboratory, Inc. P. O. Box 235

Buffalo, New York 14221
Dr. Alfred Ritter
Assistant Head, Applied Mechanics Dept. Cornell. Aeronautical Laboratory, Inc. Buffalo, New York $1_{4} 221$
Professor G. BirkhoffDepartment of MathematicsHarvard UniversityCambridge, Massachusetts 02138
Commanding Officer
NROTC Naval Administrative UnitMassachusetts Institute of TechnologyCambridge, Massachusetts 02139
Professor N. NewmanDepartment of Naval Architecture andMarine Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Professor A. H. Shapiro
Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts 02139
Professor C. C. Lin
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Professor E. W. Merrill
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts ..... 02139
Prafessor M. A. Abkowitz
Department of Naval Architecture
and Marine Engineering
Massachusetts Institute of TechnologyCambridge, Massachusetts 02139
Professor G. H. Carrier
Department of Engineering and
Applied Physics
Harvard University
Cambridge, Massachusetts ..... 02139
Professor E. Mollo-Christensen
Room 54-1722
Massachusetts Institute of TechnologyCambridge, Massachusetts 02139
Professor A. T. IppenDepartment of Civil EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts 02139

Commander
Charleston Naval Shipyard
U. S. Naval Base

Charleston, South Carolina 29408
A. R. Kuhlthau, Director

Research Laboratories for the Engineering Sciences
Thorton Hall, University of Virginia Charlottesville, Virginia 22903

Director
Office of Naval Research Branch Office
219 Dearborn Street
Chicago, Illinois 60604
Library
Naval Weapons Center
China Lake, Califormia
93557
Library MS 60-3.
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Professor J. M. Burgers
Institute of Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland 20742
Acquisition Director
NASA Scientific \& Technical Information
P。 O. Box 33
College Park, Maryland 20740
Professor Pai
Institute for Fluid Dynamics and Appiied Mathematics
University of Maryland
College Park, Maryland 20740
Technical Library
Naval. Weapons Laboratory
Dahlgren, Virginia 22448
Computation \& Analyses Laboratory
Naval Weapons Laboratory
Dahlgren, Virginia 22448

Professor C. S. Wells<br>LTV Research Center<br>Dallas, Texas 75222

- Dr. R. H. Kraichnan

Dublin, New Hampshire 034山L
Commanding Officer
Army Research Office
Box CM, Duke Station
Durham, North Carolina 27706
Professor A. Charnes
The Technological Institute
Northwestern University
Evanston, Illinois 60201
Dr. Martim H. Bloom
Polytechnic Institute of Brooklyn
Graduate Center, Dept. of Aerospace
Engineering and Applied Mechanics
Farmingdale, New York 11735
Technical Documents Center
Building 315
U. S. Army Mobility Equipment

Research and Development Center
Fort Belvoir, Virginia 22060
Professor J. E. Cermak
College of Engineering Colorado State University
Ft. Collins, Colorado 80521
Technical Library
Webb Institute of Naval Architecture
Glen Cove, Long Island, New York 11542
Professor E. V. Lewis
Webb Institute of Naval Architecture
Glen Cove, Long Island, New York 11542
Library MS 185
NASA, Langley Research Center
Langley Station
Hampton, Virginia 23365
Dr. B. N. Pridmore Brown
Northrop Corporation
NORATR-Div.
Hawthorne, California 90250

Dr. J. P. Breslin
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030
Mr. D. Savitsky
Stevens Institute of Technology
Davidson Iaboratcry
Hoboken, New Jersey 07030
Mr. C. H. Henry
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030
Professor J. F. Kennedy, Director
Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa 52240
Professor L. Landweber
Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa 52240
Professor E. L. Resler
Graduate School of
Aeronautical Engineering
Cornell University
Ithaca, New York 14881
Professor John. Miles
\% I.G.P.P.
University of California, San Diego
La Jolla, California 92038
Director
Scripps Institution of Oceanography
University of California
La Jolla, Califormia 92037
Dr. B. Sternlicht
Mechanical Technology Incorporated
968 Albany-Shaker Road
Latham, New York 12110
Mr. P. Eisenberg, President
Hydronautics
Pindell School Road
Howard County
Laurel, Maryland 20810
(2)

Professor A. Ellis
University of Califormia, San Diego
Department of Aerospace \& Mech. Engrg. Sci. La Jolla, Califormia 92037

Mr. Alfonso Al.cedan L. Director
Laboratorio Nacional De Hydraulics
Antigui Cameno A. Ancon
Casilla Jostal 682

- Lima, Perra

Commander
Long Beach Naval Shipyard
Long Beach, Califormia 90802
Professor John Laufer
Department of Aerospace Engineering
University Park
Los Angeles, Califormia 90007
Professor J. Ripkin
St. Anthony Falis Hydraulic Lab.
University of Mirnesota
Minneapolis, Minnesota 55474
Professor J. M. Killen
St. Anthony Falls Hyäraulic Lab.
University of Minnesota
Minneapolis, Minnesota $554 \mathrm{~J}_{4}$
Lorenz G. Straub Library
St. Anthony Fallis Hydraulic Lab.
Mississippi. River at 3rd Avenue SE.
Minneapolis, Minnesota 55474
Dr. E. Silherman
St. Anthony Fall.s Hydraulic Lab.
University of Minnesota
Minneafolis, Mirnesota $554 \mathrm{~J}_{4}$
Superintendent
Naval. Postgraduatie School
Library Gode owi. 2
Monterey, Galiformia 93940
Proiessor A. B. Metzner
University of Delaware
Newark, New teraey 19711
Techrical. Iibrary
USN Underwatis. Weapons \&
Research \& Eypineering Station
Newport, Rivdie Island 02840
Technical Iinory
Underwater Somd Jaboratory
Fort Tirumbril?
New Londor, Connenticnt. 06321.

Professor J. J. Stoker
Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, New York 10003
Engineering Societies Library
345 East 47 th Street
New York, New York 10017
Office of Naval Research
New York Area Office
207 W. 24th Street
New York, New York 10011
Commanding Officer
Office of Naval Research Branch Office
Box 39
FPO New York, New York 09510
Professor H. Elrod
Department of Mechanical Engineering
Columbia University
New York, New York 10027
Society of Naval Architects and Marine Engineering
74 Trinity Place
New York, New York • 10006
Professor S. A. Piascek
Department of Engineering Mechanics
University of Notre Dame
Notre Dame, Indiana 46556
United States Atomic Energy Commission
Division of Technical Information Extension
P. O. Box 62

Oak Ridge, Tennessee 37830
Miss O. M. Leach, Librarian
National Research Council
Aeronautical Library
Montreal Road
Ottawa 7, Canada
Technical Library
Naval Ship Research and Development Center
Panaman City, Florida 32401
LibraryJet Propulsion LaboratoryCalifornia Institute of Technology4800 Oak Grave AvenuePasadena, Califormia 91109
Professor M. S. Plesset
Engineering Division
Ca.lifornia Institute of TechnologyPasadena, California 91109
Professor H. Liepmann
Department of AeronauticsCalifornia Institute of TechnologyPasadena, California 91109
Technical Library
Naval Undersea Warfare Center3202 E. Foothill BoulevardPasadena, Califormia 91107
Dr. J. W. Hoyt
Naval Undersea Warfare Center3202 E. Foothill. Boulevard
Pasadena, California 91107
Professor T. Y. Wu
Department of Engineering
Califormia Institute of TechnologyPasadena, California 91109
Director
Office of Naval ResearchBranch Office
1030 E. Green Street
Pasadena, California 91101
Professor A. Acosta
Department, of Mechanical EngineeringCalifornia Institute of TechnologyPasadena, California 91109
Naval Ship Engineering CenterPhiladelphia Division
Technical Library
Philadelphia, Pernsylvania ..... 19112
Technical Kibrary (Code 249B)Philadelphia Naval. SnipyardPhiladelphia, Penrsylvania19112

Professor R. C. Mac Camy
Department of Mathematics
Carnegie Institute of Technology
Pittsburgh, Pennsylvania 15213
Dr. Paul Kaplan
Oceanics, Inc.
Plainview, Long Island, New York 11803
Technical Library
Naval Missile Center
Point Mugu, California 93441
Technical Library
Naval Civil Engineering Lab.
Port Hueneme, California 93041

## Commander

Portsmouth Naval Shipyard
Portsmouth, New Hampshire 03801
Commander
Norfolk Naval Shipyard
Portsmouth, Virginia 23709
Professor F. E. Bisshopp
Division of Engineering
Brown University
Providence, Rhode Island 02912
Dr. L. L. Higgins
TRW Space Technology Labs, Inc.
One Space Park
Redondo Beach, California 90278
Redstone Scientific Information Center
Attn: Chief, Document Section
Army Missile Command
Redstone Arsenal, Alabama 35809
Dr. H. N. Abramson
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78228

## Editor

Applied Mechanics Review
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206
Librarian
Naval Command Control Conmumications Laboratory Center
San Diego, California 92152

Library \& Information Services
General Dynamics-Convair
P. O. Box 1128

San Diego, California 92112
Comman : (Code 246 P )
Pearl Harbor Naval Shipyard
Box 400
-FPO San Francisco, California 96610
Technical Library ( Code H2l45C-3)
Hunters Point Division
San Francisco Bay Naval Shipyard
San Francisco, California 94135
Office of Naval Research
San Francisco Area Office
1076 Mission Street
San Francisco, California 94103
Dr. A. May
Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland 20910
Fenton Kennedy Document Library
The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910
Librarian
Naval Ordnance Laboratory
Whit, Oak
Silver Spring, Maryland 20910
Dr. Bryne Perry
Department of Civil Engineering Stanford University
Stanford, California 94305
Professor Milton Van Dyke
Department of Aeronautical Engineering
Stanford University
Stanford, Califormia 94305
Professor E. Y. Hsu
Department of Civill Engineering
Stanford University
Stanford, California 94305
Dr. R. L. Street
Department of Civil Engineering Stanford University
Stanferd, Califormia 94305

Professor S. Eskinazi
Department of Mechanical Engineering Syracuse University
Syracuse, New York 13210
Professor R. Pfeffer
Florida State University
Geophysical Fluid Dynamics Institute
Tallahassee, Florida 32306
Professor J. Foa
Department of Aeronautical Engineering
Rennsselaer Polytechnic Institute
Troy, New York 12180
Professor R. C. Di Prima
Department of Mathematics
Rennsselaer Polytechnic Institute
Troy, New York 12180
Dr. M. Sevik
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania
16801
Professor J. Lumley
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania
16801
Dr. J. M. Robertson
Department of Theoretical and
Applied Mechanics
University of Illinois
Urbana, Illinois 61803
Shipyard Technical Library
Code l30L7 Building 746
San Francisco Bay Naval Shipyard
Vallejo, California 94592
Code IL 42
Naval Ship Research and Development Center
Washington, D.C. 20007
Code 800
Naval Ship Research and Development Center
Washington, D.C. 20007
Code 2027
U. S. Naval Research Laboratory

Washington, D.C. 20390

Code 438
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Code 513
Naval Ship Research and Development Center
Washington, D.C. 20007
Science \& Technology Division
Library of Congress
Washington, D.C. 20540
ORD 913 (Library)
Naval Ordnance Systems Command
Washington, D.C. 20360
Code 6420
Naval Ship Engineering Center
Concept Design Division
Washington, D.C. 20360
Code 500
Naval Ship Research and
Development Center
Washington, D.C. 20007
Code 901
Naval Ship Research and Development Center
Washington, D.C. 20007
Code 520
Naval Ship Research and Development Center
Washington, D.C. 20007
Code 0341
Naval Ship Systems Command Department of the Navy Washington, D.C. 20360

Code 2052 (Technical Library)
Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
Mr. J. L. Schuler (Code 03412)
Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360

Dr. J. H. Huth (Code 031)
Naval Ship Systems Command
Nepartmant of the Navy
Washington, D.C. 20360
Code 461
Chief of Naval Research
Department of the Navy
Washington, DC. 20360
Code 530
Naval Ship Research and Development Center
Washington, D.C. 20360
Code 466
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Office of Research and Development
Maritime Administration
$W_{1} I$ G. Street, NW.
Washington, D.C. 20235
Code 463
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
National Science Foundation
Engineering Division
1800 G. Street, NW.
Washington, D.C. 20550
Dr. G. Kulin
National Bureau of Standards
Washington, D.C. 20234
Department of the Army
Coastal Engineering Research Center 5201 Little Falls Road, NW.
Washington, D.C. 20011
Code 521
Naval Ship Research and
Development Center
Washington, D.C. 20007
Code 481
Chief of Naval Research
Department of the Navy
Washington, D.C. 20390

Code 421
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Commander
Naval Ordnance Systems Command
Code ORD 035
Washington, D.C. 20360
Librarian Station 5-2
Coast Guard Headquarters
1300 E. Street, NW.
Washington, D.C. 20226
Division of Ship Design
Maritime Administration
441 G. Street, NW.
Washington, D.C. 20235
HQ USAF (AFRSID)
Room 1D 377
The Pentagon
Washington, D.C. 20330
Commander
Naval Ship Systems Command
Code 6644C
Washington, D.C. 20360
Code 525
Naval Ship Research and Development Center
Washington, D.C. 20007
Dr. A. Powell (Code 01)
Naval Ship Research and Development Center
Washingtnn, D.C. 20007
Director of Research Code RR
National Aeronautics \& Space Admin. 600 Independence Avenue, SW.
Washington, D.C. 20546
Commander
Naval Ordnance Systems Command
Code 03
Washington, D.C. 20360
Code ORD 05427
Naval Ordnance Systems Command Washington, D.C. 20360

AIR 5301
Naval Air Systems Command Department of the Navy
Washington, D.C. 20360

## AIR 604

Naval Air Systems Command
Department of the Navy
Washington, D.C. 20360
Dr. John Craven (PM 1100)
Deep Submergence Systems Project
Department of the Navy
Waskington, D.C. 20360
Code 522
Naval Ship Research and Development Center
Washington, D.C. 20007
Commander
Naval Oceanographic Office
Washington, D.C. 20390
Chief of Research \& Development
Office of Chief of Staff
Department of the Army
The Pentagon, Washington, D.C. 20310
Code 6342A
Naval Ship Systems Commmand
Department of the Navy
Washington, D.C. 20360
Code 468
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Director
U. S. Naval Research Laboratory

Code 6170
Washington, D.C. 20390
Code 473
Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Code 6100
Naval Ship Engineering Center
Department of the Navy
Washington, D.C. 20360

Mr. Ralph Lacey (Code 6114)
-Naval Ship Engineering Center
Department of the Navy
Washington, D.C. 20360
Dr. A. S. Iberall, President
General Technical Services, Inc.
451 Penn Street
Yeadon, Pennsylvania 19050
Dr. H. C.ohen
IBM Research Center
P. O. Box 218

Yorktown Heights, New York 10598


1. OWIGINA TING ACTIVITY (Corporate author)
2. REFORT SECURITY CLASSIICATION Unclassified
2b. Group
2b. Grour

IOWA INSTITUTE OF HYDRAULIC RESEARCH

KIFORT TITLE
Irrotational Flow About Ship Forms
4. DESCRIPTIVE NOTES (TYpe of report and_inclusive dates)

Interim Report
AU THOR(S) (First name, middle initial, last name)
Louis Landweber and Matilde Macagno

| 6. REPORT DATE December 1969 | 7a. TOTAL NO, OFPAGES <br> 7h. NO. OF REEFSS $33$ |
| :---: | :---: |
| Ba. CONTRACT OR GRANT NO. Nonr-1611(07) <br> b. PROJECT NO. | 9a. ORIGINATOR'S REPORT NUMBER(S) <br> IIHR Report No. 123 |
| c. | 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) |
| d. |  |

This document has been approved for public release and sale; its distribution is unlimited.

| 11. SUPPLEMENTARY NOTES | 12. SPONSORINGMILITARY ACTIVITY |
| :--- | :--- | :--- |

A method of computing the potential flow about a ship model in terms of a source distribution on the hull surface is described. After a formulation and discussion of the flow with wavemaking, the zero-Froude number, double-ship-model case is treated in detail. The Fredholm singular integral equation of the second kind for the source distribution is solved numerically by removing the singularity, replacing the integral by a quadrature formula, and solving the resulting high-order set of linear equations by an iteration formula for which convergence is proved. The corresponding velocity potential on the hull surface, the evaluation of which from the source distribution also requires the calculation of a singular integral, is obtained by rirst solving the equipotential problem for the hull form (which employs, the same kernel as the original integral equation). The solution of this Dirichlet problem is then used to remove the singularity from the velocity-potential integral, and then the latter is computed by means of a quadrature formula. The method is applied to an ellipsoid, results from which are compared with the exact solution. A FORTRAN program is included as an Appendix.



[^0]:    *Numbers in brackets indicate references.

