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IRT-Based Internal Measures of Differential

Functioning of Items and Tests

Nambury S. Roju, Illinois Institute of Technology

Wim J. van der Linden, University of Twente

Paul F. Fleer, Illinois Institute of Technology

Internal measures of differential functioning of items
and tests (DHFIT) based on item response theory (IRT) are

proposed. Within the DFIT context, the new differential
test functioning (DTF) index leads to two new measures
of differential item functioning (DIF) with the following
properties: (1) The compensatory DIF (CDIF) indexes for
all items in a test sum to the DTF index for that test and,
unlike current DIF procedures, the CDIF index for an item
does not assume that the other items in the test are unbi-

ased ; (2) the noncompensatory DIF (NCDIF) index, which
assumes that the other items in the test are unbiased, is

comparable to some of the IRT-based DIP indexes; and
(3) COIF and NCDIF, as well as DTF, are equally valid for
polytomous and multidimensional IRT models. Monte
carlo study results, comparing these indexes with Lord’s
&chi;2 test, the signed area measure, and the unsigned area
measure, demonstrate that the DFIT framework is accu-

rate in assessing DTF, COIF, and NCDIF. Index Terms:
area measures of DIF, compensatory DIF, differential
functioning of items and tests (DFIT), differential item
functioning, differential test functioning, Lord’s &chi;2,
noncompensatory DIF, nonuniform DIF, uniform DIF

Differential item functioning (DIF) continues to receive significant attention among measurement spe-
cialists and practitioners. Several DIF techniques are currently available for determining whether an item is

functioning differently in two groups (e.g., black vs. white, female vs. male). Techniques such as the area
between two item response functions (IRFs; Kim & Cohen, 1991; Raju, 1988, 1990; Rudner, Geston, &

Knight, 1980), Lord’s ( 1980) x2 test, and Thissen, Steinberg, & Wainer’s (1988) likelihood ratio tests are
based on item response theory (IRT), whereas the Mantel-Haenszel (MH) technique (Holland & Thayer,
1988) and the delta method (Angoff & Ford, 1973) do not use IRT. These and other currently available DIF

techniques (e.g., Dorans, 1986; Mellenbergh, 1982; Scheuneman, 1979; Shepard, Camilli, & Averill, 1981;
Swaminathan & Rogers, 1990) function at the item level; that is, they identify items that have significant
DIF or function differently in two groups. A comprehensive review of DIF methods can be found in Millsap
& Everson (1993).

In practice, test developers typically either exclude an item with significant DIF (also referred to as
&dquo;bias&dquo;) from the final test or modify it so that it no longer exhibits significant DIF and include it in the final
test. Although the removal of items with significant DIF is expected to result in a test that is fair to (or
unbiased for) various racial, ethnic, and gender subgroups, until recently (Shealy & Stout, 1993) a psycho-
metric measure of differential functioning for an entire test was not available. With an appropriately de-
fined measure of differential test functioning (DTF), it would be possible to determine the effect of removing
or adding items with significant DIF on the DTF of the final test.

It is also desirable to have a definition of DIF such that individual DIF values sum to the total test DTF for

a given set of items. Current measures of DIF do not possess such an additive property. Therefore, one

purpose of this study was to define such IRT-based measures of DTF and DIF within the context of a defini-

APPLIED PSYCHOLOGICAL MEASUREMENT

Vol. 19, No. 4, December 1995, pp. 353-368
&copy; Copyright 1995 Applied Psychological Measurement Inc.

0146-6216/95/040353-l6$2.05

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



354

tion of differential functioning of items and tests (DFIT) originally proposed by Raju, van der Linden, &

Fleer (1992).

Measures of Differential Functioning of Items and Tests

Differential Test Functioning

Let P,(O.,) represent the probability of success for examinee s with trait level 0 on item i. P, can be repre-
sented either by a one-, two-, or three-parameter logistic model or the normal ogive model (Lord, 1980, pp.
12-13), with item parameters a (discrimination), b (difficulty), and c (pseudoguessing). Let the test consist
of n items and have one set of item parameters for each of two groups-the reference (R) group (typically
the majority group) and the focal (F) group (typically the minority group). Also assume that the two sets of
item parameters are on a common scale. J,»R(9) represents the probability of success on item i at a given 0
level for examinee s if examinee s is a member of the reference group; P,,(O.,) represents the probability of
success on the same item for examinee s if examinee s is a member of the focal group. If an item functions

differently in the two groups, P,R and P,, will be different for some examinees.
Within IRT, an examinee’s expected proportion correct (EPC, sometimes referred to as the &dquo;true&dquo; score)

can be expressed as

Here, each examinee has two EPCs-one as a member of the focal group (TF) and the other as a member of the
reference group (1;R)’ If 1;R = TF, then the examinee’s EPC is independent of group membership. The greater
the difference between TSR and l§~, the greater the differential functioning of a test. A measure of DTF at the
examinee level may be defined as (TF - I:R)2. Therefore, an overall measure of DTF across examinees is

DTF = E (TF - TR~2 ~ (2)

where the expectation (E) can be taken over the reference group or the focal group. If it is assumed that the

expectation is taken over the focal group, Equation 2 can be rewritten as

Letting D., = TF - T R, Equation 3 can be rewritten as

where f,(O) is the density function of 0 in the focal group, and JlTF and JlTR represent the mean EPC of
examinees in the focal and reference groups, respectively.

Differential Item Functioning

A compensatory DIF index. Based on Equation 1, Equation 2 can be rewritten as

where . Equation 5 can be rewritten as
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where Cov(d,, D) is the covariance between the difference in item probabilities for item i (d,) and the
difference between the two EPCs (D), and p.d and ftp are the mean of d,, and ~, respectively. Differential

functioning at the item level is now defined as

This definition of DIF will hereafter be referred to as compensatory DIF (CDIF) to distinguish it from

noncompensatory DIF (NCDIF), which is defined below. Combining Equations 6 and 7 yields

which shows that the definition of CDIF, (given in Equation 7) is additive in the sense that differential

functioning at the test level is simply the sum of differential functioning at the item level, and which
indicates how much each item’s CDIF contributes to DTF. Furthermore, rewriting Equation 5 yields

This equation shows the compensating nature of the proposed index. For example, if F:,p - ~p = -.3 and

P7, - P,R = +.3 for a given examinee, then the bias in Item 6 cancels the bias in Item 7 and the two items

together contribute a sum of 0 to the examinee’s DTF. That is, the proposed DTF index takes into account

compensating bias across items at the examinee level. In addition, Equation 8 shows the nature of compensat-
ing bias across items at the group level. From a practitioner’s point of view, this is a useful feature because it
enables the practitioner to assess not only which items have compensating bias and which items to delete due
to bias, but also to estimate the net effect of item deletion on DTF. When items with significant CDIF are
deleted from the final test, the revised DTF can be computed for the retained items using Equation 4.

There is an important difference between the definition of CDIF given in Equation 7 and other definitions
of D~. As noted above, previous definitions of D~ are item level indexes and therefore do not take into
account correlated DIF or item bias that may be inherent in a set of items. DFIT, however, begins with a
definition of DTF and then decomposes DTF into differential functioning at the item level (CDIF). Hence, it is
not surprising that the definition of CDIF given in Equation 7 includes information about bias from other items
in the test. In practice, it is possible that two items with significant CDIF may be quite similar because the
stems for the two items are very similar in phrasing or in represented content. In such cases, bias in the two
items may have a nonzero correlation that, in turn, will influence differential functioning at the test level.
A noncompensatory DIF index. If it is assumed that all items in the test other than item i are com-

pletely unbiased, then it must be true that dj = 0 for all j # i. Equation 7 can be rewritten as

which does not include information about bias from other items. Three aspects of NCDIF are considered.

First, because d, was defined above as the difference in item probabilities for item i, NCDIF = 0 if and

only if the item parameters for item i are equal for both the focal and reference groups. Lord’s ( 1980) x2 test
(LC) offers a test of the null hypothesis that the two sets of item parameters are identical. Therefore, LC may
be viewed as a test of the hypothesis that NCDIF, = 0, and LC and Equation 10 may be considered compa-
rable in the sense of providing similar information about DIF.

Second, by letting ~p(8) denote the density function of 8 in the focal group, Equation 10 can be rewritten
as
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This is identical to a definition of DIF recently offered by Wainer (1993).
Third, Equation 11 can be rewritten as

which, according to the Cauchy-Schwartz inequality, can be expressed as

Raju (1988) noted that if fF(9) is rectangular, then the right-hand side of Equation 13 is the square of the
absolute or unsigned area between two IRFS,. Therefore, the unsigned area definition of DIF may also be
viewed as a special case of Equation 10.

The proposed NCDIF index, therefore, appears to be closely related to many of the current methods for

assessing DIF within the IRT context. This special case, however, assumes that all items in the test, other
than the item under investigation, do not function differentially. This assumption is not likely to be satis-
fied in most test development situations. NCDIF is noncompensatory because its value for an item can only
be non-negative; therefore, it cannot cancel or compensate across items.

Practical Applications of the DFIT Framework

DTF, CDIF, and NCDIF can be useful in practice. The question of which index is more important depends
on the purpose. When total test scores are used for determining the effectiveness of an instructional pro-
gram or for placement and/or selection, DTF is likely to be more valuable than CDIF or NCDIF. CDIF is useful
if a test developer is forced to include (for content or other reasons) items with significant DIF in a test in
which some items favor the focal group and some favor the reference group. The effect on DTF of counter-

balancing items with significant DIF indexes provides critical information because it is generally difficult
to exclude all items with significant DIF from the final version of a test. Other DIF procedures do not

provide such information. However, if there is concern about the potential offensiveness of certain test
items to certain groups of individuals or about why certain types of items are more biased than others,
NCDIF is likely to be more valuable than DTF and CDIF. Therefore, it is helpful to have access to all three

types of information for a given test. The DFIT framework provides such information whereas other proce-
dures offer only information similar to that provided by NCDIF.

Finally, note that the DFIT framework is equally valid for polytomous and multidimensional datasets.

Applications of the DFIT framework to polytomous and multidimensional tests are described in Flowers,
Oshima, & Raju (1995), Oshima, Raju, & Flowers (1993), and Oshima, Raju, Flowers, & Monaco (1995).

Significance Tests for DTF and NCDIF

Although DTF, CDIF, and NCDIF are defined in terms of true parameters, only estimates of 0, a, b, and c

(denoted 6, a, b, and c, respectively) are available. Therefore, the proposed DTF, CDIF, and NCDIF indexes
are computed using estimated person and item parameters in practice. Estimates of DTF, CDIF, and NCDIF
(denoted F C F and NCDIF, respectively) are computed using D, and d,, for examinee s. That is,

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



357

ana

where and PR are item probabilities computed using estimated person and item parameters, and o, ~,
and Cov represent the unbiased estimates of a, p, and Cov, respectively.

According to the above definitions, D CD and 5fi@ have two distinct sources of error: ( 1 ) estimation
error resulting from the use of person and item parameter estimates, and (2) sampling error resulting from

using a sample from a population of examinees. If true person and item parameters were known, DTF, c
and ~ would include only sampling error. In that case, DS = 0 with probability 1 for all s in the focal group
when the null condition (i.e., DTF = 0) is true. Using estimated person and item parameters in the computation
of DTF, CDIF, and NCDIF, it is very unlikely for Ds = 0 for all s, even under the null condition. Hopefully, future
research will be successful in proposing significance tests that fully account for the errors associated with the
estimation of person and item parameters. Note, however, that although the present approach is not ideal,
such approaches are currently used in the unidimensional case in computing standard errors for person and
item parameters by LC for D~ and by the significance tests for the exact signed area (ESA) and exact unsigned
area (EUA) measures (Raju, 1990).

x2 test for DTF. Assuming that D is normally distributed with a mean of gD and a finite standard
deviation of 0 D’ for examinee s

Because it is well known that Z2 has aX2 distribution with 1 degree of freedom (df ), the sum of Z,2 across
NF examinees in the focal group has a X2 distribution with N, df, where NF is the focal group sample size
and N, is the reference group sample size. Algebraically, this can be expressed as

In the present context, the interest is in minimizing the expectation of F or approaching

which implies that p,D also must be 0. Note that po = 0 is a necessary but not sufficient condition for the

validity of Equation 21. Substituting g, = 0 into Equation 20 yields

which, according to the definition of F for N, examinees (Equation 4), can be expressed as

Substituting the sample-based estimate of the variance of D, Equation 23 can be rewritten as
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Because of the sample-based estimate of the variance of D in Equation 24, the df for this X2 is probably less
than NF. This X2 test may prove useful in determining if an observed (or sample-based) DTF is significantly
different from 0.

t test for í5TF: Another statistical test that may prove useful in the present context is the t test, which

can be expressed as

Under the null hypothesis that g, = 0, Equation 25 can be rewritten as

According to the previously stated assumptions about the distribution of D and the asymptotic normality of

AD with variance equal to ao lNF, Equation 26 is expected to have an asymptotic t distribution with NF -1 1 df
Because the Ns are generally large in IRT analyses, t and x2 tests are likely to lead to very similar conclusions.

When an observed F is statistically significant, the search for items that may be causing the signifi-
cant t or xz can begin. After identifying and removing such items from the test, F and its X2 should be
recomputed with the remaining items. Because the value for Cov-(d,,D) depends on, among other things,
the number of items that are still in the test, it is recommended that a single item at a time be selected and
that the procedure be continued until the X2 associated with the revised index becomes nonsignificant.
Because C Fs sum to the total test F, when a given F is found statistically significant, items with
large, positive h should be deleted, one item at a time, until F based on the remaining items is statis-
tically nonsignificant. All deleted items should be labeled &dquo;biased&dquo; or characterized as having significant
CDIF. No separate significant test, therefore, is proposed for CDIF. Because this sequential deletion of items
is likely to capitalize on chance, a cross-validation of the end result is desirable whenever the sample is of

adequate size for such an analysis.
x2 and t tests for NCDIF. Based on the significance test defined above for 00, a x2 significance test,

given that d, is normally distributed with a finite variance, may be similarly defined for (sample-based)
N D for item i as

with NF df. A t test for N D is

with NF - 1 df.
An exploratory monte carlo examination of the X’ test for 6TF and N D showed that these indexes

were overly sensitive for large Ns (Fleer, 1993). In a no-bias condition (i.e., identical true item parameters
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in the focal and reference groups), the percent of items identified as biased at the .01 level of significance
was substantially greater than 1%. Therefore, after several replications under the no-bias condition, Fleer
found that a cut-off value of .006 for both indexes resulted in falsely identifying approximately 1% of the
items as biased. Therefore, the criterion of < .006 or nonsignificant X2 was used with F in the successive
deletion of items. For NCDIF, items with NCDIF > .006 and statistically significant x2s were designated as
differentially functioning items.

Method

Data Generation

A two-parameter logistic model (2PLM) was used to generate simulated datasets using the computer pro-
gram RANGEN (Fleer, Kiley, & Raju, 1991). Item response data for two groups of equal9-the reference group
and the focal group-were generated. RANGEN was used to randomly select the values for the underlying
(true) examinee 0 from a normal (0,1) distribution and, for each value selected, calculate the item responses.
An item response for a simulated examinee was determined by comparing the calculated probability of a
correct response to an item, based on a randomly selected 0 parameter and preselected item parameters, with
a number sampled at random from the uniform distribution on the [0,1] interval. If the sampled number was
less than the calculated probability, the simulated item response was scored as correct; otherwise, it was
scored as incorrect.

Test Length and Sample Size

The simulated test consisted of 40 items. Two sample sizes were used N = 500 (the small sample
condition) and N = 1,000 (the large sample condition)-to allow a comparison of the effects of sample size.
N = 500 corresponded to an apparent minimum size for relatively accurate recovery of item parameters
estimated with marginal Bayesian procedures under the 2PLM (Baker, 1990; Cohen & Kim, 1993; Kim &

Cohen, 1992; Lim & Drasgow, 1990).

Generation of DIF

The data were generated to simulate four proportions of test-wide DIF (0%, 5%,10%, and 20%). Datasets
contained 0, 2, 4, or 8 differentially functioning items, depending on the proportion of DIF condition (0%,
5%, 10%, or 20%, respectively) simulated. Two conditions of test-wide DIF (unidirectional vs. bidirec-

tional) were simulated. Because both CDIF and NCDIF were investigated, separate datasets were required to
reflect a condition of bidirectional differential functioning at the test level in which items favoring one

group were balanced with those favoring the other, and unidirectional test level differential functioning in
which differential functioning at the item level pervasively favored the reference group over the focal

group. For example, two items with unidirectional differential functioning would be considered biased

according to both the CDIF and NCDIF definitions of bias. However, two items with bidirectional but bal-
anced differential functioning would be considered biased only within the NCDIF definition of bias; that is,
in view of the bidirectional, balanced definition of bias, the two items (one item favoring the reference

group to the same degree as the other item favoring the focal group) would cancel each other, thus making
no contribution to the total DTF. The unidirectional and bidirectional bias conditions were treated sepa-

rately in this investigation in order to provide a more complete and adequate assessment of CDIF.
In addition, items were generated to simulate uniform DIF (a,R = a,p and b,R ~ b,.~) and nonuniform DIF (aiR

~ a,F and either b,R = b¡F or b,R ~ b,~z). Only the 20% proportion of DIF condition included nonuniform DIF items
because it contained the largest possible number of items (i.e., 8 items) with DIF and thus allowed for a more
reasonable intracondition comparison of the effects of DIF uniformity on the detection of differentially func-

tioning items. Under the bidirectional DIF condition, the nonuniformly biased items were designed so that the
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generating bs were equal in both the reference and focal groups. The intention was to produce, at once, off-

setting areas inscribed by ~s for each item (i.e., a signed area of 0.0) and (mostly) off-setting areas across

specific pairs of items. (i.e., the CDIF indexes for the two items in the pair were equal in magnitude but

opposite in sign).
The generating item parameter values for the unidirectional DIF condition (see Table 1) replicated those

used by Cohen & Kim (1993). Four focal group datasets were generated: Focal 0 is not listed in Table 1
because it contained the same item parameters as the reference group; Focal 1 contained two uniform DIF

items (Items 5 and 10); Focal 2 contained four uniform DIF items (Items 5, 10, 15, 20); Focal 3 contained
four uniform DIF items (Items 5, 10, 25, and 30) and four nonuniform DIF items (Items 15, 20, 35, and 40).
In this condition, uniform and nonuniform DIF items favored the reference group.

Values used for the bidirectional D~ condition (see Table 2) were based on a modified version of the unidi-
rectional set. Again, four focal group datasets were generated: Focal 0 is not listed in Table 2 because it con-
tained the same item parameters as the reference group; Focal 1 contained two uniform D~ items (Items 5 and

6) with Item 5 favoring the reference group and Item 6 favoring the focal group; Focal 2 contained four uniform
D~ items (Items 5, 6, 15, 16) with Items 5 and 15 favoring the reference group and Items 6 and 16 favoring the
focal group; Focal 3 contained four uniform D~ items (Items 25, 26, 29, and 30) with Items 25 and 29 favoring
the reference group and Items 26 and 30 favoring the focal group, and four nonuniform D~ items (Items 5, 6,
15, and 16) with Items 6 and 15 favoring the reference group and Items 5 and 16 favoring the focal group.
A total of 16 (2 x 4 x 2) datasets were generated and analyzed: one for each of the sample size (N = 500 and

N =1,000) x proportion of DEF (0%, 5 %, 10%, or 20%) x test-wide DIF (unidirectional and bidirectional) conditions.

Parameter Estimation

Item and 0 parameters were estimated using the computer program PC-BILOG 3.04 (Mislevy & Bock, 1990).
The program’s default Bayesian procedure, MMAP, and the default priors and their hyperparameters were
used to estimate 2PLM item parameters. Estimates of 0 used the program’s default Bayesian EAP procedure
with a unit normal prior. BILOG’S goodness-of-fit indexes were examined for model-data fit.

The accuracy of item and 0 parameter estimates was assessed using a recovery analysis. This was con-
ducted on each dataset by calculating the root mean squared differences (ltlvtSDS) and product-moment corre-
lations between generating (true) and estimated parameters.

Parameter Linking

The estimation of equating coefficients used Stocking & Lord’s (1983) test characteristic curve method as

implemented by the computer program EQUATE (Baker, Al-Karni, & Al-Dosary, 1991). In this study, all

parameter estimates for the reference group were equated to the underlying metric of the focal group. The
EQUATE program was applied iteratively to determine the final linking coefficients using the procedure re-

ported by Candell & Drasgow (1988). The final linking constants were separately and iteratively obtained for
NCDIF, ESA, EUA, and LC. In order to use the iterative process at the item level, the D~ procedure under
consideration must have a significance test. Because CDIF does not have a significance test (and items with

significant CDIF are identified with the help of a significance test for the DTF index), the final linking constants
obtained with the NCDIF procedure were used to transform the item and 0 parameters in the DFIT framework.

Measurement of Differential Item and Test Functioning

Each of the datasets was analyzed for DEF with LC, Raju’s (1990) z statistics for EsA and EUA, thex2 statistic
for F (Equation 24), and the cut-off value of .006 for NCDIF. For all these measures, items were examined
for significant differential functioning at a = .01. The relative effectiveness of D~ detection across methods
was determined by examining the number of false positives (FPs; i.e., incorrectly identifying an item as
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Table 1

Item Parameters for Generating Unidirectional DIF Conditions (Blanks Indicate That
the Same Parameters Were Used for the Focal Group as for the Reference Group)

functioning differentially) and false negatives (FNs; i.e., failing to identify items with true differential func-
tioning) produced under each method.

Results

Recovery of Item and 0 Parameters

Correlations and RMSDs between generating parameters and parameter estimates were examined. In
general, the results of the recovery analysis suggested acceptable recapturing of the underlying 0 and item
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Table 2

Item Parameters for Generating Bidirectional DIP Conditions (Blanks Indicate That
the Same Parameters Were Used for the Focal Group as for the Reference Group)

’For Focal 3, the item parameters for Items 6 and 16 were not the same as those
under Focal 1 and 2.

parameters. These results were consistent with the findings of previous studies (e.g., Cohen & Kim, 1993;
Kim & Cohen, 1992) using the same estimation and equating procedures. None of the datasets yielded
recovery indexes extreme enough to warrant exclusion from further analyses. (Data from this phase of the

study are not presented here, but they can be obtained from the authors.)
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Detection of DIF

Table 3 shows the number of FPs and FNs and the number of equating iterations to a final solution for
each DIF method for the unidirectional and bidirectional DIF conditions. In addition, the methods were

compared for identification of uniformly biased and nonuniformly biased items (see Table 4). Only the

frequency counts are reported in Tables 3 and 4 (information about the specific items identified as biased
or unbiased can be obtained from the authors).

Table 3

Identification Errors (FPs and FNs) and Number of Iterations (NI)*
for Each Method by Proportion of Test-Wide DIF and Sample Size for

Unidirectional and Bidirectional DIF Conditions

*Because the same final linking constants from NCDIF were also used in the CDIF analysis, NI is not
reported for CDIF.
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Effects of Sample Size

Unidirectional DIF. The results for the unidirectional DIF datasets indicated that a considerably smaller
number of FPs than FNs were identified across sample sizes (see Table 3). The largest number of FPs was
found for the N = 500, 5 % DIF condition. These resulted from NCDIF (2 FPS), CDIF ( 1 FP), and r.c ( 1 FP). The

single FP identification for the N = 1,000 condition resulted from ESA and occurred under the 20% DIF
condition.

The number of FNs under the unidirectional DIF condition tended to decrease as N increased and to

increase as the proportion of test-wide DIF increased. The latter trend was most evident for N = 500; the

largest total number of FN identifications was for CDIF (6 total; I at the 10% DIF condition and 5 at the 20%

DIF condition). The fewest total numbers of FNs occurred with NCDIF (3) and LC (4).
The number of equating iterations required to reach a final solution tended to decrease across methods with

an increase in N. For both N = 500 and N = 1,000, the number of iterations remained relatively consistent across
the proportion of test-wide DIF conditions. The largest single number of iterations (3) across all conditions was

required by EUA under the N= 500, 20% DIF condition. Furthermore, underN= 500 and across the test-wide DIF
conditions, the fewest total number (3) of iterations was required by LC. For N = 1,000 and across the proportion
of test-wide DIF conditions, the largest total number (4) of iterations was required by NCDIF.

Bidirectional DIF. As described above, simulation of DIF under this condition was done so as to pro-
duce bidirectional, but balanced, differential functioning at the test level. At the item level, item parameters
were selected to create adjacent pairs of differentially functioning items with (mostly) off-setting bias.
Therefore, such items would not be considered biased within the CDIF definition of bias. Hence, all items in

the bidirectional condition are considered unbiased within the context of CDIF. Results across the bidirec-

tional DIF condition should be considered within this framework.

In addition, items were constructed to reflect only uniform DIF for the 5% and 10% proportion of DIF
conditions, and uniform and nonuniform DIF under the 20% proportion of DIF condition. The nonuniformly
biased items for the bidirectional DIF condition were designed so that the generating bs were equal in both
the reference and focal groups (i.e., aR ~ aF, bR = bF). The intention was to produce both offsetting areas
inscribed by the IRFS, for each biased pair element and (mostly) offsetting areas across a biased pair. The
desired net effect, again, was to produce compensated differential functioning at the test level with differ-

entially functioning items.
Under the bidirectional DIF condition, the number of FPs was markedly smaller than the number of FNs

across sample sizes (see Table 3). BothN= 500 and N = 1,000 had a total of 6 FPs across all methods. For both
N = 500 and N = 1,000, FPs were observed under the null DIF condition (no FPs were observed under the null
DIF condition for unidirectional DIF). For N = 500 and null DIF, NCDIF and CDIF identified the same, single item
(Item 26). For N = 1,000 and null DIF, EUA identified a single item (Item 24). The largest number of FPs
occurred under the N =1,000, 20% DIF condition. ESA, EUA, and LC identified the same, single item (Item 39),
although CDIF identified a different item (Item 1). Note, however, that NCDIF produced no FPs for N = 1,000.

There were no FNs across sample size and proportion of DIF conditions, with the exception of the 20% DIF
condition. A larger total number of FNs was observed under this condition for N = 500 (12 FNs) than for N =

1,000 (5 FNs). 10 of the total 15 FNs resulted from ESA, whereas NCDIF produced 3 FNs and EUA and LCA

produced 2 FNs each. CDIF produced no FNs. The findings for ESA were not unanticipated (discussed below).
The number of required equating iterations was generally constant across sample sizes. Only NCDIF

required more than a single iteration to reach a solution (N = 500, 10% DIF condition).

Effects of Uniformity

Unidirectional DIF Table 4 provides a summary of results obtained across DIF detection methods and

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



365

DIF conditions with respect to the identification of items with uniform and nonuniform bias. For the unidirec-

tional DIF condition, all DIF methods, including CDIF, had the same items as biased. For the unidirectional DIF

condition, the largest total number (12) of identifications of truly biased items across Ns occurred equally for
NCDIF and Lc. For N = 500 and unidirectional DIF, NCDIF identified 6 of the 8 biased items, and LC identified

5 items. NCDIF identified 3 each of the uniformly and nonuniformly biased items. LC identified 2 uniformly
biased items as well as the same 3 nonuniformly biased items identified by NCDIF. For N = 500, NCDIF and LC
were the only methods to identify a nonuniformly biased item characterized by equal bs (Item 20). CDIF
identified the fewest total number (3) of biased items, two of which were uniformly biased. CDIF, ESA, and
EUA all failed to identify a single nonuniformly biased item characterized by equal bs.

The results for the N = 1,000, unidirectional DIF condition were somewhat different. Again, NCDIF and LC
identified the largest total numbers (6 and 7, respectively) of biased items. However, these methods were

joined by ESA in identifying the largest number of nonuniformly biased items (each identified the same three
items-Items 15, 20, and 35); Item 20 was the only item of the three with equal bs. CDIF also identified Items
15 and 20. Note that CDIF identified one less total number of items than NCDIF (5 vs. 6), and identified the
same uniformly biased items as NCDIF. ESA identified the fewest total number (4) of biased items; it identified

Table 4

Number of Items Identified with Significant Bias by DIF Condition, Detection
Method, and Simulated Uniformity of Bias (The Numbers in Parentheses

Refer to the Uniform. Nonuniform, and Total Number of Trulv Biased Items)

*Total number of items identified as having significant DIF regardless of
whether they were truly biased.
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only two uniformly biased items (Items 5 and 25) and a single nonuniformly biased item. In addition, ESA
failed to identify the nonuniformly biased items characterized by equal bs. This appears to be a reasonable

finding because ESA is sensitive only to items with differences in the bs (Raju, 1988). Finally, Item 40 was the

only nonuniformly biased item to elude detection across all conditions; this item may have been missed
because of its extreme true a value (see Table 1).

Bidirectional DIF. Under the bidirectional DIF condition, the largest total number (14) of DIF identifi-
cations of truly biased items across Ns was made by Lc and EUA. NCDIF identified two less items than these
methods. For N = 500, LC, EUA, and NCDIF each identified 6 truly biased items. Of these, EUA identified 2
of the uniformly biased items and all of the nonuniformly biased items. Recall that under the CDIF condi-
tion, all nonuniformly biased items were characterized by equal bs. For N = 500, NCDIF and LC identified
the same three uniformly biased and nonuniformly biased items. ESA failed to identify any items with
nonuniform DIF and identified two of the four uniformly biased items. CDIF identified only one item as
biased for each sample size condition. This was expected because there were no items simulated with

significant CDIF under the bidirectional condition (recall that CDIF, by definition, has no biased items under
the bidirectional DIF condition).

The identification of truly biased items improved for N = 1,000. EUA and LC identified all the biased
items; NCDIF identified all but a single nonuniformly biased item (Item 6). ESA identified only half of the

truly biased items but all of the uniformly biased items.

Discussion

In general, the number of detection errors was relatively low across simulated conditions and methods.
For the unidirectional DIF condition, the number of FPS was markedly smaller than the number of FNs. The

largest number of FPs was found for the N = 500 condition. The number of FNs, the primary indicator of
threat to the validity of a measure, tended to decrease as N increased and to increase as the proportion of
test-wide DIF increased. The most problematic condition across methods appeared to be the N = 500, 20%
DIF condition. Here, NCDIF performed better than the other methods, and CDIF performed least well. For the
N = 1,000, 20% DIF condition, the poorest performance was exhibited by ESA. This appeared to be related
to the presence of nonuniform DIF characterized by equal bs.

Detection errors under the bidirectional condition were minimal for almost all of the methods across

simulated conditions. The exception was ESA. ESA failed to identify items with nonuniform bias character-
ized by equal bs. This finding, across bidirectional conditions of DIF, also provides strong support for the
theoretical expectations (see Raju, 1988) but contradicts the results of a previous study reported by Cohen
& Kim (1993). They found no differences between LC, ESA, and EUA with respect to FN identification of
uniform versus nonuniform DIF. In addition, they reported that the use of EUA appeared more likely to
result in identification errors than either of the other two methods. The present results do not generally
support this finding across the conditions examined.

In the bidirectional balanced DIF condition, CDIF did not identify any items with true DIF for N = 1,000,
and only a single item for N = 500. These findings provide strong support for the intended meaning and

purpose of the CDIF index.

The number of equating iterations required to reach a final solution was minimal across all simulated
conditions. Generally, only a single iteration was required following the initial equating of item param-
eters. Note, however, that all four DIF methods (NCDIF, ESA, EUA, and LC) required at least one iteration

beyond initial equating to arrive at a stable solution under all proportions of test-wide DIF beyond the 0%
DIF condition. This finding provides additional support for the findings of other studies (see Candell &

Drasgow, 1988; Cohen & Kim, 1993).

Although the results of this study provide strong support for the theoretical expectations for the func-
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tioning of the new measures, a number of important issues were raised that have implications for further
research. The first concerned the need for a significance test that takes into account the estimation errors
associated with 6, a, b, and c. Although the results from the proposed significance tests and/or empiri-
cally determined cutoff levels appear to be promising, there is still a need for further research on the
distribution of D (assumed to be normal) and on the empirically determined cutoff level used with DTF and
NCDIF. The critical value at a = .01 was established by the percentage of FPs observed in several monte
carlo studies in which both the focal and reference groups had the same 0 distributions and identical item

parameters. It is not presently known if this critical value was optimal for detection of differential function-

ing across the experimental conditions. More comprehensive research is required to either develop a dif-
ferent statistical significance test that is less sensitive to sample size or to establish precisely the critical
values for various a levels. The influence of different decision rules on the rates of FPs and FNs across the

new procedures also should be examined. It may be that each procedure requires a somewhat different rule
for determining which items to remove and when (sequentially) to remove them.

The impact of the a level selection on identification errors was not addressed in this study. Two recent
studies (Cohen & Kim, 1993; Kim & Cohen, 1992) indicated that the number of FNs tended to decrease

across the examined IR’r-based methods with an increase in a level from .O1 to .05. A comparative study of
identification errors at these two levels for the new measures would be helpful. Because the DIF conditions
simulated in this study were selected to provide only a partial replication of those reported in Cohen & Kim

(1993), they do not provide for an examination of the influence of unequal reference and focal group 0
means (impact) on the detection of D~. Cohen & Kim’s study (1993), however, suggested relatively small
differences in DIF detection between matched and nonmatched reference and focal groups across the con-

ditions examined. Nonetheless, the new DFIT indexes need to be investigated within the context of various

degrees of impact.
In addition, further study on variables that impact the power of IRT-based measures is required for these

measures. The influence of sample size (smaller than those used in this study), relative amounts of bias in
items (e.g., minimum required for detection), number and mix (unidirectional and bidirectional) of biased

items, and different test lengths should be systematically investigated. Also, future investigations of the
DFIT framework should include the MH technique, Shealy & Stout’s (1993) SIBTEST, and the likelihood
ratio tests (Thissen et al., 1988).
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