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sciences et technologies, UMR 8198 Evo-Eco-Paleo, Villeneuve d’Ascq/CNRS/INSERM/CHU Lille, Institut
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Abstract

Research suggests that progression-free survival can be prolonged by integrating evolution-

ary principles into clinical cancer treatment protocols. The goal is to prevent or slow the

proliferation of resistant malignant cell populations. The logic behind this therapy relies on

ecological and evolutionary processes. These same processes would be available to natural

selection in decreasing the probability of an organism’s death due to cancer. We propose

that organisms’ anticancer adaptions include not only ones for preventing cancer but also

ones for directing and retarding the evolution of life-threatening cancer cells. We term this

last strategy natural adaptive therapy (NAT). The body’s NAT might include a lower than

otherwise possible immune response. A restrained immune response might forego maxi-

mum short-term kill rates. Restraint would forestall immune-resistant cancer cells and pro-

duce long-term durable control of the cancer population. Here, we define, develop, and

explore the possibility of NAT. The discovery of NAT mechanisms could identify new strate-

gies in tumor prevention and treatments. Furthermore, we discuss the potential risks of

immunotherapies that force the immune system to ramp up the short-term kill rates of malig-

nant cancer cells in a manner that undermines the body’s NAT and accelerates the evolution

of immune resistance.
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Cancer therapies, even when initially very effective, only rarely cure disseminated cancers.

Intrinsic or acquired resistance by the cancer cells to treatment lead to relapse, progression,

and death [1]. We propose that the emergence of resistant cancer cells requires two steps: first,

the cells must deploy the necessary molecular machinery to overcome the toxic effects of the

treatment. Second, the resistant cells must be sufficiently proliferative to repopulate the tumor.

These steps must be deeply related to the cost of resistance. The resources needed to develop a

resistant phenotype likely reduce fitness in the absence of therapy. Thus, wittingly or unwit-

tingly, therapies govern the survivorship and proliferation of different cancer cell phenotypes

within their tumor ecosystem.

Understanding the molecular basis of cancer drug resistance is a promising way to develop

future treatments that could potentially circumvent or eliminate the problem of resistance

[2–4]. Alternatively, strategies like adaptive therapy [5,6] focus on exploiting ecological

(changes in the tumor size) and evolutionary dynamics (changes in the frequency of different

cancer cell phenotypes) to delay or prevent the proliferation of resistant phenotypes (e.g., [7]).

A critical issue arises when considering cancer therapy as an evolutionary process. The “brute

force” therapy, aimed at killing the maximum number of malignant cells, can actually acceler-

ate the evolution and proliferation of resistant cells. High-dose therapies allow resistant cancer

cells to win twice. First, they are resistant. Second, they are free of competition from sensitive

cancer cells. This leads to a proposed evolution-based strategy that enforces a stable tumor

burden by permitting the persistence of a significant population of chemo-sensitive cells. In so

doing, chemo-sensitive cells can outcompete chemo-resistant subpopulations, hence limiting

their expansion. Since acquisition of chemo resistance generally requires significant invest-

ment of resources, cancer cells are subject to an evolutionary trade-off (due to the “cost” of

phenotypic resistance) between resistance and proliferation [8,9].

Adaptive therapy was developed through mathematical models and computer simulations.

In preclinical mouse studies and in a clinical trial on castrate-resistant metastatic prostate can-

cer, adaptive therapy delays or even prevents cancer progression as compared to traditional

therapies, particularly those involving maximum tolerable dose [5]. Despite these successes,

extensive further investigation is needed to define and understand evolutionarily optimal can-

cer treatment strategies [8,10].

The premise behind adaptive therapy is simple but relies on understanding the ecology and

evolution of the cancer cell communities and their diversity of phenotypes. When “treatment

to kill” is not possible for the metastatic disease, the goal should be to “treat to contain” in a

manner that keeps the tumor burden below the level that threatens loss of life or even quality

of life. In adaptive therapy, the treatment is used sparingly and in a temporally dynamic fash-

ion (Fig 1A). The onset of therapy both reduces the tumor burden, drives down the population

size of sensitive cells, and releases resistant cells from competition. Prior to driving the sensi-

tive cells to near extinction, therapy is then withdrawn to permit their recovery. In the absence

of therapy, the recovery of sensitive cells now has a competitive advantage over the resistant

ones, thus acting to suppress them. Upon the recovery of the sensitive cell population, therapy

is resumed, and the cycle repeats itself. The keys to the success of adaptive therapy in control-

ling (though not eliminating) the cancer cells are 1) the competitive advantage of sensitive cells

relative to resistant ones in the absence of therapy, 2) the sparing use of therapy below that

which would achieve maximum short-term kill rates, and 3) the strategic timing of therapy in

response to overall tumor sizes and the frequencies of sensitive and resistant cell phenotypes.

Here, we propose that the strategies employed in adaptive therapy may also be employed

by multicellular organisms to deal with the inevitable development of malignant cells during

growth and maintenance of normal tissue. Multicell organisms by way of natural selection

over many generations may have evolved forms of natural adaptive therapy (NAT). Part of the
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Fig 1. (A) Common strategies employed in chemotherapy and in adaptive therapy to deal with the proliferation of malignant cells. In
adaptive therapy, treatment is used sparingly and in a temporally dynamic fashion, and this both increases the competitive advantage of
chemo-sensitive cells and maintains a stable tumor burden. B) In a similar manner, when the immune system kills only some sensitive/
visible tumor cells, it allows for maintenance of a stable tumor burden because this population competes with cells that are resistant to
immune attack.

https://doi.org/10.1371/journal.pbio.2007066.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.2007066 October 2, 2018 3 / 12

https://doi.org/10.1371/journal.pbio.2007066.g001
https://doi.org/10.1371/journal.pbio.2007066


organism’s anticancer adaptations may include containing rather than just eliminating or pre-

venting cancers (Fig 1B). Such NAT could, for example, account for autopsy studies showing

that small cancers are commonly present in people and animals who have died from noncan-

cer causes. Such observations have led to a hypothesis that cancer emerges frequently, but host

suppressive mechanisms, such as the immune system, successfully limit their proliferation in a

manner that does not adversely affect host fitness. We also suggest explanations for some of

the paradoxical relationships that seem to occur between the immune system and malignant

cell populations. Why, for example, does the immune system appear to promote tumor growth

under some conditions? [11,12]

It is widely accepted that the immune system is integral to tumor suppression. However,

immunotherapies to increase that response may be counterproductive [13]. If our NAT is

operating to contain the cancer cells and restrain their evolution of immune resistance, then

forcing the immune system to increase kill rates may actually undermine this balance, quicken

the evolution of resistant cancer cells, and reduce the time to cancer progression, as the resis-

tant cancer cells are now free to proliferate independent of the immune system. By emphasiz-

ing short-term gains from the immune system, the host’s immune system may lose

effectiveness and relevancy in the long term.

Why are we not better at preventing and eliminating cancer?
Current evolutionary hypotheses

Since the dawn of multicellularity (more than half a billion years ago), multicellular organisms

have evolved cancer suppression mechanisms (e.g., apoptosis, effective DNA repair, DNA sur-

veillance, epigenetic modifications, limited number of cell divisions, telomere shortening, tissue

architecture, and immune surveillance) [14]. Given the billions, even trillions of cells present in

the body of numerous multicellular species, these natural defenses against cancer are remark-

ably effective [15,16]. They are, however, not perfect, as illustrated by the significant prevalence

of cancers worldwide in both humans [17] and animals [18], as well as the extremely high prev-

alence of oncogenic processes in general [19–21]. The premature (i.e., before the end of the

reproductive period) death of people from cancer is also indirect evidence that at least certain

malignant cells have or evolve the ability to circumvent all of our defenses. Several hypotheses

have been proposed by evolutionary biologists to explain this persistent vulnerability. For

example, it has been argued (as for diseases in general, see [22,23]), that natural selection has

mostly favored the evolution of protective mechanisms before or during reproductive ages (i.e.,

selection intensity declines with age [24]). Accordingly, age is also one of the strongest predic-

tors of cancer and risk of death from cancer [25,26]. In addition, even during the reproductive

period, the costs of adaptations against cancer might exceed the benefits [27]. Selection may in

turn have favored “low-cost” mechanisms that do not involve complete tumor elimination.

Anticancer adaptations may be costly (in terms of survivorship and fecundity) and subject to

diminishing returns. For instance, because of the risk of inducing autoimmunity, immune tol-

erance to cancer might be favored over more aggressive activation of the immune system [28].

Suppression of malignant progression may also lead to trade-offs that could inhibit other essen-

tial functions such as cell proliferation for the maintenance (e.g., wound healing) [15] of nor-

mal tissue. The p53 protein has a well-known cancer-suppressive function but also leads to

reduced tissue renewal and repair, stem cell deletion, and organismal aging [29]. Thomas and

colleagues [30] recently proposed an organ-centered approach for defining the evolutionary

trade-offs that govern host responses to cancers. Organ-specific protection may not be maximal

or equal across all organs. Rather, each organ may exhibit anticancer adaptations commensu-

rate with the consequences of that organ acquiring cancer, and the trade-offs associated with
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organ-specific versus whole organism mechanisms of tumor suppression. Hence, cancer sup-

pression and cancer incidence should be more prominent in some organs than in others. Simi-

larly, based on which fitness-limiting factor, in addition to cancer predominates (chronic

somatic, cardiovascular, and/or infectious diseases, predation, and/or adverse environmental

conditions like famine, drought, accidents, disturbances), different predictions can be made on

how natural selection should adjust the extent of cancer suppression. Through time, environ-

mental changes may also create an evolutionary mismatch between historical adaptations of

the immune system and contemporary lifestyles, as, for instance, observed with childhood

acute lymphoblastic leukaemia [31]. Here, we explore the hypothesis that evolutionary princi-

ples used in adaptive therapy may also be deployed in NAT within the context of the trade-offs

governing host tumor suppression.

Why and when should NAT work?

The ultimate objective of adaptive therapy in cancer patients is to enhance their survival and

quality of life [5]. Conversely, NAT, if it exists as an adaptation, will be evolutionarily opti-

mized (as are all adaptations) to maximize fitness, given the circumstances. NAT is thus

expected to have been shaped by selection that balances the benefits of tumor suppression

against the potential hazards to normal tissue before and during the reproductive period and

perhaps in species in which grandparental care affects survival (i.e., inclusive fitness, see [32])

(Fig 2). While optimal tumor control would rapidly eliminate any developing cancer popula-

tion, this might have a significant cost in, for example, causing autoimmunity or limiting

wound healing. Excessive immune responses against malignant cells could also contain the

risk of preventing blastocysts from embedding in the endometrium and would therefore have

detrimental fitness consequences. NAT would represent a compromise between these risks

and benefits by allowing a sufficient host response to maintain stable small tumor burdens

while minimizing the risk of damage to normal tissue and/or other fitness parameters. In par-

ticular, the immune system may permit the survival of some slowly growing tumor cells and

allow this population, via intratumoral evolutionary dynamics, to suppress proliferation of

cells that are more malignant and resistant to immune attack. We anticipate that the evolution-

ary compromises that govern NAT will vary between individuals within a population and

probably between organs within each host. As with all host defenses, we propose that NAT will

decrease with the end of the reproductive period.

Thus, while NAT is generally effective, cancers clearly develop in some individuals prior to

the usual age of reproduction. In the optimization dynamics of evolution, this appears to be an

“acceptable” compromise between trade-offs governing tumor suppression and the costs to

normal tissue and whole organism function. Thus, cancer cells, through accumulating genetic

and epigenetic events, evolve strategies to evade immune destruction [33].

NAT would have some clear advantages over those anticancer adaptations that aim to elim-

inate all aberrant cells or malignant populations of cells. Maintaining surveillance for poten-

tially abnormal cells is likely metabolically costly. In addition to this ever-present fixed cost,

there is likely the additional cost of eliminating cells that would not have advanced to malig-

nancy or would have done so postreproductively or after death from other causes. Escalating

an immune response to eliminate small populations of malignant cells, while eliminating

potentially life-threatening cancer progression, has the same disadvantages as maximum toler-

able dose therapies. The short-term gains become squandered on the rapid evolution of resis-

tant cancer cells, and/or the therapy itself becomes life threatening. In maximizing fitness,

natural selection integrates survival and fecundity across the distribution of expected lifetimes

of the individuals comprising the evolving population. Hence, there is no reason to expect that
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natural selection will necessarily favor overly costly or risky “swift and sure” cancer suppres-

sion mechanisms. Rather, like adaptive therapy, natural selection would favor NAT if it

significantly reduced costs, kept cancer mortality to a low enough level, and kept malignant

populations of cells contained long enough to permit senescence or death from other causes.

Finally, NAT has the advantage of being self-perpetuating. By slowing or preventing the evolu-

tion of strong immune resistance, NAT maintains efficacy.

Cancer biologists have long assumed that enhancement of the host immune system could

be an effective treatment strategy. However, only recently have effective immunotherapies

emerged. A number of immunotherapies are now available to successfully treat a wide range

of cancers. However, like other cancer treatments, malignant cells usually evolve resistance

[34,35], leading to cancer progression. We hypothesize that the evolutionary principles that

resulted in NAT could be actively used to both guide tumor prevention strategies and increase

the efficacy of immunotherapy.

Possible evidences for NAT

We assert that if NAT is mechanistically possible, then it should have been favored by natural

selection and present in both humans and animals. The immune system and its function holds

promise as a source of NAT. One of the most intriguing aspects in the relationship between

Fig 2. Evolution of the trade-off between TSMs and the risk of AI with age and reproductive status.During the reproductive period and before,
NAT could result in a compromise between tumor suppression and the potential hazards to normal tissue to maintain cancer incidence at a low rate.
This compromise could be extended in species in which there is grandparental care. After this reproductive period, NAT will decrease because tumor
suppression costs will exceed the benefits, and tumor incidences will increase. Dashed lines are used for species without grandparental care and solid
lines for species with grandparental care. AI, autoimmunity; NAT, natural adaptive therapy; TSM, tumor-suppressive mechanism.

https://doi.org/10.1371/journal.pbio.2007066.g002
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the immune system and oncogenic processes is that the immune system does not always elimi-

nate malignant cells [36,37] and sometimes even protects tumors and/or favors tumor growth

[12, 36, 38–42]. While this is currently considered a problem to be solved to improve immuno-

therapies, it is potentially an illustration of NAT and the Darwinian dynamics that govern

tumor resistance.

Growing tumors acquire intrinsic properties to inhibit immune effectors as well as to

develop a microenvironment that prevents attack by diverse immune cells from the two arms

of immunity, a phenomenon often referred to as immune escape. A number of mechanisms to

escape acquired immunity have been identified. First, tumors can suppress immune response

simply by generating a harsh environment. Disordered angiogenesis and chaotic blood flow

can cause hypoxia and acidosis, which inhibits both vascular delivery of immune cells and

reduces the antitumor activities of cytotoxic T lymphocytes [43]. Intrinsic properties of the

tumor cells can decrease antigen presentation to the immune system by decreasing expression

of MHC class I expression proteins to escape recognition by CD8 T cells [34,35]. Cancer cells

can also escape the innate immunity by over expressing protective signals like CD47 to avoid

antitumor activity of macrophages [44] and ADAM10 [43] to inhibit the antitumor activity of

natural killer (NK) cells.

There is also a striking analogy between the tumor–host dynamics and the composition of

wounded tissues undergoing repair [45]. For instance, wounded tissue is rapidly infiltrated

with innate immune cells like neutrophils and macrophages that initiate and facilitate tissue

repair. Likewise, this process is also associated with the formation of new blood vessels and the

activation of fibroblasts into myofibroblasts that produce large amount of extracellular matrix

proteins. Whereas these different cells and elements clearly restore tissue organization, in can-

cers, their persistence is associated with immune-modulating effects including the suppression

of T-cell antitumor activities [46]. Similarly, there is often an excess of collagen fibers in grow-

ing tumors similar to that of healing wounds that can down-regulate the migration of T lym-

phocytes and their ability to contact and kill tumor cells [36,40].

In addition, it is now clearly demonstrated that some types of immune cells, beneficial in

the context of tissue repair, can prevent other immune cells from eradicating cancer cells [42].

For example, regulatory T lymphocytes (Tregs) inhibit numerous antitumor activities of the

immune system. Interestingly, increased numbers of Tregs associated with solid tumors has

been associated with increased probability of both favorable and unfavorable outcomes in clin-

ical studies [47,48]. Similarly, in wound healing, normal macrophages have distinct subtypes

that either drive the early inflammatory responses (M1 type) or promote tissue repair (M2

type). Tumor-associated macrophages (termed TAM) resemble M2 type macrophages in

wound healing and may promote tumor cell proliferation through a number of mechanisms,

including angiogenesis and impairment of T cell-dependent antitumor immunity [38,39].

The evolutionary strategies that allow tumor cells to evade immune attack are perhaps best

demonstrated in immunoediting. The three different phases of immunoediting are often char-

acterized as the “three Es”: Elimination, Equilibrium, and Escape [49]. Within our NAT con-

ceptual model, the equilibrium phase is particularly intriguing. This phase, which can occur

over years to decades, may be evident in tumor dormancy, as small tumors remain undetect-

able for years before they eventually evolve into an aggressive disease [50]. The immune system

may strongly influence or even regulate the dormancy/equilibrium state. Experimentally,

tumor dormancy can be observed when cancer cells are grafted into immunocompetent mice.

This dormancy can last for very long periods (hundreds of days). However, when grafted into

immunocompromised mice, tumor growth and progression begins immediately [51]. The

characterization of tumor dormancy remains poorly understood. It could result from cancer

cell dormancy or, more likely, correspond to a stable tumor mass in which cancer cell
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proliferation and death balance, as defined in the equilibrium phase [52]. Even with a small

and stable tumor mass, competition for space and resources could be intense within and

between populations of cancer cell types such as those sensitive to and those resistant to the

immune system (Fig 3).

Therapeutic implications

Interfering with the adaptive response of the body carries some risk ([23]). For instance, reduc-

ing fever (which is an adaptation against infectious agents, notably bacteria [53]) is counter-

productive if antibiotics are not concomitantly prescribed. If NAT exists and is adaptive,

therapies that force the immune system to increase the kill rate of malignant cells may carry

significant risk and could even backfire, see for instance [54,55]. This is clearly acceptable in

immunotherapies directed against a life-threatening cancer. However, it seems likely that a

full understanding of the strategies used by the immune system to contain but not eradicate

tumors might allow therapies that are effective for longer time periods with reduced toxicity

(e.g., [56,57]). Thus, tailoring of immunotherapies to complement the benefits of NAT would

Fig 3. NAT hypothesis applied to the equilibrium phase of immunoediting. If the immune system cannot fully eliminate cancer cells, it could adopt
NAT to limit impact on fitness through an equilibrium phase. During this phase, the immune system could maintain a stable tumor burden to increase
intratumor competition and therefore delay the apparition of immuno-resistant cells. CTL, cytotoxic T cells; DC, dendritic cells; NAT, natural adaptive
therapy; TAM, tumor-associated macrophages; Treg, regulatory T lymphocytes.

https://doi.org/10.1371/journal.pbio.2007066.g003
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be an elegant and effective strategy (see also [58]). It appears also relevant in a therapeutic per-

spective to distinguish between individuals harboring rapidly progressing cancers and those

with early stage tumors or premalignancies, since the latter may not benefit from immunother-

apy. This is particularly important as trials are being developed that use checkpoint inhibitors

like anti-PD1 as a cancer prevention strategy in individuals at high risk [59,60].

Alternatively, our hypothesis suggests strategies to prevent malignancies from evolving to

disseminated lethal forms that might focus on maintaining NAT beyond the reproductive age.

This preventive option would thus allow us to benefit longer from a natural defense mecha-

nism; because this defense is “natural,” we can also speculate that it should be both easier

(from a technical point of view) to (i) prolong a process that already exists and (ii) generate

fewer side effects.

Finally, while we argue here that the immune system is the mediator of NAT, other tumor

suppressive mechanisms may be reined in to achieve NAT. For example, it is possible that apo-

ptotic responses to oncogenic pathway activations have been “tuned” to maximize individual

fitness (i.e., balancing the tumor eliminating benefits of apoptosis with its costs, both in terms

of increased selective pressures on cancer cells as well as costs to normal tissues). Polymor-

phism of the p53 locus at the R72 allele, which influences apoptotic responses to damage and

which are differentially prevalent in humans in different parts of the world, may represent an

example of competing costs [61]. Further research is also needed to evaluate the extent to

which, in the context of NAT, malignant dynamics is influenced in immune-privileged organs

like the brain, ovary, eye, and testis. Future studies will also need to elucidate the degree of

NAT specificity, whether it is a specific anticancer adaptation and/or it emerges as a conse-

quence of broader selective pressures on immune tuning.

Among the priorities for research that would establish or refute NAT, we suggest reinforc-

ing strategies that would partially eliminate cancer cells in order to retain immune-sensitive

tumor cells that would outcompete immune-resistant tumor cells, for instance, by targeting

the tumor stroma instead of only targeting cancer cells. In progressing tumors, the stroma sup-

ports tumor growth by a variety of mechanisms, i.e., the “seeds and soil” hypothesis [62]. The

goal would be to slow down tumor development by reducing the soil. Carcinoma-associated

fibroblasts represent an interesting target, and several strategies have been developed [63].

Another direction would consist of decreasing the strength of the immune attack. Chimeric

antigen receptor (CAR) T cells are used to eliminate cancer cells, with the drawback of killing

normal cells expressing a tiny amount of the target. In addition, resistant tumor cells can

emerge, which results in tumor relapse. An alternative approach would be to reduce the affin-

ity of the CAR. There is preclinical evidence available for such a strategy with CAR T cells, the

treatment having lower toxicity and, according to the NAT theory, more control over the

tumor growth [64].
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