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Abstract: Infrared small target detection occupies an important position in the infrared search and
track system. The most common size of infrared images has developed to 640× 512. The field-of-
view (FOV) also increases significantly. As the result, there is more interference that hinders the
detection of small targets in the image. However, the traditional model-driven methods do not
have the capability of feature learning, resulting in poor adaptability to various scenes. Owing to
the locality of convolution kernels, recent convolutional neural networks (CNN) cannot model the
long-range dependency in the image to suppress false alarms. In this paper, we propose a hierarchical
vision transformer-based method for infrared small target detection in larger size and FOV images
of 640× 512. Specifically, we design a hierarchical overlapped small patch transformer (HOSPT),
instead of the CNN, to encode multi-scale features from the single-frame image. For the decoder,
a top-down feature aggregation module (TFAM) is adopted to fuse features from adjacent scales.
Furthermore, after analyzing existing loss functions, a simple yet effective combination is exploited
to optimize the network convergence. Compared to other state-of-the-art methods, the normalized
intersection-over-union (nIoU) on our IRST640 dataset and public SIRST dataset reaches 0.856 and
0.758. The detailed ablation experiments are conducted to validate the effectiveness and reasonability
of each component in the method.

Keywords: infrared small target detection; deep learning; self-attention; transformer

1. Introduction

Infrared detectors can detect targets all day long. Even at night, infrared radiation
varies depending on the temperature of objects, so the target will have a grayscale dif-
ference from its surroundings on the infrared image. In the field of view (FOV) of the
infrared search and track (IRST) system, the long-range target contains a small number of
pixels, which is generally considered to have an image area of no more than 9× 9 pixels
in the 256× 256 image according to the definition of SPIE [1]. Detecting infrared small
targets is important for military early-warning [2], maritime surveillance [3], etc. How-
ever, small scale causes the lack of inherent features of targets, such as shapes, edges,
textures, etc. Improving detection rates while reducing false alarm rates has always been a
challenging task.

IRST systems usually use multiple frames stitched together to cover a large FOV. The
size and FOV of a single-frame image are continuously increased to save time for the
wide-area search. Specifically, covering a horizontal 360-degree range, a 320× 256 infrared
detector with the FOV degree of 2.25× 1.8 requires 200 frames for stitching. Keeping
the resolution constant, a 640× 512 detector with the FOV degree of 4.5× 3.6 only needs
100 frames. With the same integration time per frame, a detector with the larger size and
FOV can save half the total time. However, these improvements bring more interference
that can easily be detected as false alarms, making the detection of small targets more
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challenging. As shown in Figure 1, in larger size and FOV infrared images, it is difficult to
distinguish targets from false alarms from local features only.

(a) Sky (b) Building
Figure 1. Infrared small targets in developed IRST640 dataset of sky (a) and building (b) scenes. The
green and red box is the target and the false alarm, respectively.

Depending on the images used, infrared small target detection can be classified into
single-frame detection and multi-frame detection. In this paper, we focus on single-frame
infrared small target (SIRST) detection.

Over the past decades, many methods for SIRST detection have been proposed. Using
deep learning as a boundary, these methods can be divided into model-driven and data-
driven. Model-driven methods can be further classified as background suppression-based,
local contrast measurement (LCM)-based, and optimization-based. Early methods mainly
use background suppression, sliding a special window over the image to enhance the target
and suppress the background, such as top-hat filter [4], max-median filter [5], etc. However,
these methods generate a large number of false alarms when dealing with sea–sky junction
lines or heavy cloud clutter. The LCM-based method is inspired by the human visual
system, assuming that the target is a local area with a significant grayscale difference from
the background. These methods explicitly construct a discriminative measurement that can
reflect the characteristics of small targets. The target is detected based on the difference or
ratio between the grayscale of the central pixel and the neighboring pixels in the sliding
window [6–8]. However, due to the long-range attenuation of infrared radiation and the
weak radiation intensity of the target itself, small targets in infrared images often have low
grayscale values and do not always satisfy the assumptions of the LCM-based methods.
From a matrix perspective, the optimization-based approach models SIRST detection as
a low-rank sparse matrix decomposition [9–11]. Ultimately, these model-driven methods
are based on hand-designed features and need to follow some specific assumptions. These
inherent shortcomings lead to the poor adaptability of these methods to various scenes in
increasingly complex infrared images.

Unlike model-driven methods, recent convolutional neural network (CNN)-based
methods have the capability of feature learning in a data-driven manner. Publicly available
SIRST datasets have further contributed to the development of CNN-based methods [12,13].
Most of these networks consists of a contracting path that extracts high-level features
from the input image and an expanding path that reconstructs the mask for pixel-wise
segmentation by the single or multilevel up-sampling procedures. In order to detect targets
in larger size and FOV images, it becomes critical to learn features of targets and the
background in a larger context area. CNN-based methods use the stacking of convolutional
layers to increase the receptive field of the network layer by layer, but every value in
the feature map only responds to values within the local receptive field in the previous
feature map. This inherent locality of convolution makes it difficult to learn long-range
dependencies in the image. In NLNet [14], the self-attention mechanism has demonstrated
its powerful ability in non-local feature learning in various computer vision tasks and has
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been subsequently improved and expanded by other researchers [15,16]. However, these
methods never remove the CNN architecture. Self-attention is only used as plug-and-play
modules for feature refinement. The transformer is originally used in machine translation to
learn the long-range dependency between different word tokens by self-attention layers [17].
ViT first applies it to image classification [18]. Dividing the image into different patches
as tokens, the vision transformer for the first time abandons convolution layers to extract
image features and instead makes full use of self-attention layers to explicitly learn the long-
range dependencies of different patches in the image, opening up a promising direction in
the field of computer vision.

Based on the above observation, we purpose a hierarchical vision transformer-based
method to detect infrared small targets in larger size and FOV images of 640× 512, called
IRSTFormer. The overall structure inherits the classic encoder-decoder design, learning the
pixel-by-pixel segmentation mask in an end-to-end manner for each input image. We design
a hierarchical overlapped small patch transformer (HOSPT) to extract multi-scale features
from the input image. Image tokens are obtained by the overlapped small patch embedding
(OSPE). It also performs down-sampling at different stages to obtain multi-scaled features.
In the decoder, we present a top-down feature aggregation module (TFAM), consisting of
the multilayer perceptron (MLP) and the channel-attention block. Adjacent feature maps
are fused progressively to obtain the final target segmentation mask. Since the pixel share
of the infrared small target is extremely small, after analyzing existing binary cross entropy
(BCE) and softIoU loss functions, we exploit a simple yet effective combination of them
to optimize the network convergence, called combined BCE and softIoU loss (CBS loss).
In addition, we develop a publicly available SIRST dataset of 640× 512, called IRST640,
hoping to promote the further development of this field. In summary, the contributions of
the paper can be summarized as:

• A hierarchical vision transformer is purposed to detect infrared small targets, which
removes the intrinsic shortcomings of existed methods;

• A simple yet effective combination of existing loss functions is exploited to optimize
the network convergence;

• Experiments on public SIRST dataset and our developed IRST640 dataset demonstrate
the superiority of our method over other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 reviews related works about
infrared small target detection. In Section 3, we describe the proposed method. Sections 4 and 5
is the experiment part, including results and discussion. Section 6 provides the conclusion
and our plan about the future work.

2. Related Work
2.1. Detection-Based Infrared Small Target Detection

The data-driven CNN is able to learn features adaptively from images and outper-
forms model-driven methods for the detection of infrared small targets. According to
different processing paradigms, CNN-based methods for SIRST detection can be divided
into detection-based [19–22] and segmentation-based methods [12,13,23–29]. The detection-
based method outputs the position and scale information of targets directly for the input
image, in the same way as generic target detection algorithms, such as Faster RCNN [30]
and SSD [31]. ISDet [19] trains both the image filtering network and the target detection
network in an end-to-end manner. Du et al. follows the two-stage paradigm of Faster
RCNN and designs the small-iou strategy for positive and negative sample partitioning
to solve the problem of false convergence and sample misjudgment due to small target
size [20]. SSD-ST [21] drops low-resolution layers and enhances high-resolution layers of
SSD to adapt the detection of infrared small target. Chen et al. design a two-stage network
for target detection in the linear scanning IRST system [22].
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2.2. Segmentation-Based Infrared Small Target Detection

The processing paradigm of segmentation-based data-driven methods is the same as
that of model-driven methods. They utilize networks to make binary prediction pixel by
pixel on the input image to obtain the segmentation mask. After that, a threshold is utilized
to output the target position and scale information. Most of the segmentation networks use
the encoder-decoder structure, with the encoder condensing the image to extract features
and the decoder stretching the features to obtain the segmentation mask. The differences
of these methods are reflected in model design [12,23–25], feature optimization [26–29],
and feature fusion [13]. Fang et al. converts target segmentation into residual prediction,
and the network outputs the background image [23], while training the segmentation
network, TBCNet [24] adds a classification network as the semantic constraint to improve
the learning ability of the network for image features. MDvsFA [12] and IRSTD-GAN [25]
both use the generative adversarial network (GAN) to perform image translation. MDvsFA
simultaneously uses two generators to balance missed detection and false alarms. Besides,
it publishes a large-scale infrared small target dataset with the image size of 128× 128.
However, the infrared small targets in this dataset do not exactly meet the definition
of SPIE. ACM [13] proposes an asymmetric contextual modulation module to fuse the
high-level semantics and low-level details. It also publishes a high-quality dataset called
SIRST. This dataset includes various backgrounds with the average size of 302 × 221,
but only contains 427 images. ALCNet [26] modularizes MPCM [32] as special blocks
in the network to achieve a learnable local contrast measurement, which improves the
feature extraction capability of the network. RISTDnet [27] uses the hand-crafted feature
method as convolution layers with fixed parameters and places them at the beginning of
the backbone network to form a segmentation network together with normal parameter
learnable convolution layers. AGPCNet [28] and LSPM [29] add non-local modules to
networks to perform feature refinement. Both of them use the self-attention mechanism
to capture long-range dependency in images, but they are still limited by the locality of
convolution layers.

2.3. Attention Mechanism

Attention mechanism can be regarded as a resource redistribution mechanism by
finding correlations between input data and highlighting important parts. It has been
widely used in computer vision and natural language processing. SENet [33] proposes
a two-step operation of squeeze and excitation to dynamically modulate the weights of
each channel, thus recalibrating the features to improve the representational power of the
network. SKNet [34] adds attention branches of different receptive fields on the basis of
SENet, realizing adaptive adjustment of receptive fields to the scale of input information.
In addition to one-dimension channel attention, CBAM [35] also extracts two-dimension
spatial attention from feature maps to re-weight features. NLNet [14] borrows the self-
attention mechanism to model the long-distance dependencies in images. To reduce the
computational complexity of the non-local module, GCNet [16] proposes a global context
modeling module that integrates spatial attention and channel attention into a single
module, which can model the global context as efficiently as NLNet and as lightweight
as SENet. NLNet has made a preliminary exploration of applicating the self-attention
mechanism in deep learning-based computer vision, but like other networks, it only adds
plug-and-play modules to the network for feature refinement, without deeply exploring the
potential of the attention mechanism. ATAC [36] and AFF [37] utilize attention modules as
activation function modules and feature fusion modules in networks, respectively, which
essentially suppress useless features and highlight useful features. They can be seen as the
exploration of full attention networks.

2.4. Transformer for Computer Vision

With the great success of transformers in machine translation and natural language
processing [17], the self-attention mechanism has gradually been applied in computer
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vision. As a pioneer, ViT [18] builds a transformer for image classification, which ex-
plicitly models the long-range dependencies between different tokens in an image using
self-attention layers. For the first time, it abandons the convolution operation in computer
vision tasks, thus avoiding the intrinsic locality. After that, the transformer is gradually
used for target detection [38], semantic segmentation [39], and super-resolution [40]. In
nnformer [41], the transformer is combined with the UNet for medical image processing.
MAResU-Net [42] add the self-attention module to CNN for remote sensing image seg-
mentation. After obtaining image features from CNN, Liu et al. adopt the self-attention
mechanism to learn the interaction information of image features in a larger range [43].
Unlike it, our network extracts features by a pure transformer structure and does not utilize
the convolutional backbone network. For complex infrared images, it is able to explore the
long-range dependencies of different regions more effectively and sufficiently.

3. Method

In this section, we introduce our method IRSTFormer in detail, a vision transformer-
based method for infrared small target detection.

3.1. Network Architecture

As shown in Figure 2, our method belongs to segmentation-based infrared small target
detection. Given an image of H×W × 1, the network classifies each pixel in the image into
target or background, and finally outputs the corresponding segmentation mask.

HOSPT1 HOSPT2 HOSPT3 HOSPT4

Up-sample

CBS loss

TFAMTFAMTFAM MLP

𝑡𝑟𝑎𝑖𝑛

𝑡𝑟𝑎𝑖𝑛&𝑖𝑛𝑓𝑒𝑟
Pred

𝑝𝑟𝑒𝑑 𝑔𝑡𝑟𝑢𝑡ℎ

Figure 2. The architecture of the proposed IRSTFormer, which consists of a four-stage encoder
hierarchical overlapped small patch transformer (HOSPT), a progressive decoder with top-down
feature aggregation modules (TFAM), and the combined BCE and softIoU (CBS) loss.

In order to reduce the false alarm in complex infrared images more efficiently, we
propose a hierarchical vision transformer HOSPT to extract multi-scale features of H

2i ×
W
2i × Ci, where i ∈ {1, 2, 3, 4}, C1 = 32, C2 = 64, C3 = 160, C4 = 256. Different from recent
CNNs, the self-attention layers in the transformer can learn the dependency relationship
in the range of the whole image. This is essential to suppress background interference in
complex images. The shallow features contain more target location features that help to
locate the target in the image. Deeper features, on the other hand, contain richer semantic
features that help to distinguish between false alarms and targets. Therefore, for the
decoder, we present the TFAM. In each TFAM, adjacent features are firstly aggregated
in the order of top-down. After that, we utilize the channel attention to refine the fused
feature. Getting the predicted segmentation mask, we utilize the CBS loss to optimize
the network.

3.2. Hierarchical Overlapped Small Patch Transformer

Among the existing deep learning methods, deepening CNNs are used to extract
features from infrared small target images, but these methods are always limited by the
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locality of convolution, resulting in the poor ability of modeling long-range dependencies
in the images. With the increase in size and FOV of infrared detectors, this deficiency is
more likely to lead to detection errors. Therefore, we design a transformer-based encoder
HOSPT for feature extraction.

At the beginning of each stage, we design the OSPE to dived the input feature map
into different patches and conduct linear projection to obtain the two-dimension feature
embedding. During this process, the OSPE also completes the down-sampling of feature
maps to realize the multi-scale feature extraction. After that, the dot-product self-attention
layer can explicitly model the dependencies between different image patches. The extracted
features define the importance of how each patch is similar to other patches in the input
feature map. Figure 3 shows the structure of every stage.

Linear

Linear

Linear

𝐹 𝐾
Reshape

𝐾′
Transpose

Softmax

𝑉
Reshape

𝑉′

𝑄

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

Linear

Linear

LN

Self 
A

ttention

LN

FFN

LN

O
SPE

Transformer Block (×2)

Division for 
Overlapped Patch

Linear Projection of
Flattened Patch

HOSPT

Figure 3. The architecture of each stage in the hierarchical overlapped small patch transformer
(HOSPT). The overlapped small patch embedding (OSPE) divides the input feature map into different
patches and conducts linear projection to obtain the two-dimension feature embedding. In the
self-attention layer, attention features is calculated in form of dot-product. A 3× 3 convolution layer
is utilized in the feed-forward network (FFN). The layer normalization (LN) is utilized to normalize
the feature.

Every stage consists of four parts: OSPE, self-attention layer, feed-forward network
(FFN), and layer normalization (LN). One self-attention layer, one FFN, and two LN
constitute one transformer block. Each stage consists of two transformer blocks.

After experimenting with different parameters of the OSPE, we set the patch to 3× 3
and the stride to 2, which means there is an overlap of three pixels between adjacent patches.
Compared with ViT [18], the overlap preserves the continuity between different patches.
Specifically, for input three-dimension feature maps of Ci × H

2i × W
2i , it is firstly divided into

Ni+1 patches of Ci × 3× 3, where Ni+1 = H
2i+1 × W

2i+1 . Then, each patch is flattened and
projected linearly into 1× Ci+1. Finally, the output two-dimension feature embedding has
the size of Ni+1 × Ci+1.

The self-attention layer aims to capture the long-range dependency of every patch pair.
As shown in Figure 3, given a feature map, the network learns three sets of parameters to
project the features (F) of N × C to query (Q), key (K), and value (V). Then, the weight is
obtained by similarity calculation of the query and the key. Common similarity functions
include dot-product, splicing, perceptron, etc. The softmax function is used to normalize
the weight. Finally, we multiply the weight with the corresponding value to obtain the final
attention features. The attention features define the importance of how each patch is similar
to other patches in the feature map. For the original standard multi-head self-attention,
it makes Q, K, and V have the same size of N × C and calculates the self-attention in the
form of dot-product with the following equation:
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Attention = so f tmax
(

QKT
√

dhead

)
V (1)

where dhead is the dimension. We can see that the computational complexity is quadratic
with the size of the feature map, which is prohibitive for large size images. Therefore, the
spatial reduction is applied to K and V, which can be formulated as:

K
′
= LinearCR→C

(
ReshapeN,C→ N

R ,CR(K)
)

(2)

V
′
= LinearCR→C

(
ReshapeN,C→ N

R ,CR(V)
)

(3)

K, V of N × C is firstly reshaped into the size of N
R × CR. Then, the linear projection

is utilized to restore the number of channels from CR to C. After such options, we obtain
K
′

and V
′

of N
R × C. As a result, the computational complexity of self-attention is reduced

from O
(

N2) to O
(

N2

R

)
.

In the FFN, the 3× 3 convolution is utilized to replace the position encoding. There-
fore, the encoder is robust to different sizes of input images as generally found in the
segmentation task. The FFN can be formulated as:

xout = MLP(GELU(CONV3×3(MLP(Xin)))) (4)

3.3. Top-Down Feature Aggregation Module

After obtaining the features of four scales, we should aggregate them in a suitable
way. In the U-Net, the transpose convolution and the shortcut are utilized to fuse adjacent
scaled features. However, this design will double the number of parameters in the network.
Considering the number of parameters in the transformer is already more than that of
the CNN, we adopt the simple design of the feature pyramid network (FPN) [44]. In the
original FPN, features at different scales are fused by linear addition. This unweighted
fusion approach may lead to redundancy of information. Therefore, highlighting important
features and suppressing useless features is a more appropriate way to aggregate.

We present the TFAM to form a progressive decoder. As shown in Figure 2, according
to the top-down order, the features of adjacent stages are fused to obtain the final pixel
segmentation mask. The structure of TFAM is shown in Figure 4, during the fusion, the
MLP is first used to unify the dimensions of different scaled features. Then, upper-level
features are up-sampled and concatenated with lower-level features along the channel
dimension. After that, we utilize a convolution layer of 3× 3 and a ReLU function to reduce
the dimension and obtain fused features. Finally, channel attention is used to refine the
fused features.

Taking features of C × H ×W as the input, we firstly utilize the global pooling for
shrinking the feature maps to obtain channel-wise statistics. Next, channel attention, which
explicitly models the global information among channels, is obtained after two linear
functions and two activation functions. Refined features can be obtained by multiplying
the channel attention and the input features. In this way, useful features can be highlighted
while useless features can be suppressed. The overall process can be formulated as:

CS =
1

H ×W

H

∑
i=1

W

∑
j=1

F(i, j) (5)

CA = σ
(

Linear c
4→c

(
δ
(

Linearc→ c
4
(CS)

)))
(6)

FR = F · CA (7)
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where F means the input features of C× H ×W, CS means the channel-wise statistics, δ
means the ReLU function, σ means the sigmoid function, CA means the channel attention,
and FR means the refined features.

U
p-sam

ple

MLP

Cat

C
onv

3×
3

C
hannel

A
ttention

Global
Pooling

Linear
𝑐 →

𝑐
4

ReLU
Linear
𝑐
4 → 𝑐Sigmoid

𝐹𝐶𝑆𝐶𝐴𝐹𝑅

TFAM

R
eLU

Figure 4. The architecture of the top-down feature aggregation module (TFAM). It mainly consists of
the multilayer perceptron (MLP) and the channel-attention block.

3.4. Loss Function

Infrared small target detection can be seen as the binary classification of the input
image, where each pixel is distinguished as the target or the background. LSPM [29] utilizes
the binary cross-entropy (BCE) loss function when training.

LBCE = − 1
n

n

∑
k=1

(GklogPk + (1− Gk)log(1− Pk)) (8)

where n is the batch size, G is the ground truth, and P is the predicted segmentation mask.
However, the pixel area of small infrared targets is extremely small. In our test images,
the small target has a pixel share of less than 0.03% ( 9×9

640×512 ≈ 0.00025). Due to the severe
imbalance between positive and negative samples, when training, the network that is
supervised by the BCE loss can tend to output zeros because even then the loss function is
not very large. In other words, the target is overwhelmed by the background. Secondly,
there is no prioritization between the target and background, and all pixels in the image
are treated equally. At last, the loss of each pixel is calculated independently, ignoring the
global structure of the image.

To obtain a better model, we expect the network to focus more on the target region,
rather than treating all pixels equally. Intersection over union (IoU) is usually used as
the metric for image segmentation, so an intuitive idea is to directly use IoU as the loss
function [45]. In ALCNet [26], AGPCNet [28], and DNANet [46], the softIoU loss function
is utilized for infrared small target detection, which is defined as

Lso f tIoU = 1− 1
n

n

∑
k=1

Pk ∩ Gk
Pk ∪ Gk

(9)

where n is the batch size, G is the ground truth, and P is the predicted segmentation mask.
However, when supervised by the softIoU loss, our network cannot converge, resulting in
no target can be detected. We analyze this phenomenon from the perspective of the gradient.
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For analysis, we assume that the network performs the single point output. Conse-
quently, the following equation is used to calculate the loss value.

y = sigmoid(x) =
1

1 + e−x (10)

Lso f tIoU = 1− t · y + ε

t + y− t · y + ε
=

{ y
y+ε , t = 0
1−y
1+ε , t = 1

(11)

where x is the output, y ∈ (−1, 1) represents the probability value of a pixel being the target,
t ∈ {0, 1} represents the ground truth of the pixel, among which 0 means the background
and 1 means the target, and ε is the smoothing factor, which is a very small value.

Using the chain rule, the gradient of the softIoU loss is as follows and shown in Figure 5.

∂Lso f tIoU

∂x
=

∂So f tIoUloss
∂y

· ∂y
∂x

=


εy(1−y)
(y+ε)2 , t = 0
y(y−1)

1+ε , t = 1
(12)

Figure 5. The gradient of the softIoU loss for negative background samples (t = 0) and positive target
samples (t = 1).

Figure 6 shows the network output values x at the first and middle epoch of the
training. Because of the weight initialization, the network output values at the first epoch
are concentrated around 0. As shown by the gradient diagrams, the absolute values of
the gradient at this time are close to 0 for the negative background sample (t = 0) and the
maximum value for the positive target sample (t = 1). This indicates that the contribution
of the background region to the network is much smaller than that of the target region,
which means that the network is more concerned with finding the target. This tendency
will make the network segment more pixels and reduce the missed detection of target
pixels. Entering the middle epoch, the network outputs negative and positive values for
the predicted background and target regions, respectively. As can be seen from the gradient
diagrams, the gradient values at this time both tend to be close to 0. Therefore, the network
parameters tend to be updated slowly. Since it has entered the gradient saturation zone, if
there are false alarms or missed targets at this time, it will be difficult for the network to
overcome these errors, that is, the network is less sensitive to errors.
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Figure 6. The output x of the network at the first and middle epoch of the training

On the other hand, during the training, the value of the loss function varies with the
change of the segmentation mask. To ensure smooth training, large changes in the value
need to be avoided. In the softIoU loss, a smaller target pixel area (denominator) leads to
a larger change in the loss function values corresponding to the same prediction change
(change of the numerator), further leading to a drastic gradient change. Once it enters the
saturation zone in the early stage of training, it will make the network difficult to converge.
Therefore, compared to the generic instance segmentation, a single softIoU loss leads to an
instability of the training when the network performs infrared small target segmentation.

We also analyze the BCE loss function from the perspective of gradient. The following
equation is used to calculate the loss value.

y = sigmoid(x) =
1

1 + e−x (13)

LBCE = −t · log y− (1− t) · log(1− y) (14)

where x is the output, y ∈ (−1, 1) represents the probability value of a pixel being the
target, t ∈ {0, 1} represents the ground truth of the pixel, among which 0 means the
background and 1 means the target. According to the chain rule, the gradient of the BCE
loss is as follows.

∂LBCE
∂x

=
∂LBCE

∂y
· ∂y

∂x
= y− t =

{
y, t = 0

y− 1, t = 1
(15)

We can observe that the gradient of the BCE loss is equal to the prediction error. The
positive and negative samples contribute to the gradient equally. In the early training
period, the prediction error is relatively large. Therefore, the gradient value is large. The
network parameters can be updated quickly. Entering the latter period, as the prediction
error decreases, parameters are updated slower and the network gradually converges to a
stable state.

Based on the analysis above, we propose combined BCE and softIoU (CBS) loss, as
formulated below:

LCBS = Lso f tIoU(P, G) + αIn(1 + β · LBCE(P, G)) (16)

where α = 1, β = 100. It consists of the BCE loss and the softIoU loss. The former mitigates
category imbalance, while the latter can provide smooth gradient values. Inspired by
Libra RCNN [47], we utilize the natural logarithm to balance the values of two parts. In
Section 5.3, we exploit different forms and parameters of the combination. Compared with
the weighted addition, the natural logarithm has the ability to adaptively adjust two loss
functions at different epochs of the training. The gradient of the CBS loss is formulated as

∂LCBS
∂x

=
∂Lso f tIoU

∂x
+

α · β
1 + β · LBCE

· ∂LBCE
∂x

=
∂Lso f tIoU

∂x
+

100
1 + 100 · LBCE

· ∂LBCE
∂x

(17)
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At the early epoch of the training, the value of LBCE is relatively large. Due to
adjustment coefficients α and β, the contribution of LBCE to the gradient is reduced, and
the gradient mainly comes from Lso f tIoU . The network focuses more on the target area.
When the training enters late epochs, the value of LBCE becomes small. Due to the effect of
adjustment coefficients, the gradient contribution of LBCE is increased. Even if the error
occurs, resulting in the saturation of Lso f tIoU , LBCE still can supplement enough gradient
for network parameters to continue iterating.

4. Result

In this section, we first introduce the experimental setting including the dataset,
evaluation metrics, and implementation details. Then, we compare our IRSTFormer with
other state-of-the-art methods to demonstrate the effectiveness of the network. Finally, we
show ablation studies on the encoder, decoder, loss function, and dataset of the network to
verify the design of the network.

4.1. Experimental Setting
4.1.1. Dataset

Our study is motivated by the fact that infrared images with progressively larger size
and FOV make small target detection more challenging. However, existing public datasets
do not meet this requirement. Collecting by an IRST system, we develop a synthesized
infrared small target dataset of 640× 512, called IRST640, which contains 1024 images.
As shown in Figure 1, the background interference includes the cloud, buildings, and
trees. We generate one or more infrared small targets on each real scene image. Zhao et al.
have demonstrated the potential of synthesized data for realistic detection tasks [25]. The
IRST640 is available on our homepage: https://github.com/jzchenriver/IRST640 (accessed
on 5 June 2022).

In the ratio of 8:2, we obtain the training set of 819 images and the test set of 205 images.
Since our dataset is collected by an IRST system at a fixed location, the images are of a
single scene. The publicly available dataset SIRST has an average image size of 302× 221.
Although smaller than ours, it contains more kinds of scenes. After experimenting based
on the mixed and unmixed dataset, we mix the training set of our IRST640 with the training
set of SIRST to avoid overfitting caused by the single scene.

The final training set consists of 1160 images, among which 819 images come from our
IRST640 dataset and 341 images come from the public SIRST dataset. Two test sets of them
keep independent. To be specific, 205 images from the IRST640 dataset and 86 images from
the SIRST dataset are used for evaluation separately.

4.1.2. Evaluation Metrics

The network performs detection by segmenting targets from the background, so pixel-
level metrics and target-level metrics are utilized to conduct the evaluation simultaneously.

In the terms of pixel-level metrics, we use the normalized IoU (nIoU) and FMeasure
(FM) to perform the comprehensive evaluation. They are defined as:

nIoU =
1
n

n

∑
k=1

TPk
Tk + Pk − TPk

(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

FMeasure =
2× Precision× Recall

Precision + Recall
(21)

https://github.com/jzchenriver/IRST640
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where TP, FP, FN, T, and P denote the true positive, false positive, false negative, true,
and positive, respectively. The nIoU first calculates the IoU for each prediction and then
calculates the mean value for the entire test set. The FM simultaneously considers Precision
and Recall. A method is considered to be a good method when obtaining high values (↑)
on all of these metrics.

Target-levels metrics probability of detection (PD) and false-alarm rate (FA) are also
utilized. They are defined as:

PD =
#numbero f correctlypredictedtargets

#numbero f alltargets
(22)

FA =
#numbero f f alselypredictedpixels

#numbero f allpixels
(23)

We consider that the correctness of the prediction depends on whether the centroid
distance between it and the ground truth is less than 3 pixels. A method is considered to be
a good method when obtaining a high PD (↑) and a low FA (↓).

4.1.3. Implementation Details

Our proposed method is implemented using Pytorch 1.7.0. We resize the image to the
size of 512× 512 as the input. The network is optimized by the adagrad method, where the
weight decay coefficient is set to 0.01. The pre-trained weight on the ImageNet is used for
network initialization. We train the network for 100 epochs with a batch size of 2. In the
first 10 epochs, the learning rate increases linearly from 0 to 0.0005. After that, the initial

learning rate is multiplied by
(

1− epoch−10
totalepoch−10

)0.9
for every epoch. On the hardware, we

implement all methods on a Ubuntu PC with one Nvidia RTX 2080ti GPU and two Intel
Xeon E5-2678 CPUs.

4.2. Comparison to the State-of-the-Art Methods

We perform the comparison to other 13 methods to demonstrate the superiority of our
proposed IRSTFormer, including background suppression-based methods (Tophat [4], Max-
median [5]), LCM-based methods (TLLCM [6], RLCM [7], AAGD [8]), optimization-based
methods (PSTNN [9]), CNN-based methods (ResNetFPN [44], ALCNet [26], DNANet [46],
AGPCNet [28], LSPM [29]), GAN-based methods (MDvsFA [12]), and transformer-based
methods (Segformer [39]).

4.2.1. Qualitative Results

For the intuitive comparison, Figures 7 and 8 show the segmentation masks of the
total of 14 methods corresponding to the same image.

For the complex cloud background shown in Figure 7a, neither the background
suppression-based methods nor the optimization-based method detects the target. Al-
though TLLCM and RLCM can detect the target, both are less effective in suppressing false
alarms. All the deep learning-based methods are able to accurately detect targets from
complex backgrounds, indicating that their feature extraction ability learned from training
data is robust to heavy cloud layers.

In Figure 7b–d, the ground scene is more complex than the sky scene. The deep learning-
based methods show false alarms. In particular, in Figure 7c, only ResNetFPN, DNANet, and
our proposed IRSTFormer accurately detect the target and no false alarms appear.

In Figure 7e, the target luminance is weak. Furthermore, there are a large number of
noisy pixels. The detection results of the deep learning-based methods are overall inferior
to the traditional methods. MDvsFA detects both the target and the noisy pixels, so the FA
value is high. Even so, our proposed method achieves target detection with zero false alarms.

In summary, benefiting from the feature learning capability of networks, the detection
results of deep learning-based methods are much better than that of traditional methods.
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AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth
(a)

(b)

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth
(c)

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth
(d)

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth
(e)

Figure 7. The segmentation masks of 14 methods corresponding to the same image of cloud (a), ground
(b–d), and noisy pixels (e) scene. The green and red circle is the detected target and false alarm, respectively.
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AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

(a)

(b)

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

AAGDMaxmedian PSTNN ResNetFPNRLCMTLLCMTophatImage

AGPCNetALCNet DNANet LSPM MDvsFA Segfromer IRSTFormerGroundtruth

(c)

(d)

(e)

Figure 8. The 3D segmentation masks of 14 methods corresponding to the same image of cloud (a),
ground (b–d), and noisy pixels (e) scene.
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Among the three subclasses: CNN, GAN, and Transformer, the GAN-based MDvsFA
has a higher false alarm rate although it is more capable of detecting targets. For cloud
scenes with relatively simple features, the CNN-based method has a strong detection
capability. However, once faced with more complex ground scenes, it cannot suppress
false alarms well due to the locality of convolution. With the increase in the FOV and
size of infrared images, this defect causes more detection errors. The transformer-based
approaches explicitly model the dependencies between different image patches through
the self-attention mechanism, thus having strong ability to distinguish between targets
and false alarms. Compared with Segformer, our proposed IRSTFormer has improvements
for the encoder, decoder, and loss function, therefore achieving both improvements in
detection rate and reduction in false alarm rate.

4.2.2. Quantitative Results

The quantitative results of different methods on IRST640 and SIRST are shown in
Table 1.

Table 1. The comparison results on the IRST640 and SIRST dataset with pixel-level and target-level metrics.

Method
IRST640 SIRST

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7) nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

Tophat 0.0836 0.144 0.324 2000 0.425 0.567 0.587 2000

Max-median 0.0279 0.0516 0.396 3000 0.253 0.382 0.463 412.5

TLLCM 0.241 0.383 0.450 71.06 0.283 0.411 0.424 203.1

RLCM 0.464 0.616 0.896 228.3 0.339 0.470 0.684 2000

AAGD 0.0648 0.116 0.216 135.5 0.165 0.271 0.348 157.0

PSTNN 0.286 0.398 0.671 1000 0.626 0.726 0.785 1000

ResNetFPN 0.806 0.884 0.985 67.51 0.664 0.763 0.872 582.4

ALCNet 0.829 0.903 0.988 6.171 0.684 0.785 0.881 248.8

DNANet 0.808 0.890 0.976 2.047 0.645 0.747 0.844 773.1

AGPCNet 0.761 0.852 0.985 145.2 0.674 0.778 0.908 557.6

LSPM 0.838 0.908 0.988 2.618 0.723 0.825 0.936 303.0

MDvsFA 0.368 0.518 0.918 1000 0.332 0.472 0.906 9000

Segformer 0.761 0.852 0.979 189.6 0.664 0.767 0.899 358.4

IRSTFormer 0.856 0.920 0.988 1.496 0.758 0.859 0.991 57.66

Our proposed IRSTFormer achieves optimal results on all metrics, which proves
the effectiveness of the method. Specifically, deep learning-based methods significantly
outperform traditional methods in both pixel-level metrics and target-level metrics. This
is because traditional methods cannot learn to extract features from the image. Moreover,
many complex scene images in the test set do not satisfy the prior assumptions of traditional
methods, such as buildings, trees, clouds, etc. This leads to poor results of these methods,
among which RLCM and PSTNN achieve relatively good results.

For deep learning-based methods, the input size is all of 512× 512. The PD of all
methods exceeds 0.84, but the detection results of GAN-based MDvsFA show a large
number of false alarms, which lead to a low level of pixel-level metrics FA. For CNN-based
DNANet and AGPCNet, in the experiments, the softIoU loss used in the original paper does
not enable the network to converge properly. We analyze the reason for this phenomenon
in Section 3.4. After changing the loss function to the proposed CBS loss, the training
proceeds normally. It is worth noting that LSPM, borrowing the idea of self-attention,
has suboptimal detection results, but it only use the self-attention as feature optimization
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modules in the network. Compare with it, we construct a feature extraction network that
is entirely based on the self-attention mechanism, taking full advantage of its ability to
model long-range dependencies. On the IRST640 dataset, the nIoU and FM are improved
by 0.018 and 0.012. On the SIRST dataset, which contains more complex scenes, the most
noticeable improvement is on the PD metric, which increases by 0.055. Compared with the
transformer-based Segformer, the improvement acquired by our method in both nIoU and
FM is close to 0.1. PD continues to improve while FA drops by an order of magnitude.

In Table 2, based on a computer with one Nvidia RTX 2080ti GPU, we show the compu-
tational complexity (GMac), the number of parameters, and the processing speed (FPS) of
different networks when a 512× 512 image is input. Compared with the suboptimal LSPM,
our method achieves an improvement in all experimental metrics, while the computational
complexity and the number of network parameters decrease significantly. In the future
work, we will focus on how to improve the processing speed of the IRSTFomer.

Table 2. The computational complexity, the number of parameters, and the processing speed of
different networks.

Method Complexity (GMac) Parameters Speed (FPS)

ResNetFPN 15.28 374.56 K 119

ALCNet 14.52 384.79 K 53

DNANet 56.41 4.70 M 11

AGPCNet 172.54 12.36 M 7

LSPM 246.25 31.58 M 30

MDvsFA 988.44 3.77 M 5

Segformer 6.74 3.71 M 65

IRSTFormer 111.06 4.82 M 22

5. Discussion

As mentioned earlier, our proposed IRSTFormer consists of three parts: HOSPT
encoder, TFAM decoder, and CBS loss. In this section, we discuss our method in detail.
Each experiment is trained for 50 epochs.

5.1. Ablation Study

Using Segformer with BCE loss as the baseline, we show the enhancement of each of
these three parts. Tables 3 and 4 show the results on two datasets.

Table 3. The ablation study on the IRST640 dataset.

HOSPT TFAM CBS Loss
IRST640

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

0.761 0.852 0.979 189.6

X 0.798 0.882 0.988 27.30

X X 0.828 0.902 0.991 16.08

X X X 0.856 0.92 0.991 1.496
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Table 4. The ablation study on the SIRST dataset.

HOSPT TFAM CBS Loss
SIRST

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

0.664 0.767 0.899 358.4

X 0.728 0.836 0.972 571.3

X X 0.731 0.836 0.963 270.6

X X X 0.743 0.845 0.982 124.6

On the IRST640 dataset, after changing the encoder into the HOSPT, nIoU is improved
by 0.037. It indicates that the design of overlapped small patches is suitable for segmenting
the infrared target on an extremely small scale. Based on this, the TFAM and CBS loss
continue to improve the detection performance. Especially, the CBS loss is highly effective
for false alarm suppression. Compared to the baseline, our method acquires an increase of
0.095 in nIoU, 0.068 in FM, and 0.012 in PD. Furthermore, FA drops by more than 100 times.
The performance on the SIRST dataset is similar. The target-level metric PD is improved
by nearly 10% and FA decreases by nearly 3 times. Three parts improve the nIoU by
0.064, 0.003, and 0.012, respectively, which demonstrates the effectiveness of OSPE in the
transformer encoder. Another pixel-level metric FM shows the same trend. In the next
section, we show the influence of different parameters in the OSPE.

5.2. Different Parameters in the OSPE

In this section, we experiment with different parameters in the OSPE. The results are
shown in Tables 5 and 6.

Table 5. Results of different parameters in the OSPE on the IRST640 dataset.

Patch Size Stride
IRST640

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

7 2 0.798 0.879 0.979 28.05

5 2 0.796 0.877 0.985 41.51

3 2 0.798 0.882 0.988 27.30

2 2 0.766 0.860 0.994 70.87

Table 6. Results of different parameters in the OSPE on the SIRST dataset.

Patch Size Stride
SIRST

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

7 2 0.670 0.777 0.927 320.7

5 2 0.703 0.811 0.972 255.5

3 2 0.728 0.836 0.972 571.3

2 2 0.700 0.807 0.936 749.2

As mentioned above, the HOPST has four stages. The OSPE is located at the beginning
of each stage. It divides the feature maps into patches and projects them to the two-
dimension embedding. There are two parameters: patch size and stride size, among which
the stride size determines the down-sampling times. Considering the target size, we set the
stride to 2. Therefore, the downsampling times of the last stage is 16. It is worth noting
that, compared with the Segformer that downsamples 32 times, this small change results in
a significant improvement in detection metrics. The experiments on both datasets show
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the same trend. When the size of the patch drops from 7 to 3, the detection performance
gradually improves. We suggest that this is related to the pixel size of infrared small
targets in the images. When the patch and stride size is 2 and 2, it means there are no
overlapping pixels between adjacent patches. From the result, we can see that the presence
of overlapping pixels leads to better results. This indicates the importance of preserving
the continuity between patches.

5.3. Different Forms of Combination of the BCE and SoftIoU Loss

After analyzing the existing loss functions for infrared small target detection, we
believe that both BCE loss and softIoU loss have their own drawbacks. When the size and
FOV of infrared images increase, these drawbacks will lead to more detection errors. We
exploit the suitable form to combine them. The simplest form is the weighted addition
(WA), as formulated below,

Lso f tIoU + α · LBCE (24)

In addition, inspired by LibraRCNN [47], we also use the natural logarithm (NL) to
balance the values of two parts, which is formulated as,

Lso f tIoU + α ln(1 + β · LBCE) (25)

The results are shown in Tables 7 and 8. The trend of the experimental results on the
two test sets is similar, with the best performance coming from the last set in the table—two
parts are combined by the natural logarithm with α = 1, β = 100. When the softIoU
loss is utilized, the network cannot converge during the training, and all metrics are zero.
We analyze the cause of this phenomenon in Section 3.4. For the weighted addition and
natural logarithm, the latter group has better results. We suggest that the natural logarithm
function has the ability to adaptively adjust the trend of the loss value at different epochs of
training. Meanwhile, the nonlinearity of the function improves the ability of the network to
fit nonlinear data. Because the values of two functions differ by many orders of magnitude,
in the respective groups, the best results simultaneously come from α = 1, β = 100.

Table 7. Results of different forms of loss function combination on the IRST640 dataset.

Form α β
IRST640

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

BCE - - 0.828 0.902 0.991 16.08

softIoU - - 0 0 0 0

WA 1 - 0.837 0.908 0.991 15.33

WA 10 - 0.845 0.912 0.991 22.81

WA 100 - 0.849 0.916 0.991 3.927

NL 1 1 0.823 0.898 0.985 38.15

NL 1 10 0.85 0.917 0.991 23.46

NL 1 100 0.856 0.92 0.991 1.496
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Table 8. Results of different forms of loss function combination on the SIRST dataset.

Form α β
SIRST

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

BCE - - 0.731 0.836 0.963 270.6

softIoU - - 0 0 0 0

WA 1 - 0.671 0.777 0.963 834.4

WA 10 - 0.698 0.801 0.945 407.6

WA 100 - 0.727 0.826 0.972 158.4

NL 1 1 0.634 0.735 0.853 359.7

NL 1 10 0.702 0.803 0.908 236.0

NL 1 100 0.743 0.845 0.982 124.6

5.4. Different Training Sets

We conduct experiments on two datasets: our proposed IRST640 and publicly available
SIRST. Table 9 shows the results with different training datasets.

Table 9. Results of different training sets.

Training
Test: IRST640 Test: SIRST

nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7) nIoU ↑ FM ↑ PD ↑ FA ↓ (×10−7)

IRST640 0.858 0.921 0.991 0.3722 0.393 0.47 0.596 191.6

SIRST 0.606 0.731 0.951 70.99 0.744 0.841 0.963 275.9

Mixed 0.856 0.92 0.988 1.496 0.758 0.859 0.991 57.66

Since our IRST640 is collected by an IRST system at a fixed location, the images are
of a single scene. As the result, if we use only the training set of IRST640, even though
the detection performance is excellent on its own test set, it performs poorly on the SIRST
test set. This suggests that the network has a tendency of overfitting. When trained with
the SIRST, the network has better generalization capability. However, the segmentation
performance still needs to be improved. After the mixing, compare with the IRST640 only, a
significant increase is achieved on SIRST, although there is a slight decrease in performance
on its own test set. Compare with the SIRST only, benefiting from the increasing number
of training images, the performance on both test sets gains noticeable improvement. It
indicates that the mixed training set can endow the network with stronger generalizability.

6. Conclusions

In this paper, we propose a novel vision transformer-based method for single-frame
infrared small target detection, called IRSTFormer. Different from existing methods, this
network adopts the pure transformer design for the encoder. Making full use of the
self-attention mechanism, the proposed HOPST can learn long-range dependencies in
increasingly complex images. For the decoder, a compact module TFAM is presented to
perform the feature aggregation progressively. Furthermore, we purpose the CBS loss to
supervise the optimization of network parameters after analyzing traditional loss functions
in detail. This simple yet effective loss function can bring significant improvement for false
alarm suppression. Compared with state-of-the-art methods, our IRSTFormer acquires the
best pixel-level and target-level detection performance. The nIoU and detection rate reaches
0.758 and 0.991 on the public SIRST dataset. On our developed IRST640 dataset, our method
also has the optimal result. Exhaustive ablation studies demonstrate the effectiveness and
reasonability of each component in the method.
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In the future, we will focus on the deployment of IRSTFormer in the edge device and ex-
plore how to utilize a transformer on multi-frame images for infrared small target recognition.
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