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β-Lactam Antibiotics?
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�e majority of patients with reported penicillin allergy are not allergic when tested or challenged. Penicillin allergy testing has 

been shown to signi�cantly reduce annual healthcare expenditures. Data have emerged showing β-lactams have multidimensional 

antibacterial e�ects in vivo, far beyond what is appreciated in standard bacteriological susceptibility testing media. �ese include 

enhancing bacterial killing by the innate immune system. Supporting the clinical relevance of these secondary underappreciated 

e�ects are recent clinical and pharmacoeconomic analyses that show worse outcomes in patients with reported penicillin allergies 

who receive non-β-lactam antibiotics when compared to their non-penicillin-allergic counterparts. �is is particularly relevant in 

the treatment of Staphylococcus aureus bacteremia. �is article reviews the tremendous advantages o�ered by β-lactam therapy and 

makes a strong case that the debunking of false penicillin allergies through a detailed allergy history and penicillin allergy testing 

should be a vital component of antimicrobial stewardship practices.
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In the history of medicine, antibiotics are the class of medica-

tions with the greatest impact on human health, reflected in 

a 2-decade increase in life expectancy in developed countries 

since the dawn of the antibiotic era in the 1940s. Antibiotics 

control common infectious diseases such as pneumonia, uri-

nary tract infections, and skin infections through microbial 

killing, and support the success of many modern clinical ther-

apeutic modalities such as cancer chemotherapy, surgery, and 

transplantation where infectious risk is increased [1].

�e β-lactam class of antibiotics has its origin in Sir 

Alexander Fleming’s serendipitous observation of the antibac-

terial properties of the Penicillium mold and the subsequent 

discovery of penicillin [1]. Approaching the 90th anniversary 

of this historic event in September 2018, our understanding 

of the therapeutic properties of β-lactam drugs beyond their 

direct activities in bacteriological media is still unfolding. �e 

goals of this commentary are 2-fold. We will �rst review how 

β-lactam drugs possess numerous adjunctive pleural pharma-

codynamics activities, not exhibited by other antimicrobial 

classes, that modulate bacterial interaction with, and suscep-

tibility to, the innate immune system—all in a manner that 

bene�ts patients. Second, we will explore the negative conse-

quences of withholding β-lactam antibiotics in favor of other 

drug classes in patients with purported (but unproven) peni-

cillin allergies, and how penicillin allergy testing can prove to 

be a very cost-e�ective element of a successful antimicrobial 

stewardship initiative.

THE NATURE OF PENICILLIN “ALLERGIES”

A sensitivity to penicillin is the most common “allergy” noted 

among patients in the United States, self-reported by 10% of 

adult patients, thus accounting for approximately 25 million 

people [2, 3]. However, as many as 98% of these patients are 

deemed nonallergic by subsequent penicillin allergy testing, 

and tolerate future β-lactams with only a slightly greater risk 

than average individuals [4–6]. Allergies to penicillin may have 

become part of the medical record because the reaction recalled 

by the patient was due to another medication, the reaction was 

nonimmunologic (eg, gastrointestinal upset, nausea, diarrhea), 

or the patient was simply told of a reaction by their family 

decades earlier, without any recollection of details. Likewise, 

one cannot discount the possibility of a rash produced by an 

intercurrent (usually viral) infection or, as exemplified by the 

diffuse rash experienced by some patients receiving amoxicil-

lin during acute mononucleosis, a transient immunologic reac-

tion rather than a true allergy [7]. Whatever their story, the vast 

majority of patients with such purported allergies in their med-

ical records are destined to receive alternative classes of anti-

biotics, with some direct and indirect adverse consequences to 

treatment and outcomes, which we review below.
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ADVERSE OUTCOMES IN PATIENTS ALLERGIC TO 

PENICILLIN

In a matched retrospective cohort study, Macy and Contreras 

[8] found several adverse consequences among patients with 

reported penicillin allergy matched to similar patients with-

out reported allergies. The “penicillin-allergic” patients expe-

rienced significantly longer hospital stays, a 23% increase in 

Clostridium difficile infection, 14% more methicillin-resistant 

Staphylococcus aureus (MRSA) infections, and 30% more van-

comycin-resistant Enterococcus (VRE) infections. The authors 

concluded that increases in opportunistic infections may have 

been driven by significantly higher usage of vancomycin, clin-

damycin, and fluoroquinolone, as vancomycin exposure is asso-

ciated with VRE, and clindamycin and fluoroquinolones are the 

antimicrobial classes posing the greatest risk for C. difficile [8]. 

In another study, 31%–51% of vancomycin use was attributed to 

alternative therapy in patients with penicillin allergy [9].

In patients with severe invasive methicillin-susceptible 

S. aureus (MSSA) infections such as bacteremia and endocar-

ditis, resorting to vancomycin to avoid a purported penicillin 

allergy may have serious impact on outcomes, given consist-

ent and reproducible clinical evidence pointing to vancomy-

cin’s inferior performance in these patient settings [10–16]. 

For example, in a large retrospective cohort of 5633 Veterans 

A�airs patients with MSSA bacteremia, patients who received 

de�nitive therapy with a β-lactam had 35% lower mortality, and 

patients receiving cefazolin or an antistaphylococcal penicillin a 

43% lower mortality, compared with patients who received van-

comycin [16]. Indeed, the 2-fold increased mortality in patients 

with MRSA bacteremia compared to those with MSSA bactere-

mia may be largely attributable to the fallback use of vancomy-

cin against MRSA [17].

Based on the preponderance of evidence, vancomycin 

use should be avoided in the treatment of MSSA bacteremia. 

Alternatives to vancomycin have emerged in the last 2 decades 

for the penicillin-allergic patient, with daptomycin being the 

�rst US Food and Drug Administration–approved alternative 

therapy in MSSA bacteremia, showing noninferiority to β-lac-

tams in a prospective randomized trial [18]. A recent study of 

patients with reported penicillin allergies and MSSA bacteremia 

compared outcomes of patients that either (1) were given van-

comycin without any assessment, (2) received cefazolin if ana-

phylaxis was ruled out by history, or (3) had a complete allergy 

evaluation including penicillin skin testing [19]. �ey found as 

expected that vancomycin yielded the lowest cure rates (67%) 

and highest rates of recurrence (15%), in contrast to those who 

received cefazolin, where cure rates were approximately 84% 

and relapse only 9%. �e vancomycin-treated group also had 

the highest rates of allergic and other adverse drug reactions. 

�is study makes it very clear that taking a stated penicillin 

allergy at face value and avoiding it with vancomycin use is 

providing suboptimal care in MSSA bacteremia [19]. �e same 

researchers showed in a subsequent study of MSSA bacteremia 

that optimal and adequate antimicrobial therapy was hampered 

by a history of a penicillin allergy [20].

Further evidence of the negative consequences of purported 

penicillin allergies continues to accumulate. Compared to 

patients without allergy, reported penicillin-allergic patients 

have 50% increased odds of getting a surgical site infection, 

attributable to more frequent receipt of second-line agents 

such as vancomycin (35% vs 3%) or clindamycin (49% vs 3%), 

and less likely receipt of cefazolin (12% vs 92%) [21]. Another 

large multicenter prospective cohort study found that patients 

with reported allergies who did not receive preferred β-lactam 

therapy had an adjusted odds ratio of 3 for an adverse event, 

compared to those without allergy or those that received an 

alternative β-lactam agent [22]. In a retrospective study at a 

Veterans A�airs hospital, patients with a penicillin allergy had 

a signi�cantly longer time to receipt of �rst antibiotic dose (236 

minutes vs 187 minutes, P = .03), and were more likely to receive 

a carbapenem or �uoroquinolone antibiotic (P  <  .00001), 

which may have implications on selection of more antimicro-

bial resistance or C. di�cile infections [23]. From an economic 

standpoint, a recent comprehensive meta-analysis showed that 

reported penicillin-allergic patients had higher outpatient and 

inpatient drug costs and inpatient hospitalizations that cost on 

average $1145–$4254 more per patient [24].

In summary, consistent data have emerged pointing toward 

possible shortcomings in clinical outcomes and medical care 

costs when utilizing non-β-lactam antibiotics in patients with 

penicillin allergies. �ese studies are not de�nitive and can-

not rule out the possibility that penicillin allergy may be a 

surrogate marker of a suboptimal response to infection. Until 

more de�nitive clinical or immunological studies can be done, 

another approach is to determine if β-lactams o�er any addi-

tional adjunctive properties that are not seen in other antibiotic 

classes. �ese are discussed in the next section.

INDIRECT ANTIMICROBIAL PROPERTIES OF 

β-LACTAMS: BEYOND THE STANDARD MINIMUM 

INHIBITORY CONCENTRATION

Delay in therapy as discussed above may be one contributing 

factor toward inferior outcomes in patients with penicillin 

allergies [23]. However, significant data have emerged in the 

last few years indicating that β-lactams display unique anti-

bacterial properties that are not appreciated in our standard 

in vitro susceptibility testing assays. Antistaphylococcal β-lac-

tams (eg. nafcillin, oxacillin, flucloxacillin) were for many years 

considered clinically irrelevant against MRSA due to absence 

of activity in standard minimum inhibitory concentration 

(MIC) testing in bacteriologic media such as Mueller-Hinton 

broth. However, these agents have recently been shown to ren-

der MRSA more vulnerable to killing by antimicrobial peptides 

and other components of the innate immune system [25, 26]. 
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These effects have recently been employed in combinatorial 

treatment regimens against MRSA, wherein reinstitution of 

various β-lactam drugs with either daptomycin or vancomycin 

led to more rapid bloodstream clearance and successful salvage 

of refractory MRSA bacteremia [25–28]. Similar effects were 

identified with ampicillin-resistant VRE, wherein the addition 

of ampicillin, which alone demonstrated no activity, markedly 

potentiated the activity of daptomycin and host innate peptides 

in the killing of the pathogen [29]. Ceftaroline and other β-lac-

tams exhibit similar properties for sensitizing VRE to cationic 

peptides and immune clearance [30, 31]. VRE isolates with a 

daptomycin MIC of 4 mg/L, considered susceptible under the 

current Clinical and Laboratory Standards Institute breakpoint, 

have been associated with increases in daptomycin treatment 

failure in bacteremia, stimulating calls to lower the daptomycin 

enterococcal susceptibility breakpoint to ≤2 mg/L [32]. β-Lac-

tam plus daptomycin combination therapy restores clinical suc-

cess rates in VRE bacteremia against isolates with daptomycin 

MIC of 4 mg/L to rates similar to those seen for isolates with 

lower MICs [33].

Cationic antimicrobial peptides such as cathelicidins, 

defensins, and platelet microbicidal proteins (PMPs) are key 

front-line elements of human innate immune defense against 

systemic infection [34]. Bacterial strains may evolve resistance 

to bactericidal activity of these peptides, sometimes as an unin-

tended consequence of exposure to structurally similar phar-

maceutical antibiotics that we administer [35], or simply by 

chronic persistence in vivo whereby they may be exposed to 

the peptides at sublethal doses, for example, in high-inoculum 

infections with poor surgical source control [36, 37]. Resistance 

to these peptides may impact clinical outcomes. For example, 

PMP resistance in staphylococci and streptococci is associated 

with endocarditis and metastatic infection [38–40], and MRSA 

isolates from patients with persistent bacteremia were more 

resistant to PMP killing than those from resolved bacteremia 

[41]. It appears that β-lactams, by enhancing killing of S. aureus, 

Enterococcus species, and potentially other organisms, provide a 

means by which bacteremia may be cleared more e�ciently by 

boosting the activity of cationic peptides of the innate immune 

system or, when used in a combination regimen, potentiation of 

cell wall–active antibiotics such as daptomycin or vancomycin.

It is beyond the scope of this article to discuss recognition of 

S. aureus and other bacteria by innate immunity; thus, we refer 

readers to comprehensive reviews on the subject [42]. A poor 

proin�ammatory cytokine response by leukocytes exposed to 

S. aureus is associated with worse outcomes in mice challenged 

with S. aureus [43]. Rose et al examined cytokine expression on 

the day of clinical presentation in patients with S. aureus blood-

stream infection, and found that a low interleukin 1β (IL-1β) 

response was a signi�cant marker for persistent bacteremia, 

whereas elevated concentrations of IL-10 was a predictor of 

increased patient mortality [44]. IL-1β is a potent inducer of 

T lymphocytes and neutrophils and augments the production 

of several proin�ammatory cytokines in response to S. aureus 

and other pathogens [42, 45]. Recent work suggests that β-lac-

tams may enhance S.  aureus expression of its pore-forming 

α-toxin [46, 47], modulate O-acetyl transferase-mediated lyso-

zyme resistance [48, 49], or in�uence other exotoxin expres-

sion through PBP1 binding [50]. �ese steps may enhance 

in�ammasome activation and host IL- 1β production, thereby 

promoting more rapid bacterial clearance from the blood-

stream. Furthermore, MRSA bacterial cell wall synthesized in 

the presence of β-lactams exhibits a reduction in cross-linking 

and generates a stronger IL-1β response by macrophages [51]. 

Enhanced IL- 1β production may exacerbate in�ammation and 

clinical symptomsin certain exotoxin- driven S. aureus infec-

tions (eg, pneumonia, so� tissue infection). However, scienti�c 

data suggests that the β-lactam induction of IL- 1β signaling 

may  counteract establishment of infection or enhance clear-

ance of endovascular S. aureus infection [52]. Indeed, increased 

expression of α- toxin, a known IL- 1β inducer, attenuates 

S. aureus virulence in a rabbit endocarditis model [53].

Another key adjunctive property of β-lactams in MRSA treat-

ment is synergy with cationic host defense peptides that is not 

seen with vancomycin [25]. In line with these immunological 

synergies, MRSA grown in 1/50th MIC of nafcillin showed sig-

ni�cant reduction in skin lesions when injected subcutaneously 

into mice, in contrast to untreated controls or MRSA grown in 

1/4th MIC of vancomycin [25]. Compared to cefazolin, use of 

vancomycin as surgical prophylaxis increases the risk of MSSA 

surgical infection. Conversely, vancomycin may not outperform 

cefazolin in MRSA prophylaxis [54], although a meta-analysis 

on this topic that shows a bene�t of vancomycin as surgical 

prophylaxis in preventing MRSA postoperative infection leaves 

this topic controversial [55].

 Laboratory science is building evidence that β-lactams play 

an important role as “immunoadjuvants” in addition to antibi-

otics in S. aureus bacteremia. A summary diagram demonstrat-

ing the mechanisms of enhancement of immune system killing 

of S. aureus by β-lactams, including what was discussed above 

[44, 56–59], is depicted schematically in Figure 1. Patients who 

receive non–β-lactam antibiotics in response to purported pen-

icillin allergy may be missing out on these signi�cant e�ects 

that enhance treatment or prevent infection, as re�ected in the 

negative clinical and medical economic data associated with 

penicillin-allergic patients reviewed above.

It is important to point out that β-lactams are not the “be-all 

and end-all” of antimicrobial agents with respect to host 

in�ammation. As β-lactams induce α-toxin and other exotoxin 

expression to enhance IL-1β (a bene�t in bacteremia), the same 

property may generate more local tissue in�ammation and 

thereby more damage and worse clinical outcomes in infec-

tion types driven by exotoxin expression, such as pneumonia 

[60] and so� tissue infection [61]. �is rationale is behind the 
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recommendation of concomitant β-lactam and clindamycin 

therapy for extreme examples of these types of infections such 

as necrotizing fasciitis, presumably whereby the clindamycin 

reduces superantigen expression induced by the β-lactams. 

�ese types of studies make it clear that the assessment of anti-

microbial therapy likely needs to extend to including pharma-

codynamic interactions not just of drugs between each other, 

but also drugs with the innate immune system.

ALTERNATIVE β-LACTAM OPTIONS: CROSS-

ALLERGIES ACROSS THE β-LACTAM SUBCLASSES

In patients with an unconfirmed penicillin allergy, cross-reac-

tivity to other β-lactams has been a historical concern. While 

early research incorrectly implied a penicillin-cephalosporin 

cross-reactivity of up to 10%, this is now recognized to be a 

gross overestimation [62]. Unfortunately, these false data have 

populated medical practice, resulting in the propagation of the 

10% cross-allergy myth across decades. In contrast, more care-

ful recent studies demonstrate clinically significant immuno-

logically mediated cross-reactivity of <1% [63–67]. These low 

rates have been incorporated into guidelines within the ana-

phylaxis practice parameter. They state that approximately 4% 

of patients who have positive penicillin skin tests also react to 

cephalosporins, whereas patients who have negative penicillin 

skin tests can receive cephalosporins without allergy concerns 

[68].

Penicillins and carbapenems both have a bicyclic core render-

ing them similar in structure. �e bicyclic core is composed of a 

5-membered ring, which is attached to the β-lactam ring. Since 

the inception of the �rst carbapenem drug approval, there has 

Figure 1. β-Lactams exhibit conservable impacts on the relationship between bacterial pathogens and the human host. This has been studied in detail with Staphylococcus 

aureus, whereby the effects on bacteria render them more vulnerable to clearance by the innate immune system through multiple mechanisms outlined above. Abbreviations: 

ClfA, clumping factor A; FnBPA, fibronectin binding protein A; IL-1β, interleukin 1β; MIC, minimum inhibitory concentration; MSCRAMMs, microbial surface components 

recognizing adhesive matrix molecules; TH17, T-helper 17 cell.
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been a theoretical concern for cross-reactivity of a drug in this 

class in a patient with a veri�ed history of a penicillin allergy. As 

with cephalosporins, early studies overestimated the cross-allergy 

risk between penicillin, while more recent studies place the risk at 

0.9%–11%. Currently, there are experts in the �eld stating that the 

avoidance of carbapenem use in patients with a history of penicil-

lin allergy should be reconsidered [69]. In 2015, researchers tested 

patients with a positive penicillin skin test with 3 di�erent car-

bapenems (imipenem-cilastatin, meropenem, and ertapenem) in 

211 subjects [70]. None tested positive to any of the carbapenems. 

A subsequent study examining the cross-allergy of a con�rmed 

penicillin immunoglobulin E (IgE)–mediated hypersensitivity 

to ertapenem found the cross-reactivity was only 1 of 36 (2.8%) 

to full-dose systemic exposure to ertapenem [71]. �ese authors 

concluded that the practice of avoiding carbapenems in patients 

with β-lactam allergy histories should now be abandoned.

With respect to monobactams (ie, aztreonam), the risk of 

cross-allergy to penicillin appears to be negligible. A  2016 

study tested 214 subjects who had a positive penicillin skin test 

(T-cell–mediated hypersensitivity) with an aztreonam skin test 

[71]. No subjects had a positive skin test to aztreonam. One 

hundred seventy of the patients (all with negative aztreonam 

skin tests) accepted to be further challenged with systemic 

exposure. No subjects had clinical signs or symptoms of an 

adverse drug reaction [72].

Consistent with cephalosporins, immunological studies indi-

cate that the side chain of aztreonam determines cross-reactiv-

ity, rather than the monobactam ring itself [73]. Of note, the 

aztreonam side-chain is identical to the side-chain of ce�azi-

dime. Hence, the risk of cross-reactivity between aztreonam 

and ce�azidime is predicted to be much higher than the other 

cephalosporins and penicillin derivatives [73]. Consequently, 

clinical practice of using aztreonam in patients with a history 

of penicillin allergy is supported by the joint Task Force on 

Practice Parameters [68], stating concern only for patients with 

ce�azidime allergies.

Figure 2. A proposed algorithm for approaching hospitalized patients with purported penicillin allergy, using a combination of detailed clinical history and skin testing. 

Abbreviations: AIN, acute interstitial nephritis; GI, gastrointestinal; ID, infectious diseases; IgE, immunoglobulin G; TENS, toxic epidermal necrolysis syndrome.
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THE ROLE OF PENICILLIN ALLERGY TESTING IN 

ANTIMICROBIAL STEWARDSHIP

Although it is common for a patient or family member to 

declare a drug allergy, treating clinicians must verify the allergy 

by taking a thorough history and, if deemed necessary, test for 

a type 1 reaction. Often, obtaining a thorough history by inter-

viewing the patient has proven effective in removing the pur-

ported allergy from the patient’s medical profile [65, 74].

�e current reference standard test to con�rm acute peni-

cillin-class antibiotic tolerance is an oral amoxicillin 250  mg 

challenge with 1 hour of observation. Delayed-onset tolerance 

is con�rmed by the lack of a rash over the next 5 days. Direct 

oral challenges have been safely used in children and adults 

with low-risk histories [75].

Skin tests may also be used to diagnose a type I (immediate) 

IgE-mediated drug hypersensitivity, especially in the inpatient 

setting. However, skin testing, prior to an oral challenge, is o�en 

not necessary to safely rule out type I (immediate) IgE-mediated 

hypersensitivity in individuals with low-risk drug allergy histo-

ries. Some clinicians in the acute care setting are opposed to 

taking the time for con�rmation of tolerance testing, because it 

may delay initiation of antibiotics. In individuals with a low-risk 

history, taking 1 hour to con�rm tolerance may be an hour well 

spent [63, 76–78].

Based on the evidence favoring β-lactam therapy for some 

serious infections (eg, S.  aureus bacteremia), poor outcomes 

in patients with purported penicillin allergies, and the fact 

that purported allergies are rarely true allergies, we advocate 

a combinatorial scheme of a detailed history algorithm sup-

plemented with penicillin allergy testing, as was conducted by 

Ramsey and Staicu in their recent study [79]. Figure 2 outlines 

an approach to the hospitalized patient with penicillin allergy 

requiring antimicrobial therapy. An initial history strati�es 

patients into those in whom a purported allergy is dismissed 

by history alone (eg, gastrointestinal complaints, candidiasis), 

those in whom a documented life-threatening non-IgE-me-

diated reaction eliminates β-lactam use (eg, Stevens-Johnson 

toxic epidermal necrolysis syndrome, acute interstitial nephri-

tis), and those in whom penicillin testing can help delineate 

therapy. For the latter group, a negative allergy test (antici-

pated for the majority, especially if the urticarial rash history 

is remote) would place them into the nonallergy group, where 

they stand to receive the greatest bene�t from this intervention.

Complex clinical decision making occurs in patients who 

test skin positive but have more severe infections where β-lac-

tams have proven advantageous. While those patients would 

not be challenged with penicillins, except in rare situations 

where there would be no other therapeutic options and there-

fore must be dealt with through desensitization, the low likeli-

hood of cross-allergy to other β-lactam groups would have to 

be weighed against the signi�cant bene�t of using this group of 

drugs. A very common example where this would arise would 

be the potential choice of cefazolin instead of vancomycin for 

MSSA bacteremia. �e clinical advantages of cefazolin over 

vancomycin would likely outweigh the <5% risk of cross-allergy, 

especially in patients with complex infections. Daptomycin 

would be an alternative that appears to o�er similar outcomes 

to β-lactam therapy, but is currently considerably more costly 

[18]. Such cases should be handled with the assistance of an 

infectious disease consultant, and perhaps with further input 

from an allergy-immunology specialist, especially in light of 

emerging data that this approach markedly improves outcomes 

[80, 81].

In sum, a coordinated and resolute approach to de-label false 

allergies, with the assistance of infectious disease physicians and 

infectious disease pharmacists, may lead to improved patient 

outcomes and reduction in healthcare costs [82, 83].
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