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Abstract

Emerged as a promising solution for future wireless communication systems, intelligent reflecting surface

(IRS) is capable of reconfiguring the wireless propagation environment by adjusting the phase-shift of a

large number of reflecting elements. To quantify the gain achieved by IRSs in the radio frequency (RF)

powered Internet of Things (IoT) networks, in this work, we consider an IRS-assisted cellular-based RF-

powered IoT network, where the cellular base stations (BSs) broadcast energy signal to IoT devices for

energy harvesting (EH) in the charging stage, which is utilized to support the uplink (UL) transmissions

in the subsequent UL stage. With tools from stochastic geometry, we first derive the distributions of the

average signal power and interference power which are then used to obtain the energy coverage probability,

UL coverage probability, overall coverage probability, spatial throughput and power efficiency, respectively.

With the proposed analytical framework, we finally evaluate the effect on network performance of key system

parameters, such as IRS density, IRS reflecting element number, charging stage ratio, etc. Compared with

the conventional RF-powered IoT network, IRS passive beamforming brings the same level of enhancement

in both energy coverage and UL coverage, leading to the unchanged optimal charging stage ratio when

maximizing spatial throughput.
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throughput, power efficiency, stochastic geometry.
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I. INTRODUCTION

With the booming Internet of Things (IoT), the number of IoT devices is expected to reach tens

of billions. To meet the vision of sustainable development of the IoTs, an efficient utilization of

energy has been served as the principal issue. Recent advances in wireless energy harvesting (EH)

technology, particularly radio frequency (RF) EH [1], have broken new ground to support IoT devices

to collect energy from natural energy sources or ambient RF sources. It gave birth to the wireless

powered communication networks (WPCNs) [2] in which wireless nodes harvest energy from the

base station (BS) RF signals and then transmit information by using the harvested energy. However,

one of the major technical challenges in WPCN is the low efficiency of power transmission over

long distances, resulting in the limited amount of energy harvested and poor network performance.

In recent years, the application of intelligent reflect surface (IRS) technology has attracted extensive

attention in wireless communications from both academia and industry. Served as a promising

candidate technology for future wireless communications, IRS can smartly reconfigure the wireless

channels by electronically configuring the absorption, reflection, refraction and phases via tuning

the IRS reflecting elements or meta-atoms [3][4]. Compared with the traditional active relaying or

beamforming scheme, the passive reflection of IRSs consumes very limited energy by adopting the

low-cost elements [5]. Moreover, by properly adjusting the phase-shift of the IRS reflecting elements,

the coverage probability, network throughput and energy efficiency can be greatly improved.

Using IRSs to boost the availability of WPCNs, IRS-assisted WPCN can be served as a potential

network paradigm for future wireless communications. Understanding the gain achieved by IRSs in

RF-powered IoT network is of great significance to speed up the application of IRSs and also help in

the ingenious design of IRS-assisted WPCNs. The application of IRSs in WPCNs has been discussed

in the very recent works [6–13]. The authors in [6–13] considered the IRS-assisted WPCN scenarios

under the NOMA scheme. Specifically, the authors in [6] proved that utilizing different IRS phase-

shifts for downlink (DL) EH and uplink (UL) packet transmission is not needed for the optimization

of network throughput when NOMA is adopted. In [7], the sum-throughput was maximized by jointly

optimizing the transmit power, transmit time and IRS beamforming. In [8], efficient schemes were

proposed to maximize the UL sum rate by optimizing the resource allocation, reflection coefficients

and beamformers. A self-sustainable IRS-empowered multi-user WPCN was considered in [9], where
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the IRS acts as a relay to enhance the network performance in both DL EH and UL information

transmissions. In [10], the authors proposed to minimize the energy consumption of the hybrid access

point (HAP) by jointly optimizing the transmit power, power-switching factor, time allocation, and

IRS phase-shifting. The authors in [11] studied an IRS-assisted multi-user multiple-input single-

output (MISO) WPCN, in which the energy transmission time, the user transmit power, and the

active and passive beamforming in DL energy collection and UL information transmissions were

jointly optimized. In [12], the authors presented an IRS-assisted wireless powered caching network,

in which the HAP maintains a local cache to store the popular contents for IoT devices. Given

the imperfect CSI, the authors in [13] formulated a HAP transmit energy minimization problem by

jointly optimizing HAP energy beamforming, receiving beamforming, etc. However, all the schemes

designed in [6–13] were limited to the small-scale network scenario with only one BS and a single

IRS, in which the distances between the BS, the IRS and user equipments (UEs) are fixed and

pre-determined. What’s more, the location of IRS is assumed to be fixed, and the influence of

interference is not considered. It’s unknown whether these schemes are applicable to the practical

multi-cell WPCNs.

In such a network, the spatial randomness of node locations, the time-varying channel fading, and

the resulted complicated signal and interference distributions (caused by the reflection of IRSs) made

it extremely difficult to evaluate the gain achieved by IRSs. To address the aforementioned challenges,

stochastic geometry has been explored over the past few years as a powerful tool in obtaining the

average spatial system-level analysis of randomly deployed wireless networks, including cellular

networks, and heterogeneous networks [14–17]. With this tool, the spatial randomness of node

locations are modeled by some classical point processes, such as Poisson point process (PPP), and

Poisson cluster process (PCP). Very recently, stochastic geometry has been introduced to analyze the

performance of IRS-assisted cellular networks [18]. Specifically, in [18–22], the authors characterized

the DL coverage probability and spatial throughput of the IRS-assisted cellular network, which

exhibited the gain achieved by IRSs on network throughput. In [19], the authors demonstrated the

superiority of equipping IRSs to the blockages. In [20], the authors evaluated the performance

of a millimeter wave (mmWave) network in which the average achievable rate was obtained by

deriving the Laplace Transform of of the aggregated interference from all BSs and IRSs. In [21], an
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analytical framework was proposed to analyze the performance of a DL IRS-assisted cellular network

in which the coverage probability, ergodic capacity, and energy efficiency were derived. In [22], the

authors considered an IRS-aided multiple-input multiple-output (MIMO) network in which the outage

probabilities, ergodic rates, spectral efficiency and energy efficiency were obtained. Very recently,

IRSs have also been integrated with secure communication systems to defend against eavesdropping

attacks and enhance the security performance [23–25].

To the best of our knowledge, there is no related works characterizing the performance of the

large-scale IRS-assisted RF-powered IoT networks with tools from stochastic geometry. In such a

network, the gain achieved by distributed IRSs in EH and information transfer is required to be

quantified by considering the complicated network interference environment.

In this work, we consider an IRS-assisted cellular-based RF-powered IoT network, where IRSs

help IoT devices harvest ambient RF energy from DL cellular transmissions in the charging stage,

and assist UL transmissions in the subsequent UL stage. The main contributions of our work are

summarized as follows:

• We propose an analytical framework for IRS-assisted cellular-based RF-powered IoT network,

in which the locations of BSs, IoT devices, and IRSs are modeled by three independent PPPs.

The IoT devices are battery-less and solely powered by the cellular networks. Each time slot

is assumed to be divided into two stages: i) charging stage, in which each IoT device harvests

energy from the RF signals transmitted by BSs and reflected by the passive IRSs, and ii) UL

stage, in which IoT devices with sufficient energy can transmit information to their associated

BSs with the help of IRSs by taking into account the fractional power control strategy. For an

IoT device, the passive beamforming scheme is adopted at its associated IRS in the whole time

slot to accelerate the energy harvested by the IoT device and enhance the received signal power

at its associated BS.

• With the Gamma approximation method, we first characterize the signal power distributions in

both charging and UL stages, and the interference distribution in the UL stages, based on which

we further derive the tractable expressions of the energy coverage probability in the charging

stage, the UL coverage probability in the UL stage, the overall coverage probability, the spatial

throughput and the power efficency, respectively. We then evaluate the influence of some key
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system parameters, such as BS density, IRS density and IRS reflecting element number on the

derived performance metrics.

• Compared with the conventional RF-powered IoT network, IRS passive beamforming signifi-

cantly enhances the harvested signal power in the charging stage and the desired signal power

in the UL stage, both of which are shown to scale with the number of IRS reflecting element

N in the same order of O(N2), while only slightly increasing the interference power. With the

objective to maximize the network spatial throughput, the proposed framework allows to find

the optimal charging stage ratio of the IRS-assisted RF-powered IoT network, which is shown

to be the same as that without IRSs due to the same level of enhancement contributed by IRS

passive beamforming on energy coverage and UL coverage.

II. SYSTEM MODEL

A. Network Model

In this paper, we consider an IRS-assisted cellular-based IoT network where the IoT devices are

battery-less and solely powered by the ambient RF energy only from cellular transmissions [26][27].

We focus on the UL transmission, where the energy required by an IoT device to transmit in a given

time slot should be harvested in the same time slot. Specifically, all IoT devices are assumed to

adopt the time-switching receiver architecture, with which an IoT device first harvests energy for a

fraction of time and then transmits packets for the rest of time. As is shown in Fig. 1(a), each time

slot is divided into the charging stage and UL stage with durations Tch = τT and Ttr = (1 − τ)T ,

in which T is the duration of each time slot, and τ is defined as the charging stage ratio. The

antenna switching time between the two stages is neglected to facilitate the analysis. The IoT device

is assumed to have a supercapacitor with large charging and discharging rates to store and use the

harvested energy during the same time slot. The remaining energy by the end of the time slot is

assumed to be unavailable for the future transmissions taking into account the large leakage current

of the supercapacitor [28]. We assume that both BSs and IoT devices are equipped with the single

antenna. The BSs are assumed to have the same height HB with horizontal locations following a

2-dimensional (2D) PPP ΛB of density λB. Distributed IRSs are deployed to assist in both EH and

UL transmissions, which are of the same height HI with the horizontal locations being modeled by

a 2D PPP ΛI of density λI. IoT devices are scattered according to a PPP Λu of density λu. We adopt
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(c) IRS-assisted UL transmissions during the UL stage.

Fig. 1: An illustration of the IRS-assisted cellular-based RF-powered IoT network.

the orthogonal multiple access technology, such that only one IoT device within a cell can be active

at any given time slot and sub-channel.

We assume open access and consider the nearest association policy, with which a given IoT

device associates with the nearest BS, as well as the nearest IRS. According to Slivnyak’s theorem

[29], it is sufficient to focus on a typical IoT device, referred to as UE 0 which is located at the

origin and assumed to associate with BS 0 and IRS 0 (Fig. 1(b) and 1(c)). We define xm, dj and

rm,j as the 2D distance from the BS m to UE 0, the 2D distance from the IRS j to UE 0, and

the 2D distance from the BS m to IRS j, respectively. Considering the limited reflective capability

of an IRS, we define a practical local region of radius D with the typical UE 0 being the center,

so that each IRS can only provide services for a limited number of UEs nearby. We denote IRSs

within the local region by the set  , {j ∈ ΛI|dj ≤ D}. Due to the densely deployed IRSs, we

assume that there exists at least one IRS within set , and ignore the case  = ∅. We consider the

worst case where all IRSs are in working state no matter whether there are IoT devices to associate

with, such that all IRSs can reflect the signal/interference from co-channel BSs to the typical UE 0.

Considering the severe attenuation of wireless signals, the interference reflected by far away IRSs
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can be neglected. Thus, to simplify the analysis, we assume that only IRSs within set  contribute

interference to the typical UE 0.

B. IRS-Assisted EH and UL Transmission

As is shown in Fig.1(b), in the charging stage, all the BSs are served as RF chargers to broadcast

energy signals. In Fig.1(c), during the UL stage, the IoT device with sufficient harvested energy

transmits packets to its served BS. In both stages, all the IRSs within set  provide signal enhancement

via random scattering or passive beamforming. Specially, to assist the EH and UL transmissions of

UE 0, dedicated passive beamforming is adopted at its associated IRS 0, while other IRSs within

D only scatter the incident signal of BS 0.

To support the UL transmission, the energy collected in the charging stage should reach a certain

energy threshold Emin, which is defined as the minimum energy required for the subsequent UL

transmission. We adopt the fractional power control strategy for IoT devices where the transmit

power of the typical IoT device is ρ(x2
0 +H2

B)
ǫα/2 with x0 denoting the 2D distance between UE 0

and its serving BS, ρ is the BS receiver sensitivity, and the symbol ǫ ∈ (0, 1] is defined as the power

control parameter. According to the fractional power control strategy, Emin is given by

Emin = (1− τ)Tρ(x2
0 +H2

B)
ǫα
2 . (1)

Define Eh as the energy harvested by UE 0 during a charging stage, and UE 0 is allowed to transmit

during the subsequent UL stage, as long as Eh ≥ Emin is satisfied.

C. Channel Model

For the sake of simplicity, we assume single antenna for both BSs and UEs, and define N as the

number of reflecting elements per IRS. We consider both the large-scale path loss and small-scale

fading to characterize the channel model. For large-scale fading, the path loss exponent of BSs and

IRSs is denoted by α with α > 2. We consider Rayleigh fading1 with unit power for the small-scale

fading, which leads to an exponential channel power gain. Define σ2 as the additive white Gaussian

noise (AWGN). In the following, we discuss the channel model in charging stage and UL stage,

respectively.

1Rician fading or other channel fading models can also be suitable for the proposed analytical framework, in this paper we assume

the worst-case propagation conditions for IRS, so as to obtain the lower bound of the achievable performance by IRS-assisted WPCN.

November 1, 2022 DRAFT



8

1) Charging Stage: In the charging stage, it is necessary to measure how much energy has

been collected at the typical IoT device which depends upon the channel power gain. The baseline

equivalent channels between BS m and IRS j, between IRS j and UE 0, and between BS m and

UE 0 are represented by a
(j)
i,m ,

[
a
(j)
i,m,1, · · · , a(j)i,m,N

]⊺
∈ CN×1,a

(j)
r ,

[
a
(j)
r,1 , · · · , a(j)r,N

]⊺
∈ CN×1, and

ad,m ∈ C, respectively, where the symbols [·]⊺ and C denote the matrix transpose and the collection of

complex numbers, respectively2. Define φ(j) ,
[
φ
(j)
1 , · · · , φ(j)

N

]
and Φ(j) , diag

{[
eiφ

(j)
1 , · · · , eiφ

(j)
N

]}

(i denotes the imaginary unit) as the phase-shift matrix of IRS j, where φ
(j)
n ∈ [0, 2π) is the phase-

shift of the element n of IRS j on the incident signal. To achieve the maximal beamforming gain

from IRS, we presume that the reflection coefficient of each reflecting element can achieve the

unit amplitude [30]. Therefore, the cascaded BS-IRS-UE channel which is divided into BS-IRS

transmission, IRS reflecting with beamforming, and IRS-UE transmission, is given by

a
(j)
ir,m ,

[
a
(j)
i,m

]⊺
Φ

(j)
a
(j)
r =

N∑

n=1

a
(j)
i,m,na

(j)
r,ne

iφ(j)
n ,m ∈ ΛB. (2)

The channel power gains between BS m-UE 0, between BS m ∈ ΛB and the element n of IRS j,

and between the element n of IRS j and UE 0 are, respectively, is given by

|ad,m|2 , gd,mωd,m, |a(j)i,m,n|2 , g
(j)
i,mω

(j)
i,m,n, |a(j)r,n|2 , g(j)r ω(j)

r,n (3)

In (3), gd,m = β (x2
m +H2

B)
−α/2

, g
(j)
i,m = β

(
r2m,j + (HB −HI)

2)−α/2
and g

(j)
r = β

(
d2j +H2

I

)−α/2

denote the corresponding average channel power gains, ωd,m, ω
(j)
i,m,n and ω

(j)
r,n are the small scale

fading, and β = (4πfc/c)
−2

is the average channel power gain at a reference distance of 1 m with

fc being the carrier frequency, and c = 3.0 × 108 (m/s) denoting the light speed. To reveal the

effectiveness of IRSs in assisting the performance of commercial 5G networks operating on sub-6

GHz, we consider fc = 2 GHz as the carrier frequency.

2) UL Stage: For the UL stage, the baseband equivalent channels between UE k and IRS j,

between IRS j and BS 0, and between UE k and BS 0 are denoted by b
(j)
i,k ,

[
b
(j)
i,k,1, · · · , b

(j)
i,k,n

]⊺
∈

CN×1, b(j)r ,
[
b
(j)
r,1 , · · · , b(j)r,N

]⊺
∈ CN×1, and bd,k ∈ C, respectively. Define ϕ(j) ,

[
ϕ
(j)
1 , · · · , ϕ(j)

N

]

and Ψ(j) , diag
{[

eiϕ
(j)
1 , · · · , eiϕ

(j)
N

]}
as the phase-shifting matrix of IRS j, of which ϕ

(j)
n ∈ [0, 2π)

represents the phase-shift of reflecting element n on the incoming signal. Therefore, the cascaded

2The subscripts “i”, “r” and “d” represent the BS-to-IRS channel, the IRS-to-UE channel and direct BS-to-UE channel, respectively.
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UE-IRS-BS channel can be decomposed into three components: UE-IRS transmission, IRS reflecting,

and IRS-BS transmission, expressed as

b
(j)
ir,k ,

[
b
(j)
i,k

]⊺
Ψ

(j)
b
(j)
r =

N∑

n=1

b
(j)
i,k,nb

(j)
r,ne

iϕ(j)
n , k ∈ Λu. (4)

The channel power gains between UE k and BS 0, between UE k and the element n of IRS j,

and between the element n of IRS j and BS 0 are, respectively, given by

|bd,k|2 , fd,kξd,k, |b(j)i,k,n|2 , f
(j)
i,k ξ

(j)
i,k,n, |b(j)r,n|2 , f (j)

r ξ(j)r,n, (5)

where fd,k = β(y2k +H2
B)

−α/2, f
(j)
i,k = β(d2k,j +H2

I )
−α/2 and f

(j)
r = β(r2j + (HB −HI)

2)−α/2 denote

the corresponding average channel power gains, ξd,k, ξ
(j)
i,k,n and ξ

(j)
r,n are the small scale fading. The

symbol yk denotes the horizontal distance from UE k to the tagged BS, and Dk is the horizontal

distance from the k-th device to its associated BS. According to the fractional power control strategy,

the transmit power of UE k is ρ (D2
k +H2

B)
ǫα/2

. To determine the transmit power of UE k, we obtain

the distribution of Dk conditioned on yk in [14], which is given by

fDk
(r|yk) =

2πλur exp(−λuπr
2)

1− exp(−πλuy
2
k)

, 0 ≤ r ≤ yk. (6)

D. Channel Power Statistics

To facilitate the performance analysis, we need to first derive the channel power statistics caused

by the involvement of IRSs in charging stage and UL stage, respectively.

1) Charging Stage: In the charging stage, IoT devices harvest energy from the RF signals of BSs

with the help of IRSs. With regards to the typical UE 0, considering the link BS m-IRS j-UE 0 in

(2), the reflected channel via element n can be derived by

a
(j)
ir,m,n , a

(j)
i,m,na

(j)
r,ne

iφj
n = |a(j)i,m,n||a(j)r,n|e

i
(

φ(j)
n +∠a

(j)
i,m,n

+∠a(j)
r,n

)

, (7)

where the channel amplitude |a(j)ir,m,n| , |a(j)i,m,n||a(j)r,n|, and the cascade channel phase ∠a(j)ir,m,n ,

φ
(j)
n +∠a(j)i,m,n+∠a(j)r,n. What’s more, the amplitudes |a(j)i,m,n| and |a(j)r,n| follow the Rayleigh distribution

with the scale parameters being g
(j)
i,m and g

(j)
r , respectively. As a result, each channel amplitude

|a(j)ir,m,n| is a double-Rayleigh RV with independent |a(j)i,m,n| and |a(j)r,n|. We can derive the expectation

and variance of |a(j)ir,m,n| as

E

{
|a(j)ir,m,n|

}
,

π

4

√
g
(j)
i,mg

(j)
r , var

{
|a(j)ir,m,n|

}
,

(
1− π2

16

)
g
(j)
i,mg(j)r . (8)
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According to the central limit theorem (CLT), the summation of N independent and identically

distributed (i.i.d.) RVs X1, X2, . . . , XN , i.e., Y =
∑N

n=1Xn can be approximated as Gaussian

distribution when N is sufficiently large.

With the IRS-customized channel estimation method [31] [32], we can obtain the reflection cascade

channel phase of each element on IRS 0. To be specific, IRS 0 can reconfigure each reflecting

element’s phase-shift by setting φ
(0)
n = −∠(g(0)i,0,ng

(0)
r,n), (n = 1, . . . , N), leading to the same phase of

all N reflected signals at UE 0, where g
(0)
i,0,n and g

(0)
r,n is defined as the average channel power gains

of between BS 0 and the element n of IRS j and between the element n of IRS j and UE 0. As a

result, the signal at the typical UE 0 is the sum of N reflected signals. Thus, the BS 0-IRS 0-UE 0

channel can be derived by

|a(0)ir,0| = |a(0)
i,0 |⊺|a(0)

r | =
N∑

n=1

|a(0)i,0,n||a(0)r,n|, (9)

which is the summation of N i.i.d. double-Rayleigh RVs, the channel amplitude is approximated to

follow the Gaussian distribution

|a(0)ir,0|
approx.∼ N

(
N

π

4

√
g
(0)
i,0 g

(0)
r , N(1− π2

16
)g

(0)
i,0 g

(0)
r

)
. (10)

Therefore, the average signal power of the cascaded BS 0-IRS 0-UE 0 channel can be computed

by the second moment of |a(0)ir,0| which is obtained by

g
(0)
ir,0 , E

{
|a(0)ir,0|2

}
=

[
π2

16
N2 +

(
1− π2

16

)
N

]
g
(0)
i,0 g

(0)
r , (11)

where Gsc , [π
2

16
N2 + (1− π2

16
)N ] denotes the beamforming coefficient of g

(0)
i,0 g

(0)
r , growing with N

in the order of O(N2).

With regards to any other IRS j ∈  without providing beamforming for UE 0, it scatters the

incident signal from BS m randomly, leading to a uniformly random phase ∠a(j)ir,m,n based on ∠a(j)i,m,n

and a
(j)
r,n. Therefore, for each reflecting element N , the cascaded channel a

(j)
ir,m,n has zero mean and

independent in-phase and quadrature-phase components each with variance 1
2
a
(j)
i,m,na

(j)
r,n. According

to the CLT, for a practically large N, we can approximate both the in-phase and quadrature-phase of

a
(j)
ir,m =

∑N
n=1 a

(j)
ir,m,n by Gaussian distribution N (0, 1

2
Na

(j)
i,ma

(j)
r ). As a result, we use the following

CSCG distribution to approximate the BS m-IRS j-UE 0 channel, given by

a
(j)
ir,m

approx.∼ CN
(
0, Ng

(j)
i,mg(j)r

)
. (12)
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Thus, the average channel power of BS m-IRS j-UE 0 link can be derived by

g
(j)
ir,m , E

{
|a(j)ir,m|2

}
= Ng

(j)
i,mg(j)r . (13)

2) UL Stage: In the UL stage, IoT devices that harvest sufficient energy transmit packets to their

serving BSs with the help of IRSs. With regards to the tagged BS 0, considering the link UE k-IRS

j-BS 0 in (4), the reflected channel via element n can be derived by

b
(j)
ir,k,n , b

(j)
i,k,nb

(j)
r,ne

iϕj
n = |b(j)i,k,n||b(j)r,n|e

i
(

ϕ(j)
n +∠b

(j)
i,k,n

+∠b(j)r,n

)

, (14)

where the channel amplitude |b(j)ir,k,n| , |b(j)i,k,n||a
(j)
r,n|, and the cascade channel phase ∠b(j)ir,k,n , ϕ

(j)
n +

∠b(j)i,k,n + ∠b(j)r,n. What’s more, the amplitudes |b(j)i,k,n| and |b(j)r,n| follow the Rayleigh distribution with

the scale parameters being f
(j)
i,k and f

(j)
r , respectively. Similarly, the amplitude of the UE 0-IRS 0-BS

0 channel is derived as

|b(0)ir,0| = |b(0)i,0 |⊺|b(0)r | =
N∑

n=1

|b(0)i,0,n||b(0)r,n|, (15)

which for large N is approximated as Gaussian distribution.

|b(0)ir,0|
approx.∼ N

(
N

π

4

√
f
(0)
i,0 f

(0)
r , N

(
1− π2

16

)
f
(0)
i,0 f

(0)
r

)
. (16)

For a sufficiently large N , we can use the CSCG distribution to approximate the UE k-IRS j-BS

0 channel, which is obtained by

b
(j)
ir,k =

N∑

n=1

b
(j)
ir,k,n

dist.∼ CN
(
0, Nf

(j)
i,k f

(j)
r

)
. (17)

Therefore, the UE 0-IRS 0-BS 0 and UE k-IRS j-BS 0 average channel power are, respectively,

given by
f
(0)
ir,0 , E

{
|b(0)ir,0|2

}
= Gscf

(0)
i,0 f

(0)
r , f

(j)
ir,k , E

{
|b(j)ir,k|2

}
= Nf

(j)
i,k f

(j)
r . (18)

where Gsc , [π
2

16
N2 + (1− π2

16
)N ] denotes the beamforming coefficient of f

(0)
i,0 f

(0)
r , growing with N

in the order of O(N2).

E. Performance Metrics

In this subsection, we detail the performance metrics considered in this work. To be specific,

we consider the following metrics: energy coverage probability in the charging stage, UL coverage

probability during the UL stage, overall coverage probability and network spatial throughput.
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1) Energy Coverage Probability: Define Pt as the BS transmit power. Under the condition that

UE 0 is associated with the nearest BS 0, the amount of energy harvested from BS 0 is composed

of the following three parts: from the direct transmission of BS 0, from the reflected transmission

through IRS 0 performing beamforming, and from the reflected transmission through other IRSs ∈ 

performing random scattering. Specifically, the harvested signal power from BS 0 is obtained by

Sdr , Pt · |ad,0 +
∑

j∈

a
(j)
ir,0|2. (19)

Similarly, the amount of harvested signal power from BS m ∈ ΛB\ {0} consists of the following

two parts: from the direct transmission of BS m, and from the reflected transmission through all

IRSs ∈  performing random scattering. To be specific, the harvested signal power from BS m can

be derived as
Sid , Pt ·

∑

m∈ΛB\{0}

|ad,m +
∑

j∈

a
(j)
ir,m|2. (20)

In summary, the overall amount of harvested energy at UE 0 is given by

Eh = τTη (Sdr + Sid) Joules, (21)

where η < 1 indicates the RF energy conversion efficiency. To simplify the analysis, we adopt the

linear energy-harvesting model as in [7] and assume that the input power to the circuit of receiver

belongs to the low power regime without saturation of EH. Note that our work can be extended to

the non-linear EH models by considering the saturation regime. To show the effectiveness of EH,

we define the energy coverage probability during the charging stage, which is given by

Pen = E [I (Eh > Emin)] , (22)

where Emin = (1− τ)Tρ(x2
0 +H2

B)
ǫα/2 in (1) with I(·) being the indicator function.

2) UL Coverage Probability: According to the UL fractional power control strategy, the transmit

power of UE 0 and UE k ∈ Λ′
u\ {0} is, respectively, given by P0 = ρ(x2

0 + H2
B)

ǫα/2 and Pk =

ρ(D2
k +H2

B)
ǫα/2. The desired signal received at the tagged BS 0 is composed of direct signal from

UE 0 and the reflected signal of UE 0 via all IRSs ∈  (i.e., performing beamforming and random

scattering). Therefore, we derive received signal power by

SUL , ρ(x2
0 +H2

B)
ǫα
2 · |bd,0 +

∑

j∈

b
(j)
ir,0|2. (23)
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After the charging stage, the active IoT devices that are harvesting sufficient energy and trans-

mitting on the same time-frequency resource block with UE 0 can be approximated to follow a

PPP ∼ Λ
′

u of density λ
′

u = PenλB with Pen = E [I (Eh > Emin)] given by (22). Therefore, the

overall interference received by BS 0 is given by

I ,
∑

k∈Λ′
u\{0}

Ik =
∑

k∈Λ′
u\{0}

ρ(D2
k +H2

B)
ǫα
2 |bd,k +

∑

j∈

b
(j)
ir,k|2. (24)

The received SINR at BS 0 is given by

γ ,
SUL

I + σ2
=

ρ(x2
0 +H2

B)
ǫα
2 · |bd,0 +

∑
j∈ b

(j)
ir,0|2∑

k∈Λ′

u\{0}
ρ(D2

k +H2
B)

ǫα
2 |bd,k +

∑
j∈ b

(j)
ir,k|2 + σ2

. (25)

The UL coverage probability is actually a conditional coverage probability under the condition

that the typical UE 0 has harvested sufficient energy is given by

PUL , P {γ ≥ γ|Eh ≥ Emin} , (26)

where γ is the SINR threshold.

3) Overall Coverage Probability : By definition, the overall coverage probability is defined as

the joint probability of the aforementioned two events, which can be expressed by

Pcov , E [I (Eh ≥ Emin) I (γ ≥ γ)] . (27)

4) Spatial Throughput: Based on the overall coverage probability, the average spatial throughput

can be obtained as

ν = (1− τ)λ′
uE [log (1 + γ) I (Eh ≥ Emin)× I (γ ≥ γ)] = (1− τ)Penλu log (1 + γ)Pcov, (28)

where Pen and Pcov are given by (22) and (27), the expressions of which will be derived in the

following section.

5) Power Efficiency: We consider the following two performance metrics to illustrate the power

efficiency: energy harvesting efficiency (EHE) [33] in the charging stage and energy efficiency (EE)

[34] in the UL stage, where the former is defined as the amount of power scavenged by all the IoT

devices per unit power consumed by the BS, while the latter refers to the number of bits transmitted
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by an IoT device per Joule. The EHE can be expressed as

EHE =
E{Eh}λu

τTλB(Pcb + 1
ηb
Pt)

, (29)

where E{Eh} is the average amount of energy harvested by the typical UE 0 during the charging

stage, ηb ∈ (0, 1] represents the efficiency of the power amplifier efficiency of a BS, Pcb and Pt

denote the static power and transmit power of a BS, respectively. The EE of the typical UE 0 can

be expressed as

EE =
(1− τ)T log (1 + γ)Pcov

(Pcu + 1
ηu
E{P0})(1− τ)T

, (30)

where the numerator denotes the number of bits transmitted within the UL stage, and the denominator

represents the average energy consumption of the typical UE 0 with E{P0} being the transmit power,

ηu ∈ (0, 1] being the efficiency of the power amplifier efficiency of an IoT device, and Pcu being the

static power of typical UE 0, respectively.

III. PERFORMANCE ANALYSIS

In this section, we first study the signal power distribution in both stages, and then characterize

the interference distribution in the UL stage. The aforementioned performance metrics are finally

obtained.

A. Signal Power Distribution

The signal power distribution is related to not only the charging stage, but also the UL stage.

To be specific, in the charging stage, all BSs broadcast energy signals which are harvested by IoT

devices. While in the UL stage, for BS 0, only that originated from UE 0 is the desired signal.

In the charging stage, the energy harvested from BSs is contributed from both the direct signal

and the reflected signals via all IRSs within set . In the following, we first derive the signal power

distribution from BS 0 conditioned on x0 and d0. The overall conditional signal can be expressed as

ad,0+
∑

j∈ a
(j)
ir,0, the summation of a RV of Rayleigh distribution and N RVs of Gaussian distribution.

Because of the difficulty in deriving the exact signal power distribution from BS 0, we use the

Gamma distribution [35] as an alternative. Specifically, we use Gamma distribution to approximate

the distribution of Sdr, given by

Sdr|d0,x0

approx.∼ Γ[kdr, θdr], (31)
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where kdr and θdr represent the shape parameter and scale parameter, respectively. With the moment

matching technique [36], we have

kdr ,
(E{Sdr}|d0,x0)

2

var{Sdr}|d0,x0

, θdr ,
var{Sdr}|d0,x0

E{Sdr}|d0,x0

. (32)

To obtain kdr and θdr, we derive the first and second moments of Sdr conditioned on d0 and x0.

E {Sdr} |d0,x0 ≈ Pt · (E
{
|a1|2

}
|d0,x0 + E

{
|a2|2

}
|d0,x0), (33)

E
{
S2
dr

}
|d0,x0 = Pt · (E{|a1|4}|d0,x0 + E{|a2|4}|d0,x0 + 4E{|a1|2}|d0,x0E{|a2|2}|d0,x0). (34)

The first two moments of Sdr|d0,x0 can be derived by the first two moments of a1, a2, |a1|2,
|a2|2. With the similar method proposed in Appendix B of [18] and the approximation of r0,j ≈ x0,

g
(j)
i,0 ≈ gd,0 for j ∈ , the first two moments of a1, a2, |a1|2, |a2|2 can be derived by

E{a1}|d0,x0 = 0, E{a21}|d0,x0 = 0, E{a2}|d0,x0 = 0, E{a22}|d0,x0 = 0, (35)

E{|a1|2}|d0,x0 ≈ gd,0(1 +Gscg
(0)
r +N

π

4

√
πg

(0)
r ), (36)

E{|a1|4}|d0,x0 ≈ [gd,0]
2

[
2 +

3

4
π

3
2N

√
g
(0)
r + 6Gscg

(0)
r + 2

√
π

(
π3N3

64
+

3πN2(1− π2

16 )

4

)

×
[
g(0)r

] 3
2

+

(
π4N4

256
+

3π2N3(1− π2

16 )

8
+ 3N2(1− π2

16
)2

)[
g(0)r

]2
]
,

(37)

E{|a2|2}|d0,x0 ≈ Ngd,0ES1(d0), E{|a2|4}|d0,x0 ≈ 2N2[gd,0]
2ES3(d0), (38)

where gd,0 and g
(0)
r denote the average channel power gain of the BS 0-UE 0 and IRS 0-UE 0 link,

i.e.,

gd,0 , β
(
x2
0 +H2

B

)−α/2
, g(0)r , β

(
d20 +H2

I

)−α/2
, (39)

and ES1 denotes the expectation of
∑

j∈\{0} g
(j)
r which is given by

ES1(d0) =
2πλIβ

α− 2

[(
d20 +H2

I

)1−α
2 −

(
D2 +H2

I

)1−α
2

]
, (40)

and

ES3 , E









∑

d0<dj≤D

gr(dj)




2




= (ES1(d0))

2 + ES2(d0), (41)
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with ES2 (d0) given by

ES2 (d0) =
πλIβ

2

α− 1

[
(d20 +H2

I )
1−α − (D2 +H2

I )
1−α

]
. (42)

Therefore, we can derive the first and second moments of Sdr conditioned on d0 and x0. The

variance is derived by var {Sdr} |d0,x0 , E {S2
dr} |d0,x0 − (E {Sdr} |d0,x0)

2
. By substituting the above

expressions into (32), we derive the shape parameter kdr and θdr, respectively.

Based on (33), (36) and (38), the conditional mean signal power is the product of gd,0 and

κdr(d0) , 1+Gscg
(0)
r +N π

4

√
πg

(0)
r +NES1(d0) which depends on the locations of BS 0 and IRS 0.

The dominant term in κdr(d0) is Gscg
(0)
r which scales in O(N2) or O(d

−α
2

0 ) when d0 is sufficiently

small. For the large d0, the IRS power gain is given by Gscg
(0)
r ≤ 1 and hence κdr(d0) ≈ 1. It reveals

that when UE 0 is closer to IRS 0, IRS 0 provides more power gain.

Then we derive the harvested signal power originated from all BSs m ∈ ΛB \ {0} and reflected

by IRSs j ∈ , which is given by

Sid ,
∑

m∈ΛB\{0}

S
(m)

id = Pt






∑

m∈ΛB\{0}

gd,m


+N

∑

j∈


g(j)r

∑

m∈ΛB\{0}

g
(j)
i,m




 . (43)

We consider the following approximation g
(j)
i,m ≈ gd,m for j ∈ , and thus, we have S

(m)

id ≈ υSgd,m

and hence

Sid ≈ PtυS
∑

m∈ΛB\{0}

gd,m, (44)

where υS , 1 + N
∑

j∈ g
(j)
r represents the relative power gain of reflecting or scattering paths

originated from IRSs in  over the direct path.

To characterize the distribution of the signal power Sid originated directly from other BSs and

reflected via all IRSs, we first derive the Laplace transform LSid|d0,x0
(s) in Lemma 1, in which the

instantaneous signal power Sid can be approximated by

Sid ≈ PtυS
∑

m∈ΛB\{0}

gd,mωm. (45)

According to (45), conditioned on x0, E{Sid} is given by

E{Sid}|x0 ≈ PtE{ωm}E{υS}E





∑

m∈ΛB\{0}

gd,m





∣∣∣∣∣
x0

(a)
= Pt(1 +NES1(0))2πλB

∫ ∞

x=x0

gd(x)xdx =
2πλBβ(1 +NES1(0))Pt

(α− 2)(x2
0 +H2

B)
α
2 −1

(46)

DRAFT November 1, 2022



17

Note that (a) is due to the HPPP-distributed BSs locations and E{υS} = NES1(0) based on (40).

Lemma 1. Conditioned on d0 and x0, the Laplace transform of Sid is given by

LSid|d0,x0
(s) , E

{
e−sSid

}
|d0,x0 ≈ exp (−2πΛBU (sPtυS)) , (47)

where the function U (·) is defined as

U(x) ,
π

α sin(2πα )
(βx)

2
α − x2

0 +H2
B

2
�2 F1

(
1,

2

α
, 1 +

2

α
,− 1

gd,0x

)
, (48)

with gd,0 = gd (x) |x=x0 and 2F1 being the Gauss hypergeometric function [37].

Proof : The results can be proved by a minor modification of Proposition 4 in [18]. We omit the

full proof due to the space limitation.

Thus, the cumulative distribution function (CDF) of Sid|d0,x0 can be derived via the inverse Laplace

transform of (47), i.e.,

FSid|d0,x0
(x) = L−1

[
1

s
LSid|d0,x0

(s)

]
(x) , (49)

which can be computed directly in standard computing software, such as Wolfram Mathematica.

We then study the UL signal power distribution in the UL stage. Similar to the charging stage,

we still use Gamma distribution to approximate the conditional distribution SUL which is given by

SUL|d0,x0

approx.∼ Γ[kUL, θUL]. (50)

With the moment matching technique [36], we have

kUL ,
(E{SUL}|d0,x0)

2

var{SUL}|d0,x0

, θUL ,
var{SUL}|d0,x0

E{SUL}|d0,x0

. (51)

To obtain kUL and θUL, we derive the first and second moments of SUL conditioned on d0 and x0.

E {SUL} |d0,x0 ≈ P0 · (E
{
|b1|2

}
|d0,x0 + E

{
|b2|2

}
|d0,x0), (52)

E
{
S2
UL

}
|d0,x0 = P0 · (E{|b1|4}|d0,x0 + E{|b2|4}|d0,x0 + 4E{|b1|2}|d0,x0E{|b2|2}|d0,x0). (53)

The first two moments of SUL|d0,x0 are determined by the first two moments of b1, b2, |b1|2 and

|b2|2. Following the similar approach to derive the first and second moment of Sdr|d0,x0 and the

approximation of r0,j ≈ x0, f
(j)
r ≈ fd,0 for j ∈ , we can obtain the first two moments of b1, b2,

|b1|2, |b2|2 by replacing a1, a2, gd,0 and g
(0)
r in (35)–(38) with b1, b2, fd,0 and f

(0)
i,0 .
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Finally, by integrating E {SUL} |d0,x0 over d0 and x0, we obtain E {SUL} by

E {SUL} =

∫ ∞

0

∫ D

0

E {SUL} |d0,x0fd0(d0)fx0(x0)dd0dx0, (54)

where fd0(d0) and fx0(x0), denote the probability density functions (PDFs) of d0 and x0,

fd0(d) , 2πλIde
−λIπd

2

, fx0(x) , 2πλBxe
−λBπx2

. (55)

B. Interference Power Distribution

We derive the interference power distribution in the UL stage in this subsection. Specifically, the

interference is from active users transmitting information in the same time-frequency resource block.

Referring to (17), the UE k-IRS j-BS 0 channel has been approximated by the CSCG distribution

CN
(
0, Nf

(j)
i,k f

(j)
r

)
. Since both the direct interference channel and the cascaded UE m-IRS j-BS 0

channel follow the CSCG distribution, the composite interference channel bd,k +
∑

j∈ b
(j)
ir,k from UE

k ∈ Λ′
u\ {0} is the summation of independent CSCG RVs, which follows the CSCG distribution

with zero mean and covariance E {|bd,k|2}+
∑

j∈ E

{
|b(j)ir,k|2

}
. Therefore, the composite interference

power Ik = |bd,k +
∑

j∈ b
(j)
ir |2 follows an exponential distribution with the expression given by

Ik , Ikξk = Pk


fd,k +N

∑

j∈

f
j
i,kf

(j)
r


 ξk, (56)

where Ik is the average interference power and ξk
dist.
= ξ ∼ exp(1). Therefore, given the locations

of IoT devices and IRSs, the aggregated interference power from all the active IoT devices is the

summation of exponential RVs which are independent while not identically distributed, following

the Erlang distribution [38]. Then, the mean conditional interference power can be derived by

I ,
∑

k∈Λ′
u\{0}

Ik =
∑

k∈Λ′
u\{0}

Pk


fd,k +N

∑

j∈

f
(j)
i,k f

(j)
r


 . (57)

By using the approximation rk,j ≈ yk, f
(j)
r ≈ fd,k for j ∈ , we have Ik ≈ υIfd,k and

I ≈ υI
∑

k∈Λ′
u\{0}

Pkfd,k, (58)

where υI , 1 +N
∑

j∈ f
(0)
i,0 is the relative power gain of scattering paths with regards to all IRSs

in  over that of the UE-BS direct path.

To derive the spatial throughput later, we first obtain the interference power distribution conditioned
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on d0 and x0, which can be represented by the Laplace transform of the aggregated interference in

Lemma 2. The aggregated interference can be expressed as

I ≈ υI
∑

k∈Λ′
u\{0}

Pkfd,kξk. (59)

Lemma 2. The Laplace transform of interference power conditioned on d0 and x0 is given by

LI|d0,x0
(s) = exp (−2πλ′

uUI (sυIρ)) , (60)

where the function UI(·) is defined as

UI(x) ,

∫ ∞

0

∫ y

0

1− 2πλuDke
−λuπD

2
k

1 + x (y2 +H2
B)

−α/2
(D2

k +H2
B)

ǫα/2
dDkydy. (61)

Proof : See Appendix A.

Based on (59) and ξk
dist.
= ξ ∼ exp(1), ∀k, the mean interference power is given by

E {I} ≈ E {ξ}E {υI}E





∑

k∈Λ′
u\{0}

fd,k




 = υIEI, (62)

where EI denotes the expectation of the summation of direct channel power from interfering UEs

k ∈ Λ′
u\ {0} conditioned on x0, which is given by

EI
(a)
= 2πλ′

u

∫ ∞

y=0

∫ y

Dk=0

2πλuDke
−λuπD

2
k

(
D2

k +H2
B

)ǫα/2
ρ
(
y2 +H2

B

)−α/2
dDkydy. (63)

Note that (a) is due to the PPP-distributed UEs locations, which helps calculate the aggregated

interference over the 2D plane.

C. Coverage Probability and Spatial Throughput

In this section, we derive the energy coverage probability and UL coverage probability. In separate

stages based on the derived signal power distribution and interference power distribution, which leads

to the overall coverage probability and spatial throughput eventually.

1) Energy Coverage Probability: Based on the derived channel power gain distribution in (31),

we derive the energy coverage probability in Theorem 1.

Theorem 1. The probability that the energy harvested in the charging stage is higher than Emin

is given by

Pen =

∫ ∞

x0=0

∫ D

d0=0

Pen|d0,x0fd0(d0)fx0(x0)dd0dx0, (64)
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where Pen|d0,x0 is the conditional energy coverage probability given by

Pen|d0,x0 ≈ P {Sdr > C(τ)} |d0,x0 + P {Sid > C(τ)} |d0,x0

+ P {Sdr + Sid > C(τ)|Sdr, Sid < C(τ)} |d0,x0P {Sdr < C(τ)} |d0,x0P {Sid < C(τ)} |d0,x0

− P {Sdr > C(τ)} |d0,x0 · P {Sid > C(τ)} |d0,x0 ,

(65)

while for kdr is less than the given threshold k̃dr, the conditional probabilities of {Sdr > C(τ)},

{Sid > C(τ)} and {Sdr + Sid > C(τ)|Sdr, Sid < C(τ)} are, respectively, given by

P{Sdr > C(τ)}|d0,x0 ≈
kdr−1∑

i=0

(−1)
i

i!

∂i

∂si

[
LSid|d0,x0

(
s

θdr

)]

s=1

, (66)

P {Sid > C(τ)} |d0,x0 ≈ 1− L−1

[
1

s
LSid|d0,x0

(s)

]
(z) , (67)

P {Sdr + Sid > C(τ)| Sdr, Sid < C(τ)} |d0,x0 ≈
kdr−1∑

i=0

(−1)
i

i!

∂i

∂si

[
exp

(
−sC(τ)

θdr
+ 2πλBU

(
sυS

θdr

))]

s=1

.

(68)

Proof : See Appendix B.

Remark 1: It is worth noting that there exists correlation between the two events {Sdr > C(τ)}
and {Sid > C(τ)}, which is extremely hard to derive. Thus, to simplify the analysis, we ignore the

correlation and assume that the two events are independent. We will show that the approximation is

acceptable in Fig. 2 in the numerical results part.

2) UL Coverage Probability: Due to the correlation between the locations of BSs and scheduled

IoT devices, it’s challenging to derive the exact UL analysis [14]. The authors in [14] proposed

an approximation method by assuming that the locations of devices follow a PPP and handling the

dependence between the typical link length and interferer link length. With such an approximation,

we derive the UL coverage probability in Theorem 2.

Theorem 2. The probability that the received SINR of the typical UE 0 is greater than a given

threshold γ is given by

PUL =

∫ ∞

x0=0

∫ D

d0=0

PUL|d0,x0fd0(d0)fx0(x0)dd0dx0, (69)

where PUL|d0,x0 is the conditional coverage probability given by

PUL|d0,x0 ≈
kUL−1∑

i=0

(−1)
i

i!

∂i

∂si

[
−sγW

θUL
− 2πλ′

uUI

(
sγυIρ

θUL

)]

s=1

. (70)
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Proof : See Appendix C.

Remark 2: The results derived in (69) degenerates into the traditional regularly powered IRS-

assisted UL transmission case without EH, by setting Pen = 1 and λ
′

u = λB.

In both Theorem 1 and Theorem 2, we need to discuss the scale parameters kdr and kUL of Gamma

distribution. For non-integer kdr(kUL), its upper and lower bounds are utilized to approximate the

conditional energy (UL) coverage probability. Take Theorem 1 as an example, we approximate

Pen|d0,x0 by the following linear combination [18],

Pen|d0,x0 = ΩPen|d0,x0,⌊k⌋ + (1−Ω)Pen|d0,x0,⌈k⌉, (71)

where ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions, and Ω is the weight between the ceiling and

is the weight functions given by

Ω ,
ζ (⌈k⌉ − k)

ζ (⌈k⌉ − k) + (k − ⌊k⌋) , (72)

where ζ > 0 is a parameter to illustrate the relationship between Pen|d0,x0 and k. The weights Ω

and (1−Ω) are set as Ω
1−Ω

= M ⌈k⌉−k
k−⌊k⌋

.

For the large value of k, we approximate the Gamma distribution to the normal distribution with

µ , E {S} |d0,x0 as the mean value, and
√

var {S} |d0,x0 as the standard deviation. Since the former

is much larger than the latter, S can be approximated by µ.

According to Theorem 1 and Theorem 2, we derive the overall coverage probability in the next

subsection.

3) Overall Coverage Probability and Spatial Throughput: With the derived energy coverage

probability and UL coverage probability, we obtain the overall coverage probability in this subsection.

Corollary 1. The overall coverage probability Pcov of the typical UE 0 is

Pcov = Pen ×PUL, (73)

where Pen and PUL are given by (64) and (69), respectively.

Proof: By definition, the overall coverage probability can be derived by multiplying the energy

coverage probability by the UL coverage probability.

Remark 3. Note that the proposed analytical framework can be used to characterize the regularly

powered IRS-assisted UL IoT network performance by specializing some system parameters. To be

specific, the parameters that leads to the result Pen → 1, for instance, a large BS density λB,
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a large number of reflecting element N , or a sufficiently large τ result in the regularly powered

IRS-assisted UL IoT network. In this case, the coverage probability is equivalent to PUL in (69) by

setting λu = λB.

By definition, the spatial throughput ν in (28) can be derived by substituting Pen and Pcov in (64)

and (73), respectively. The complete expression of spatial throughput is omitted to keep concise.

4) Power Efficiency: The EHE in charging stage and EE in UL stage can be calculated by

substituting the expressions of E{Eh} and E{P0} into (29) and (30), which are given by,

E{Eh} =

∫ ∞

0

∫ D

0

τTη (E{Sdr}|d0,x0 + E{Sid}|x0) fd0(d0)fx0(x0)dd0dx0, (74)

E{P0} =

∫ ∞

0

ρ(x2
0 +H2

B)
ǫα/2fx0(x0)dx0, (75)

where fx0(x0) (fd0(d0)), E{Sdr}|d0,x0 and E{Sid}|x0 are given by (55), (33) and (46), respectively.

Remark 4. The following technical challenges should be addressed when modifying the proposed

analytical framework to adapt to the multiple-antenna BS case. Firstly, both active beamforming

precoder/receiver at BSs and passive beamforming design of IRSs should be considered, and jointly

optimized to maximize the network performance in charging stage and UL stage. Secondly, the signal

power distributions in both charging stage and UL stage, and the interference distribution in UL stage

are dependent on the joint beamformer design, which is unknown for the multiple-antenna BS case in

the large-scale network scenario.

IV. NUMERICAL RESULTS

In this section, the analytical (Ana.) framework is verified via extensive simulations (Sim.) by

evaluating the network performance in terms of energy coverage probability, UL coverage probability,

overall coverage probability, network spatial throughput and power efficiency, respectively. To show

the superiority of IRSs in enhancing the coverage probability, we choose the traditional RF-powered

IoT network considered in [28] as a benchmark. Compared to the IRS-assisted RF-powered IoT

network, the only difference is that there are no IRSs existing in the the traditional RF-powered IoT

network, denoted by ”W/o IRS” in the simulations. Unless otherwise specified, we use the default

values of the system parameters as follows: HB = 10 m, HI = 1 m, λB = 10−3 m2, λI = 10−2 m2,
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Fig. 2: Energy coverage probability vs. τ .
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Fig. 3: Energy coverage probability as a function of SINR threshold

for different IRS reflecting element numbers N .

α = 4, Pt = 46 dBm, N = 1000, fc = 2 GHz, σ2 = −147 dBm, D = 25 m, ρ = −78.5 dBm,

η = 0.5, ǫ = 0.8, T = 0.01 s, τ = 0.5, Pcb = 2.5 W, Pcu = 20 mW [34] and ηb = ηu = 0.2 [33].

A. Energy Coverage Probability

In this subsection, we characterize the impact of IRSs in the charging stage by setting ζ = 0.5

in (72). Fig. 2 depicts the energy coverage probability Pen given in (64) in Theorem 1 along with

the probabilities of events {Sdr > C(τ)}, {Sid > C(τ)}, and {Sdr + Sid > C(τ)|Sdr < C(τ), Sid <

C(τ)}, respectively. We observe a very perfect match between the theoretical analysis and the

simulation results except for Pen. The reason for this is that we ignore the correlation between the

events {Sdr > C(τ)} and {Sid > C(τ)} to simplify the analysis, and the independent approximation

leads to an acceptable gap. In Fig. 2, we observe that Pen increases with the time slot ratio τ . This

is intuitive since a larger τ provides more opportunities for an IoT device to harvest energy, leading

to a higher Pen.

In Fig. 3, we quantify the gains achieved by IRS beamforming in the charging stage by varying the

IRS reflecting element number N . We observe that increasing BS density λb or IRS reflecting element

number N leads to a higher Pen. This can be explained by the fact that a denser BS deployment

or a larger IRS enhances the harvested RF power. Compared to the conventional network scenario

without IRS deployment, IRS-assisted EH scheme with passive beamforming results in a more than

30% enhancement in Pen for N = 4000 with BS density λb = 10−3 m−2. Moreover, when λb

achieves λ∗
b , i.e., λ∗

b = 5×10−3 m−2 for the given system parameters, the energy coverage condition
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{Eh ≥ Emin} satisfies with an extremely high probability, resulting in Pen → 1.
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Fig. 4: UL Coverage Probability as a function of SINR threshold

for different IRS reflecting element numbers N .
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Fig. 5: UL Coverage Probability as a function of IRS density ΛI

for different IRS reflecting element numbers N .

B. UL Coverage Probability

In this subsection, we focus on the performance analysis of the UL transmission mode by setting

ζ = 1 in (72). In Fig. 4, the UL coverage probability is evaluated by varying SINR threshold γ

and IRS reflecting element number N , with the conventional UL coverage probability without IRSs

being given as a benchmark. We observe that PUL reduces with the increasing SINR threshold γ,

and grows with the element number N . This is because the passive beamforming gain provided by

IRSs increases with N in the order of O(N2) which enlarges the UL received signal power and

hence the UL coverage probability. Compared to the benchmark, the coverage enhancement achieved

by IRS passive beamforming can be as large as 0.65 with N = 4000 for γ = 0 dB.

In Fig. 5, we evaluate the UL coverage probability PUL as a function of IRS density λI and

IRS reflecting element number N . From Fig. 5, we find that PUL grows with the increasing λI and

N . This can be explained by the fact that λI is large enough to achieve a full energy coverage,

i.e., Pen = 1, and passive beamforming gain provided by IRS dominates the growing interference

contributed by IRS random scattering, resulting in a higher PUL.

The mean signal power E {SUL} and interference E{I} derived in (54) and (62) by varying λI

and N are illustrated in Fig. 6. We observe that E {SUL} increases with the growing λI, while E{I}
remains almost unchanged. This is consistent with the observations in Fig. 3 and Fig. 4.
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Fig. 6: Signal power and interference power as a function of IRS

density λI for different IRS reflecting element numbers N .
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Fig. 7: Coverage probability vs. charging stage ratio τ .

C. Overall Coverage Probability and Network Spatial Throughput

In this subsection, we focus on the overall coverage probability and network spatial throughput. In

Fig. 7, we set BS density λB = 5×10−3 m−2 and evaluate Pen, PUL and Pcov with and without IRSs

as a function of charging stage ratio τ . To show the availability of the proposed IRS-assisted RF EH

scheme, we plot the coverage probability with regularly powered IoT devices as the benchmark. In

this case, all IoT devices are full of energy which is equivalent to Pen = 1. We observe that when

τ reaches a certain value, Pen approaches to 1 and hence, PUL approaches to Pcov. This is because

although a growing τ enlarges the density of interferer which declines PUL, the improvement in Pen

dominates the reduction in PUL, leading to the growth in Pcov. By comparing with the traditional

network without IRS deployment, we observe the significant superiority of IRS passive beamforming

in both Pen and PUL. By comparing with the regularly powered benchmark, we observe that when τ

reaches a certain value, i.e., τ = 0.4 for the IRS case, the RF powered IoT network achieves nearly

the same overall coverage probability as that of the regularly powered IoT network. What’s more,

even for the regularly powered IoT network, IRSs passive beamforming brings huge enhancement

in coverage, more than 0.3 with the given parameters. The comprehensiveness of the proposed

analytical framework lies in that it degenerates into the IRS-assisted regularly-power IoT network

when Pen = 1 is satisfied.

Fig. 8 depicts the overall coverage probability Pcov by varying charging stage ratio τ for different

power control factors ǫ. We observe that a larger ǫ results in a lower Pcov. Note that Emin =
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Fig. 8: The overall coverage probability vs. charging stage ratio

τ for different power control factors ǫ.
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Fig. 9: Average spatial throughput as a function of charging stage

ratio τ for different power control factors ǫ.

(1− τ)Tρ(x2
0 +H2

B)
ǫα/2, a larger ǫ leads to an increasing Emin, which results in the decline of Pen,

leading to a lower Pcov.

In Fig. 9, we evaluate the average spatial throughput ν as a function of charging stage ratio τ and

power control factor ǫ. We observe that there exists an optimal τ to maximize the average spatial

throughput ν. A larger ǫ requires a higher proportion τ to achieve the largest spatial throughput.

Referring to (78), the average spatial throughput is related to the product of (1−τ), Pen and Pcov. In

addition, a tradeoff exists between τ and Pen. When ǫ = 0.6, Emin is easy to satisfy, and the spatial

throughput is dominated by τPcov. On the other hand, as ǫ further enlarges, Emin grows exponentially

and the spatial throughput is limited by Pen. In this case, a larger τ is required to achieve a higher

spatial throughput. As Pen grows to a certain value, τ dominates the spatial throughput, resulting

in the decline of spatial throughput. Compared to the case without IRSs, we observe that deploying

IRSs can greatly enhance the achievable network spatial throughput, while does not change the trend

of ν as a function of the charging stage ratio τ , and hence the the optimal τ that maximizes ν. This

is because with IRS passive beamforming, both the harvested signal power in the charging stage and

the desired signal power in the UL stage are shown to scale with N in the same order of O(N2),

while only slightly increases the interference power, leading to the same level of enhancements in

Pen and PUL.

D. Power Efficiency

In Fig. 10, we evaluate EHE as a function of IRS density λI for different IRS reflecting element

numbers N . We observe that the EHE increases with both λI and N . However, since the average
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distance beween an IoT device and its associated BS is as large as 15.8 m, the EHE is small due to

the large path loss. Compared to the traditional RF-powered network without IRSs, the higher EHE

achieved by the IRS-assisted RF-powered network is credited to the passive beamforming gain.

In Fig. 11, we evaluate EE as a function of charging stage ratio τ for different power control

factors ǫ. We observe that as τ increases, the EE first increases and then converges to a constant

value. A smaller ǫ results in a higher EE. Due to the power control strategy, the power consumption

of an IoT device is mainly dependent on the static power Pcu, and thus, the tendency of EE is

dominated by the overall coverage probability Pcov. The variation of EE with τ can be explained

by the tendency of Pcov with τ , as discussed in Fig. 7. What’s more, referring to Fig. 8, a smaller

ǫ leads to a higher Pcov, and thus a larger EE. The comparison with the traditional RF-powered

network without IRSs shows the effectiveness of IRS beamforming in information transfer.
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Fig. 10: EHE as a function of IRS density λI for different IRS

reflecting element numbers N .
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Fig. 11: Energy efficiency as a function of charging stage ratio τ

for different power control factors ǫ.

V. CONCLUSION

In this work, we evaluated the effect of IRS passive beamforming gain on an IRS-assisted RF-

powered IoT network. We adopted the time-switch architecture in which each time slot is partitioned

into the charging stage and UL stage, where IRS beamforming was adopted in both EH and UL

packet transmission. With the Gamma approximation method, we first characterized the signal

power distribution in both charging stage and UL stage, and the interference power distribution

in the UL stage. Then, we derived the analytical expressions of energy coverage probability, UL

coverage probability, overall coverage probability network spatial throughput and power efficiency.

By comparing with the conventional RF-powered IoT network without IRSs, we quantified the gain
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achieved by IRSs in both EH and information transfer. We also optimized the time slot ratio to

maximize the network spatial throughput. There are several interesting concrete future directions to

extend this work. One possible direction is to consider the multiple-antenna BS network scenario

with the joint optimization of active/passive beamformer design being the focus. Another possible

direction is to consider the application of IRSs-assisted RF-powered IoT networks to the mmWave

or sub-THz frequency band.

APPENDIX A

Conditioned on d0 and x0, the Laplace transform of the interference power from other BSs as

LI|d0,x0
(s) , E

{
e−sI

}
|d0,x0≈ E

{
e
−s

(

∑

k∈Λ′
u\{0} υIPkfd,kξk

)
} ∣∣∣

d0,x0

(a)
= Eλ′

u





∏

k∈Λ′
u\{0}

Eξ {exp (−sυIPkfd,kξk)}






∣∣∣∣∣
d0,x0

(b)
= exp

(
−2πλ′

u

∫ ∞

0

(
1− e−πλuy

2
) [

1− Eξ,Dk

{
−sυIρ

(
y2 +H2

B

)−α/2 (
D2

k +H2
B

)ǫα/2
ξk

}]
ydy

)

(c)
= exp

(
−2πλ′

u

∫ ∞

0

∫ y

0

1− 2πλuDke
−λuπD

2
k

1 + sυIρ (y2 +H2
B)

−α/2
(D2

k +H2
B)

ǫα/2
dDkydy

)

= exp (−2πλ′
uUI (sυIρ)) ,

(76)

where (a) is due to the i.i.d. channel power gain ξk
dist.
= ξ ∼ exp(1), ∀k and independent Λ′

u, (b) follows

from the PGFL of PPP in which the positions of interferers are modeled by a non-homogeneous

PPP Λ′
u of density λIu(y) = λu(1 − exp(−πλuy

2)) which is a function of distance relative to the

tagged BS, (c) follows from Eξ

{
e−sξ

}
, 1

s+1
for ξ ∼ exp(1), and UI(·) is given by

UI(x) ,

∫ ∞

0

∫ y

0

1− 2πλuDke
−λuπD

2
k

1 + x (y2 +H2
B)

−α/2
(D2

k +H2
B)

ǫα/2
dDkydy. (77)

APPENDIX B

Conditioned on d0 and x0, according to the definition of Pen in (23), we have

Pen|d0,x0 , P {τTη (Sdr + Sid) > Emin} |d0,x0 = P {Sdr + Sid > C (τ)} |d0,x0 , (78)

where C (τ) , (1−τ)ρxǫα
0

τη
is a function of τ .

Since either Sdr or Sid could be greater than C(τ), we need to consider the following three cases:

{Sdr > C(τ)}, {Sid > C(τ)} and {Sdr + Sid > C(τ)|Sdr, Sid < C(τ)}. It is worth noting that there
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exists correlation between the events {Sdr > C(τ)} and {Sid > C(τ)}. To simplify the analysis and

maintain the tractability, we neglect the correlation and assume that the two events are independent.

According to the total probability formula, the conditional energy coverage can be converted to the

following form

P {Sdr + Sid > C (τ)} |d0,x0 ≈ P {Sdr > C(τ)} |d0,x0 + P {Sid > C(τ)} |d0,x0

+ P {Sdr + Sid > C(τ)|Sdr, Sid < C(τ)} |d0,x0P {Sdr < C(τ)} |d0,x0 · P {Sid < C(τ)} |d0,x0

− P {Sdr > C(τ)} |d0,x0 · P {Sid > C(τ)} |d0,x0 .

(79)

We then need to derive the probabilities of the aforementioned three events. Specifically, we have

approximated the distribution of Sdr|d0,x0 by the Gamma distribution Γ [kdr, θdr] in (31). According

to Appendix D of [18], for integer kdr, the probability of Sdr > C(τ) conditioned on x0 and d0 is

given by

P {Sdr > C(τ)} |d0,x0 ≈
Γ
(
kdr,

C(τ)
θdr

)

Γ (kdr)

∣∣∣∣∣
d0,x0

=

kdr−1∑

i=0

(−1)
i

i!

∂i

∂si

[
LYS|d0,x0

(s)
]

s=1
, (80)

where YS , C(τ)
θdr

. Referring to (47), the Laplace transform of YS conditioned on d0 and x0 is derived

by
LYS |d0,x0

(s) , E
{
e−sYS

}
|d0,x0 = LSid|d0,x0

(
s

θdr

)
, (81)

where the Laplace transform of Sid|d0,x0 is given by (76) in Appendix A.

According to the CDF of Sid|d0,x0 in (49), the conditional probability of event {Sid > C(τ)} is

given by

P {Sid > C(τ)} |d0,x0 = 1− P {Sid < C(τ)} |d0,x0 = 1− L−1

[
1

s
LSid|d0,x0

(s)

]
(z) , (82)

where z , C(τ) and FSid|d0,x0
(·) is the conditional CDF of Sid given by (49).

We then derive the probability of {Sdr + Sid > C(τ)|Sdr , Sid < C(τ)} conditioned on x0 and

d0. Because of Sdr, Sid < C(τ), we have C(τ) − Sdr > 0 and C(τ) − Sid > 0. According to the

approximation Sdr|d0,x0 ∼ Γ [kdr, θdr], we have

P {Sdr + Sid > C(τ)|Sdr, Sid < C(τ)} |d0,x0 ≈ ESid





Γ
(
kdr,

C(τ)−Sid

θdr

)

Γ (kdr)

∣∣∣∣∣Sid, Sdr < C(τ)






∣∣∣∣∣
d0,x0

=

kdr−1∑

i=0

(−1)i

i!

∂i

∂si

[
LYC|Sdr,Sid<C(τ),d0,x0

(s)
]

s=1
,

(83)
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where YC , C(τ)−Sid

θdr
and the Laplace transform of YC conditioned on Sdr, Sid < C(τ), d0 and x0 is

given by

LYC|Sdr,Sid<C(τ),d0 ,x0
(s) , E

{
e−sYC

}
|Sdr,Sid<C(τ),d0,x0

=
exp

(
−sC(τ)

θdr

)

LSid|d0,x0

(
s
θdr

) = exp (VC (s)) , (84)

where VC (s) , −sC(τ)
θdr

+ 2πλBU
(

sυS
θdr

)
.

APPENDIX C

The UL coverage probability conditioned on d0 and x0 is

PUL|d0,x0 , P {γ > γ} |d0,x0 = P {SUL > γ (I +W )} |d0,x0 . (85)

Note that (85) relates to the conditional SINR distribution through PUL|d0,x0 = 1−Fγ (γ) |d0,x0 , with

Fγ (�) |d0,x0 being the conditional SINR CDF.

Referring to (50) in section III.A, the signal power distribution conditioned on d0 and x0 is

approximated by the Gamma distribution Γ [kUL, θUL]. Therefore, for integer kUL, we derive the

following conditional UL coverage probability, which is given by

PUL|d0,x0 ≈ EI





Γ
(
kUL,

γ(I+W )
θUL

)

Γ (kUL)





∣∣∣∣∣
d0,x0

=

kUL−1∑

i=0

(−1)i

i!

∂i

∂si

[
LYI |d0,x0

(s)
]

s=1
, (86)

where Γ(·, ·) denotes the upper incomplete Gamma function, and YI , γ(I+W )
θUL

. Based on (76) in

Appendix A, the Laplace transform of YI conditioned on d0 and x0 is given by

LYI |d0,x0
(s) , E

{
e−sYI

}
|d0,x0 = exp

(
−sγW

θUL

)
LI|d0,x0

(
sγ

θUL

)
= exp (V (s)) , (87)

where V (s) , −sγW
θUL

− 2πλ′
uUI

(
sγυIρ
θUL

)
.
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