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IRS-aided Network Scheme Supports Unmanned
Aerial Vehicle Communication

Pham The Hien, Van Phu Tuan, and Ic-Pyo Hong

Abstract—Intelligent reflecting surface (IRS) and unmanned
aerial vehicle (UAV) are forecasted to be extensively used in
the forthcoming wireless system. In order to enhance the op-
erational efficiency of UAVs in the urban areas, this paper
proposes employing IRS equipped on the rooftop of buildings
to create ground-to-air data links between the terrestrial base
stations (BSs) and UAVs without any change in the terrestrial
infrastructure. An optimization problem aiming to maximize
the cumulative achievable data rate (CADR) and minimize the
UAV’s operational duration via altering the configuration of the
IRS network, i.e., the phase profiles and reflecting angles, and
the UAV’s trajectory has been investigated. To deal with this
optimization problem, firstly, we analyze the far-filed radiation
pattern of all IRSs to construct the received signal strength (RSS)
map over the considered region for a given setup of the activated
BS and IRS networks. Then, this map is used to construct the
designated BS-IRS-UAV paths (DBIUPs) that are the best paths
between neighboring BSs obtained through optimizing the IRS
network. Secondly, we develop heuristic algorithms (HAs) to
select appropriate DBIUPs to build the optimize UAV’s trajec-
tory for any departing and landing positions. The simulation
results show that the proposed scheme significantly improves the
CADR and reduces the disconnected distance/duration (DD) of
considered UAV communication, and the proposed algorithm has
a good convergence.

Index Terms—Heuristic algorithm-based optimization, intel-
ligent reflecting surface, phase shift optimization, trajectory
optimization, and UAV communication.

I. INTRODUCTION

UNMANNED aerial vehicles have commenced a huge
range of applications in several fields, both in the military

and civilian. The ability to equip various types of sensors to a
flying device makes it become a wealthy source of information
which can be used for missions such as surveillance, rescue
management, cargo delivery, observation, tracking from the
air, etc. [1], [2]. Therefore, the requirement of achieving high-
speed and stable air-to-ground wireless links is anticipated
to play an important role in future UAV communication
systems [3] and the UAV control and path planning also
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become the crucial problems [4], [5]. Moreover, there are so
many challenges which the UAV communication have to be
encountered, especially in urban areas where the blockages
caused by common objects such as the buildings and trees are
the prominent challenges [6] which can lead to the issues of
poor coverage and connectivity.

To address these issues, IRS, a large surface made from
metallic and dielectric materials, and a large number of
configurable electronic elements, has recently emerged as
a potential solution due to its capacity of controlling the
property of wireless signals [7], [8]. The effectiveness of
using IRS in enhancing the performance of both terrestrial and
airborne wireless communication has been validated in many
recent publications [9]–[14]. Specifically, with the ability of
intelligently tuning the amplitude and phase shifts of passive
elements, IRS are able to adjust the wireless channel and gen-
erate a beneficial wireless propagation environment [9]–[11],
and thus has been proposed to improve the performance of
wireless communications and bypass obstacles [12]–[14]. For
IRS-enabled air-to-ground wireless communication, there are
two main approaches which depend on the IRS installation.
The first approach uses static IRSs attaching to the buildings
to reflect the wireless signal toward the UAVs. In [15], in
order to maximize average achievable rate of the system, the
authors studied a static IRS-aided UAV system and proposed
an optimization algorithm to optimize the UAV’s trajectory
and the passive beamforming factors. Whilst, the study in [16]
proposed a secure IRS-assisted UAV system in which the static
IRS is utilized to assist the secure downlink communication
between a UAV-mounted transmitter and a legitimate receiver
in the presence of an eavesdropper. By optimizing the UAV’s
trajectory, transmit power, and IRS’s phase shift, the secrecy
rate of this proposed system is maximized. Additionally, the
author in [17] proposed algorithms to minimize the bit error
rate by jointly optimizing the UAV trajectory, IRS phase
shift matrix, and IRS scheduling while minimizing the data
rate requirement for the UAV. Another approach investigates
mobile IRS where the IRS is mounted on UAV and provides
better wireless links to terrestrial users. Inheriting the high
mobility property of the UAV, the UAV-mounted IRS can be
easily placed at any location and altitude with a low cost
for deployment. The works [18] show that the UAV-mounted
IRS can give a notable improvement in data rate for a non-
orthogonal multiple access (NOMA) multiple-input- single-
output (MISO) system. Besides the position optimization,
the transmit beamforming vector and the IRS’s phase shift
matrix were jointly optimized to archive the optimum system
performance. The study of the energy efficiency (EE) of a
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cooperative communication system was investigated in [19]
where a UAV-mounted IRS served as a relay to forward the
signal broadcasted by a multiple-antenna base station to single-
antenna cell-edge users. A joint optimization algorithm of the
power allocation and the IRS phase shift matrix was designed
for the goal of maximizing the overall EE.

Most of the existing works employed IRS as a single
reflector to improve the downlink wireless communication
system wherein the IRS was being in charge of a mobile
BS or a relay, and did not investigate the effect of radiation
pattern on channel property. In this paper, we investigate the
practical model for the radiation pattern of IRS and its effect
on UAV uplink communication. Our proposed system consists
of a network of terrestrial BSs that are purposely deployed
for terrestrial communication and a network of IRSs placed
on the top of the building surrounding the those terrestrial
BSs. The reflected signals from the IRSs allow the UAV to
communicate with the terrestrial BSs. The UAV departs and
lands at determined positions. During the UAV’s travel, there
is a demand for communicating with the terrestrial BS network
for some specific tasks. Our goal is to maximize the CADR
between UAV and the terrestrial BS network and minimizing
the traveling distance while carrying out its tasks. The main
contributions of this paper are summarized as follows.

• In order to accomplish this target, firstly, the far-field ra-
diation pattern of the reflection on an IRS is characterized
using the physic optic technique [11]. This result allows
us to evaluate the RSS at a custom position. Extending
our investigation to the networks of BSs and IRS and
combining all the RSS, we can build a DBIUP map for
the UAV’s operational area that stored the best RSS at
specific directions and the respective configuration for the
BS and IRS networks, i.e. the activation schedule for the
BSs, the selected IRSs, and the reflection setup of these
selected IRSs, to archive this best RSS.

• Next, the two HAs, namely genetic algorithm (GA)
and particle swarm optimization (PSO), are designed to
find the UAV’s optimal trajectory to archive the goals,
i.e., maximizing the CADR and minimizing the UAV’s
operational duration, using the obtained DBIUP map.
Using the DBIUP map and UAV’s optimal trajectory, the
optimal configuration for the BS and IRS networks are
revealed.

• Finally, we prepare the numerical results for the optimal
CADR and optimal trajectory for performance evaluation.
The numerical results show that the DBIUP map plays
an important role in optmizing the operation of the
UAV, the BS and IRS networks. The proposed algorithms
effectively provides great CADR to the UAV. The GA
outperforms the PSO algorithm in finding the optimal
BS-IRS-UAV path (BIUP). For instance, the GA brings
the higher performance with less convergence duration.
In addition, the results also reveal the effects of various
key parameters, such as the IRS’s size, the number of
IRS panels around the BSs and the transmit power,
on the UAV communication schemes which provide the
informative views of the system design.

The rest of the paper is organized as follows. In Section II,
the system model and preliminary results for RSS model are
presented. The HA-based BIUP algorithms are investigated in
Section III. Section IV illustrates and discusses the numerical
results followed by the Section V as the conclusion.

II. SYSTEM MODEL AND PRELIMINARY RESULTS
FOR RSS MODEL

In this section, firstly, we briefly describe the design of
the proposed IRS scheme, examine the scattered field from
a single IRS, and develop the RSS model for the signal sent
from a source and reflected from that IRS. Then, we extend
our study for the RSS model to the scenario consisting of
multiple BSs and IRSs. After that, the optimal RSS model and
the respective configuration for the IRS network are analyzed.
Finally, the DBIUP map, which allows good designs for the
UAV’s trajectory, is developed based on the optimal RSS map.

A. System Model and RSS Model Construction

We consider the system model illustrated in Fig. 1. We
assume that there are some IRSs deployed on top of the
building surrounding a terrestrial BS (Fig. 1(a)), these IRS
aims to support the communication between a UAV and a BS
by reflecting the signals sent by BS to the UAV. It is important
to note that the type of IRS we employ in this study is the
adaptive IRS whose phase profile does not change over time,
compared to the dynamic IRS which adjusts the phase profile
based on the carrier frequency (usually from a few GHz to a
few tens of GHz) when the reflected signal is out of the plane
that contains the BS and the normal vector of the IRS. There
are only two situations that make the adaptive IRS change the
phase profile:

• When the target UAV is moving, the IRS automatically
steers the wave beam to the UAV.

• When BS is moved to another position, the IRS automat-
ically adjusts the reflection direction to make sure that
the reflected signal is in the same direction as the plane
that contains the BS and the normal vector of the IRS

To construct the RSS model, we need to study the behavior
of the reflected electromagnetic (EM) wave and the EM
propagation. Due to the long distance between the BS and
IRS (as shown in Figs. 1(a) and 1(b)), when the BS broadcasts
signals, the incident wave at the IRS can be considered as a
plane wave which is formulated as [11], [20]:

Einc(θinc) = exEince
−jβinc(θinc)·r, (1)

Hinc(θinc) = einc(θinc)
Einc

η
e−jβinc(θinc)·r, (2)

where θinc is the angle of incident EM field, Einc is the mag-
nitude of the incident E-field, βinc(θinc) = β(sin(θinc)ey −
cos(θinc)ez) is the phase constant vector which also indicates
the propagation direction of the wave plane, β = 2π/λ0 is the
phase constant, λ0 is the wavelength, r is the position vector
in rectangular coordinates, einc(θinc) = − cos (θinc) ey −
sin (θinc) ez is the direction of the H-field, and η is the
characteristic impedance of the medium.
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Fig. 1. (a) The system model consisting one BS and multi IRSs (b) The reflection on the RT (c) RSS model of a single IRS and (d) the side view of the
reflection.

When the IRS is configured to reflect the EM field at a
desired angle θref, its phase profile Φ(x, y) must obey the
following rule [11, eq. (13)]:

Φ(x, y) = β (sin(θinc)y − sin(θref)y) . (3)

Proposition 1. Assume that the IRS with a size
of a × b is purposely configured for a reflection
REF [(θinc, ϕinc = 90◦) → (θref, ϕref = 90◦)]1 (we use
REF(θ1, θ2, φ) to denote the reflection on the IRS of a
wave field hitting the IRS at an angle θ1 and departing at
angle θ2 with the phase shift φ), and the incident EM field
at the IRS is (Einc(θinc, ϕinc = 90◦),Einc(θinc, ϕinc = 90◦))
(same as the configuration illustrated in Figs. 1b-1c). The
squared magnitude of the scattered field at an observing
position (d, θs, ϕs) (we consider the reflecting EM field as a
EM scattering process) is calculated as

S
(
θs, ϕs;E

2
inc, d

)
=

E2
inc

d2

(
ab

λ0

)2

cos (θinc) cos (θref)

×
(
cos2(θs) cos

2(ϕs) + sin2(ϕs)
)

× sinc2
(
1
2aβ sin(θs) cos(ϕs)

)
× sinc2

(
1
2bβ (sin (θs)− sin (θref))

)
, (4)

1Note that if ϕinc ̸= ϕref, the IRS must reconfigure its phase profile at
the frequency of the incident EM wave to guarantee the desired reflection.
This causes the high cost and power consumption. Hence, without loss of
generality, we set ϕinc = ϕref = 90◦. At this scenario, the IRS does not need
to reconfigure its phase profile.

where d, θs and ϕs are respectively the distance, sinc(x) =
sin(x)/x, zenith angle and azimuth angle from the center of
the IRS to the observer’s position as illustrated in Fig. 1(c).

Proof. see Appendix A.

Proposition 2. Using the squared magnitude given in Propo-
sition 1, the path loss model for the signal, that is sent by a
transmit (Tx) antenna and reaches a receive (Rx) antenna via
a IRS, is measured by:

αRT =

√
1
2η

(
λ2GRx(θRx→IRS)

4π

)
S (θIRS→Rx;E2

inc, dIRS→Rx),

(5)

where E2
inc = 2ηP0GTx(θRx→IRS)/4πd

2
Tx→IRS is the squared

magnitude of the incident E-field, P0 is the transmit power,
GTx(·) and GRx(·) are respectively the directivity models
of the Tx and Rx antennas, θTx→IRS and θRx→IRS are
respectively the Tx and Rx angles of the links from the Tx
and Rx antennas to the IRS, and dTx→IRS and dRx→IRS are
respectively the distances of the Tx → IRS and Rx → IRS
links.

B. Preliminary results of the DBIUP map

Using the theoretical results in Section II-A, we can extend
our study to the case of scattering field from the BS and IRS
network. The goal of this sections to construct a RSS map
and the DBIUP map. In this study, we consider a BS and IRS
network in a 16 km square area as four km of X range and
Y range. There are 19 terrestrial BSs situated in hexagonal
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TABLE I
SYSTEM PARAMETERS FOR SIMULATION.

{f0, λ0} 2.4 GHz, 0.125 m
P0 {10, 20, 30, 40, and 50} W
N0 −60 dBm
Number of BS 19
Number of IRS (number of IRSs 76(4), 95(5), 114(6)
per BS)
IRS sizes: a× b {5λ0 × 5λ0, 10λ0 × 10λ0

20λ0 × 20λ0, 25λ0 × 25λ0}
IRS size 2×Nc RTs (assume that IRS is

assembled by many reflecting tiles
(RTs) each has a size a× b)

BS height 60–70 m
IRS height 30–40 m
Radius of the map 2500 m
Radius of each cell 500 m
Distance between BS and IRS ∼ 100 m

distribution. In this study, we conduct various IRS schemes
with the number of IRS surrounding each BS is from four
to six separated by an angle of 60 degrees and the distance
from each IRS to its BS is around 100 m. The Tx power of
BSs varies from 10 to 50 W. Unless otherwise specified, the
coordinate distribution (in meters) of BSs and IRSs in our
scheme is illustrated in Figs. 2(a) and 2(b), and the system
parameters are listed as in Table I.

The Figs. 2(c) and 2(d) demonstrate the DBIUP map of the
area under consideration derived by applying the mathematical
approach in Section II-A. In this DBIUP map, there are six
IRSs per each BS as well as the source transmit power P0 is
30 W. It can be clearly seen that, the further the observation
point situated from the IRS, the lower achievable RSS at that
point. Furthermore, the strongest received signals are located
on the link where the angle of ϕs in (4) is equal 90◦. Since
the reflection coefficients of the static IRS do not change
during the communication, the static IRS can only perform
the reflection REF ((θinc, ϕinc = 90◦) → (θinc, ϕinc = 90◦)).

III. HEURISTIC ALGORITHM-BASED BIUP NETWORK
OPTIMIZATION.

In Section II-B, we have successfully constructed the
DBIUP map, however, the information from this map is not
enough to design the trajectory for the UAV, such as, how
the UAV moves from one DBIUP to another DBIUP to gain
a shorter traveling distance, lower disconnected time, and
higher CADR. To solve this problem, we firstly find the transit
point (TP) on the DBIUP of one BS and another TP on the
DBIUP of one of its neighbors (NB). These TPs are employed
to establish the communication link for UAVs between two
BSs. Two HA algorithms, namely GA and PSO, are utilized
and described in the later subsections. The goal of these two
HAs is to find the optimum TPs between two nearby DBIUPs.
This procedure is repeated for all of the remaining NBs of the
considered BS so that all communication links of that BS with
its NBs can be determined. The same process is applied to all
of the remaining BSs to construct the optimal BIUP network
over the map. Based on these results, the UAV can determine
the optimum trajectory to move from a departure position to
a landing position.

TABLE II
HA-BASED BIUP NETWORK OPTIMIZATION ALGORITHM.

Input: The list identification number (IDs) of K BSs (IBS), the number
of NB per each BS (L), list IDs of L NBs of each BS (INB), the DBIUP
information of all BSs including: the data rate at all points on the DBIUP
(R) and their coordination (x, y), GA flag (ga flag = 0 or 1).
Output: Data rate at the TP on DBIUP of BS (RTP BS), data rate at the
TP on the DBIUP of NB (RTP NB), the distance between those two TPs
(dTP).

1 K = length of IBS;
2 for k = 1 to K do % Loop over all BSs
3 for l = 1 to L do % Loop over all NBs of the kth BS
4 RBS = R(IBS(k)); % Get the data rate at all M points

% on the DBIUP of the kth BS
% to the lth NB.

5 RNB = R(INB(l)); % Get the data rate at all N points
% on the DBIUP of the lth NB to
% the kth BS.

6 (xBS, yBS) = (x(IBS(k)), y(IBS(k)));
% Get the coordination of
% all M points on the DBIUP
% of the kth BS.

7 (xNB, yNB) = (x(INB(l)), y(INB(l)));
% Get the coordination of
% all N points on the DBIUP
% of the lth NB.

8 if ga flag == 1 then
9 (RTP BS(k)(l), RTP NB(k)(l), dTP(k)(l))

= GA based(RBS, RNB, (xBS, yBS), (xNB, yNB));
% Use genetic algorithm (GA) to
% solve problem.

10 else
11 (RTP BS(k)(l), RTP NB(k)(l), dTP(k)(l))

= PSO based(RBS, RNB, (xBS, yBS), (xNB, yNB));
% Use particle swarm optimization
% (PSO) to solve problem.

12 end if
13 end for
14 end for
15 return (RTP BS, RTP NB, dTP)

More specifically, let’s denote M as the total number of all
possible TPs on the DBIUP of one BS, and N is the total
possible TPs on the DBIUP of one of its NB. The distance
between two adjacent TPs on every DBIUP is 2 m. (Note that
the values of M and N can be different for each pair of a
BS and its NB). The proposed algorithm is expressed as in
Table II.

A. GA-based BIUP Optimization

In our GA, each chromosome consists three parameters,
the first one is the data rate at a mth TP on the DBIUP
of the BS denoted as RBS

m , the second one is the data rate
at a nth TP on DBIUP of its NB as RNB

m . These data rates
can be deduced from the RSS information at those TPs.
And the last parameter of a chromosome is the distance
between BS and its NB through two of those TPs as shown
in Fig. 3. Therefore, the structure of the chromosomes is
defined as Chr = [RBS

m , RNB
n , dmn]. The fitness function

needs to ensure that the BIUP provide good CADR for the
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Fig. 2. The BS and IRS distributions: (a) 3D view, and (b) 2D view. And the constructed DBIUP map: (c) 3D view and (d) 2D view.

UAV while the distance between two BS must be minimized
with acceptable disconnection duration (if it happens). The
chromosomes which yield higher fitness values are the better
BIUPs. With these criteria, the fitness function is designed as
follows.

f(Chr)

=


RBS
m +RNB

n

+

 ∥(xBS, yBS)− (xBS
m , yBS

m )∥2
+∥(xBS

m , yBS
m )− (xNB

n , yNB
n )∥2

+∥(xNB, yNB)− (xNB
n , yNB

n )∥2

−1

 , (6)

subject to:

∥(xBS
m , yBS

m )− (xNB
n , yNB

n )∥2 ≤ 200 m,

where RBS
m = 1/m

∑m
i=1 log2

(
1 +RSSBS

i /N0

)
, RSSBS

i is
the received signal strength at the ith TP on the DBIUP of
the BS rNB

n = 1/n
∑n
j=1 log2

(
1 +RSSNB

j /N0

)
, RSSNB

j is
the received signal strength at the jth TP on DBIUP of the
NB, N0 is the noise power, (xBS, yBS) and (xNB, yNB) are
the 2-D coordination of the BS and its NB, respectively,
(xBS
m , yBS

m ) and (xNB
n , yNB

n ) are the 2-D coordination of the
mth TP and nth TP on the DBIUPs of BS and its NB,
respectively, and is dmn = ∥(xBS, yBS) − (xBS

m , yBS
m )∥2 +

∥(xBS
m , yBS

m )− (xNB
n , yNB

n )∥2 + ∥(xNB, yNB)− (xNB
n , yNB

n )∥2 the
distance between BS and its NB going through two TPs where

BS

NB

x

y

TP1

TP2

O

IRS1 IRS2

Fig. 3. The BIUP of a BS and its NB.

the ∥.∥2 is the ℓ2-norm used to infer the distance of the vector
coordinate from the origin.

The procedure of GA-based BIUP is depicted as follow:
Step 1 (Algorithm setup): Define the necessary system

parameters for evaluating the fitness function in step 3: Set
max iter as the maximum number of iteration, the number
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of population NP , the crossover probability pc, the number of
pair of chromosomes K = pc×NP , the crossover probability
pm, reset the iteration counter iter count = 0.

Step 2 (Population initiation): Randomly generate a popu-
lation P[0] = {Chr

[0]
1 , Chr

[0]
2 , · · ·, Chr

[0]
2K} consisting of 2K

chromosomes within their range (as mentioned in (6)).
Step 3 (Evaluation and selection): Calculate the fitness

values of all chromosomes in P[iter count] then rank them
based on their fitness values. We apply the roulette wheel
selection (RWS) technique to accumulate good chromosomes.
Let P̂[iter count] denote the population after selection. The best
chromosome Chrbest is saved for the next generation.

Step 4 (Reproduction): Define the off-springs by randomly
select K chromosome pairs from P̂[iter count] then perform
the uniform crossover with the probability pc using the whole
arithmetic recombination technique [21], [22]. After that, the
mutation is taken place with the probability pm. Next, Chrbest
is kept as one of chromosome of the current population. This
step results in the next population Piter count+1.

Step 5 (Loop/Termination): Increase the iteration counter
(i.e., iter count+1). Repeat step 3, 4 until iter count reach
max iter and Chrbest is the optimal solution which contains
the data rates at two TPs on their DBIUPs and the distance
between 2 BSs passing though those TPs. The thoroughly
connection of the BS, two TPs and NB is the optimal BIUP.

B. PSO-based BIUP Optimization

The PSO has been proven to be the robust and fast scholastic
global optimization algorithm in solving non-linear, contin-
uous variables and multimodal problem [22], [23]. As its
indicated name. PSO consists of a swarm of particles, derived
from real life as a group of flying birds. In our PSO, the
position of each particle in search space represents for a
potential solution to the optimization problem. We look for
the good solution by moving the particles around the search
space, then let them amend their moving by together exchange
their information. For our optimization problem, the location
of a particle is defined as a vector p = [RBS

m , RNB
n , dmn] which

is similar to the Chr of the aforementioned GA optimization.
This PSO optimization uses the similar fitness function to (6)
which is given as:

f(p)

=


RBS
m +RNB

n

+

 ∥(xBS, yBS)− (xBS
m , yBS

m )∥2
+∥(xBS

m , yBS
m )− (xNB

n , yNB
n )∥2

+∥(xNB, yNB)− (xNB
n , yNB

n )∥2

−1

 , (7)

subject to:

∥(xBS
m , yBS

m )− (xNB
n , yNB

n )∥2 ≤ 200 m,

The procedure of PSO-based BIUP is described as follows:
Step 1 (Algorithm setup): Define the necessary system

parameters for evaluating the fitness function in step 3: Set
max iter as the maximum number of iteration, the number of
particles NP , the inertia weight ω, the cognitive scaling factor
clocal, social scaling factor cglobal and the position boundary
bmin, bmax; reset the iteration counter iter count = 0.

Step 2 (Population initiation): Ran-
domly generate a population P[iter count] =

{p[1][iter count], p
[2]
[iter count], · · ·, p

[NP ]
[iter count]} within their

range (as mentioned in (7)). Then, initiate the local best
position of each particle, P[ℓ]

local and the global best position of
the population, Pglobal by inferring from the fitness function.

Step 3 (Evaluation and information exchange): Evaluate the
fitness values for all particles p[ℓ][iter count], ℓ = 1, · · ·, NP then

only update the P[ℓ]
local and Pglobal when there are existing

better positions.
Step 4 (Velocity and position update): Update the velocity

of each particle using:

V
[ℓ]
[iter count+1] =ωV

[ℓ]
[iter count]

+ clocalr1(P
[ℓ]
local − p

[ℓ]
[iter count])

+ cglobalr2(Pglobal − p
[ℓ]
[iter count]), (8)

where r1 and r2 are random number between 0 and 1;
V

[ℓ]
[iter count] is the current velocity of p

[ℓ])
[iter count]. The new

position of each particle is amended as:

p
[ℓ]
[iter count+1] = p

[ℓ]
[iter count]) + V

[ℓ]
[iter count+1] (9)

The nearest vertex approach (NVA) [23] is applied to
approximate the valid position defined as p̂

[ℓ]
[iter count+1] since

the index of p[ℓ][iter count+1] may not integers after applying (9).
The position of a particle is then validated whether it is out of
the boundary or not. We adopt the reflecting bound-handling
scheme [24] to deal with the out-of-bound particles. The new
population is:

P̂[iter count] = {p̂[1][iter count], p̂
[2]
[iter count], · · ·, p̂

[NP ]
[iter count]}

(10)

Step 5 (Loop/Termination): Increase the iteration counter
(i.e., iter count + 1). Repeat step 3, 4 until the iter count
reach the max iter and the final Pglobal is the optimal solution
consisting the information of the data rate at two TPs on their
DBIUPs and the distance between 2 BSs passing though those
TPs. The thoroughly connection of the BS, two TPs and the
NB is the optimal BIUP.

IV. SIMULATION RESULTS AND DISCUSSION

In Section II-B, we have demonstrated the results of the
DBIUP map as the preliminary inferred theoretical results
of our IRS scheme. In this section, the efficiency of the
optimization algorithms on our problem in improving the
CADR and the DD of the DBIUP map is presented.

In Fig. 4, the CADR versus various three key factors,
namely the number of IRS panels, the BS Tx power and the
IRS sizes are illustrated. The total of data rate over the entire
area is depicted in Fig. 4(a). With 30 W of the Tx power, the
sum of data rate is proportional to the RT sizes and the number
of IRSs deployed over the region. Specifically, the sum of data
rate with 6 IRSs/BS is twice to three times higher than that
of the deployment of 4 IRSs/BS. The reason is that the more
IRSs panels surrounding the BS, the more possible DBIUPs
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(a) (b)

Fig. 4. (a) The total CADR over the map and (b) the average CADR of a BIUP.

the map contains which lead to the significant increment in
the total data rate. On the other hand, this figure also reveals
the effective contribution of the RT sizes in the rise of the
data rate over the map. Specifically, there is a notably jump
from approximated 100 bps/Hz at RT size of 5λ0 to more than
310 bps/Hz with RT size of 25λ0 for the case of 6 IRSs/BS.
Furthermore, we take into consideration the effectiveness of
the Tx power of BS and show it in Fig. 4(b) with 6 IRSs per
each BS. Generally, there is a gradually surge of the average
CADR over all BIUPs for each IRS size when the Tx power
raises which meets our expectation. The average CADR of a
BIUP with IRS size of 2×2×5λ0 grows by 0.1 bps/Hz from
around 0.6 bps/Hz to a little higher than 1.1 bps/Hz when
then Tx power increases by 10 W from 10 to 50 W while the
increase step of the average CADR of IRS size 2×20×25λ0

is notably higher at around 0.4 bps/Hz.
The DD of the UAV when travelling among BSs over the

map is demonstrated in Fig. 5. Generally speaking, the number
of deployed IRSs take more efficiency than the RT size and
the Tx power into the total DD of the IRS network scheme.
More specifically, the Fig. 5(a) illustrates the sum of DD over
the various RT sizes and number of IRSs when the Tx power
is 30 W. The noteworthy reduction of DD can be witnessed as
the increase of number of IRSs with the decrease from more
than 25 km of DD of 4 IRSs/BS to lower 10 km of 6 IRSs/BS
while the difference of DDs over all RT sizes with the same
number of equipped IRS are not too significant. In addition, in
the Fig. 5(b), when the Tx power is equal or higher than 30 W
and the quantity of IRSs/BS is six, the sum of DD becomes
stable even the differences in the IRS sizes. Furthermore, there
is an interesting thing to note is that the bigger the IRS size
is, the less influence of the Tx power contributes. The notable
drop can be revealed when the Tx power increase from 10 to
20 W, the DD is considerably fallen from around 15 km to
just over 10.5 km with the RT size of 2× 2× 5λ0.

Next, we consider the efficiency of two HA-based BIUP

algorithms which are employed for our optimization prob-
lem. The optimal system parameters of both algorithms are
illustrated in the Table III after several trials to get the best
solutions by evaluating the fitness values of the objective
function (7). In Fig. 6(a), we achieve the sum of data rate
over different number of installed IRSs by adopting GA and
PSO algorithms which are closed to that of the exhaustive
search. It can prove that those two HAs are suitable for our
optimization problem. In general, the GA outperforms the PSO
algorithm in the effectiveness and the convergence for dealing
with our optimization problem. The reason is that the PSO
has to approximate the indexes of the particle to get the valid
positions by using the NVA method. Because of this reason,
the aforementioned figures of CADR and DD are prepared
using best results obtained from GA. More specifically, the
Fig. 6(b) shows the comparison between GA and PSO in the
average CADR when deploying 6 IRSs/BS, 10 to 50 W of Tx
power and the RT sizes from 5λ0 to 25λ0. For each pair of
number of IRSs and Tx power, the GA always show its better
performance as the higher CADR. The same phenomenon can
be also witnessed when considering the impact of RT size
and number of IRSs to the CADR as show in Fig. 6(c). In
addition, the IRS networks with different number of IRSs/BS
and IRS sizes are also constructed for attaining the number
of total disconnections over the map. The Fig. 6(d) illustrates
that the total gap during UAV flying path when solving the
optimization problem using GA is less than that of the results
obtained from PSO algorithm at all cases of RT sizes and the
quantity of IRS.

Additionally, we verify the convergence of two HA-based
BIUP algorithms over 100 iterations which is shown in Fig. 7
with 10λ0 and 25λ0 of the RT sizes, 10 and 50 W of the
Tx power. At the first iteration, both algorithms received very
high fitness values but the GA quickly converged as it reaches
to the optimum values after 15–20 iterations while the PSO
takes around 80–90 iterations to obtain the optimal solution.
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(a) (b)

Fig. 5. The total disconnected distance over the map with (a) various IRSs/BS and (b) various IRS sizes.

TABLE III
THE SYSTEM PARAMETERS OF GA AND PSO ALGORITHMS.

GA PSO
NP 150 NP 150
pc 0.99 ω 0.7298
pm 0.5 clocal 1.4962
max iter 100 cglobal 1.4962
iter count 0 max iter 100

iter count 0

Moreover, the converged fitness values of the GA also present
superior solution than PSO at the end of 100 iterations.

V. CONCLUSIONS

In this paper, we investigated and optimized the achievable
data rate and disconnected distance of an IRS-assisted uplink
communication scheme to support the UAV in urban area
without any change to the exiting terrestrial infrastructure.
The RSS model of the IRS network containing the far-field
path loss was constructed by adopting the physical optics
techniques. We constructed the DBIUP map utilizing the RSS
model and the optimal configuration of the IRS network. Two
HAs, namely the GA and PSO were employed to optimized
the CADR, the UAV operational direction and possible BIUPs.
The numerical results showed that the DBIUP map gave its
essential contribution to our optimization problem while the
GA performed the superior ability in effectiveness and conver-
gence. Additionally, the efficiencies of three key factors, i.e.,
Tx power, the IRS size and the quantity of deployed IRSs were
taken into consideration. The trends of optimal CADR and DD
are revealed. In detail, the sum of CADR over the region is
significantly enhanced when adding more IRSs surrounding
each BS. On the other hand, the IRS size also plays an
important role in enhancing the CADR; moreover, the larger
size the IRS yields the greater CADR. On contrary, the DD

followed an opposite trend of the CADR. More specifically,
the DD was inversely proportional to the increment of the Tx
power, the number of IRS and IRS size. The Tx power took
less influence to the DD when the IRS size is large while the
number of IRS and the IRS size are the main components
affecting to the DD of the map.

APPENDIX A
PROOF OF THE CALCULATIONS IN PROPOSITION 1

Note that the Or,θ,ϕ spherical coordinate system sharing
the same origin with the Ox,y,z coordinate system in our
investigation. Let analyze the electric current density on the
surface of the IRS (z = 0). By neglecting surface edge effects
and applying the physic optic technique on the negligible-
thickness flat IRS [20, Ch. 7.10], the electric current density
can be expressed as:

Js ≈ 2ez × Hinc = −2ex
Eref cos(θref)

η
e−jβ sin θrefy+jϕ0 (A1)

Using Descartes-to-spherical coordination transformation and
following the similar steps as in [20, Example 6-4], vector
potential can is calculated as:

A =
µe−jkd

4πd

×
∫∫
S

(
Js sin θ cosϕ · i⃗r + Js cos θ cosϕ · i⃗θ − Js sinϕ · i⃗ϕ

)
× ejkr cosψdx′dy′

=
µe−jkd

4πd
(Nr + Nθ + Nϕ), (A2)
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Fig. 6. The effectiveness of the GA and PSO algorithms on: (a) Sum of CADR over number of IRS, (b) average CADR over Tx power and IRS sizes, (c)
Sum of CADR and (d) Total DD over RT sizes and number of IRS.

where

Nθ =− 2
Eref

η
cos θs cosϕs cos(θref)

×
∫ a

2

− a
2

ejkx
′ sin θs cosϕs dx′

×
∫ b

2

− b
2

ejky
′ sin θref−sinϕs sinϕs dy′, (A3)

Nϕ =− 2
Eref

η
sinϕ cos(θ̂r)e

jϕ

×
∫ a

2

− a
2

ejkx
′ sin θ cosϕ dx′

×
∫ b

2

− b
2

ejky
′(sin θ sinϕ−sin(θ̂r)) dy′, (A4)

Nr = 0 (A5)

Using the fact that
∫ c

2

− c
2
ejaz dz = c[

sin(a c
2 )

a c
2

] [20, Example 6-
4], (A3) and (A4) can be written as

Nθ =− 2
abEref cos(θref)

η
cos θs cosϕs

×
sin( 12ak sin θs cosϕs)

1
2ak sin θs cosϕs

×
sin( 12bk(sin(θref)− sin θs sinϕs))

1
2bk(sin(θref)− sin θs sinϕs)

(A6)

Nϕ =− 2
abEr sinϕ cos(θ̂r)e

jϕ

η

×
sin( 12ak sin θ cosϕ)

1
2ak sin θ cosϕ

×
sin( 12bk(sin θ sinϕ− sin(θ̂r)))

1
2bk(sin θ sinϕ− sin(θ̂r))

(A7)

Using approximation E{θ,ϕ} ≃ −jωA{θ,ϕ} [20, eq. (6-117)],
S(θs, ϕs) = |Eθs |2 + |Eϕs

|2, and 4πdη(ωµ)−1 = 2λd , the
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Fig. 7. The convergence of HA-based BIUP algorithms.

squared magnitude of the scattered field is calculated as

S(θs, ϕs) =
( ωµ

4πd

)2 (
|Nθs |2 + |Nϕs

|2
)

(A8)

Substituting (A6) and (A7) into (A8), Proposition 1 can be
proven.
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