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Abstract

Background: The regulatory definition(s) of nanomaterials (NMs) frequently uses the term ‘agglomerates and
aggregates’ (AA) despite the paucity of evidence that AA are significantly relevant from a nanotoxicological
perspective. This knowledge gap greatly affects the safety assessment and regulation of NMs, such as synthetic
amorphous silica (SAS). SAS is used in a large panel of industrial applications. They are primarily produced as nano-
sized particles (1–100 nm in diameter) and considered safe as they form large aggregates (> 100 nm) during the
production process. So far, it is indeed believed that large aggregates represent a weaker hazard compared to their
nano counterpart. Thus, we assessed the impact of SAS aggregation on in vitro cytotoxicity/biological activity to
address the toxicological relevance of aggregates of different sizes.

Results: We used a precipitated SAS dispersed by different methods, generating 4 ad-hoc suspensions with
different aggregate size distributions. Their effect on cell metabolic activity, cell viability, epithelial barrier integrity,
total glutathione content and, IL-8 and IL-6 secretion were investigated after 24 h exposure in human bronchial
epithelial (HBE), colon epithelial (Caco2) and monocytic cells (THP-1). We observed that the de-aggregated
suspension (DE-AGGR), predominantly composed of nano-sized aggregates, induced stronger effects in all the cell
lines than the aggregated suspension (AGGR). We then compared DE-AGGR with 2 suspensions fractionated from
AGGR: the precipitated fraction (PREC) and the supernatant fraction (SuperN). Very large aggregates in PREC were
found to be the least cytotoxic/biologically active compared to other suspensions. SuperN, which contains
aggregates larger in size (> 100 nm) than in DE-AGGR but smaller than PREC, exhibited similar activity as DE-AGGR.

Conclusion: Overall, aggregation resulted in reduced toxicological activity of SAS. However, when comparing
aggregates of different sizes, it appeared that aggregates > 100 nm were not necessarily less cytotoxic than their
nano-sized counterparts. This study suggests that aggregates of SAS are toxicologically relevant for the definition
of NMs.
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Background
Synthetic amorphous silica (SAS) represents a group of

nanomaterials (NMs) manufactured either by thermal

(pyrogenic/fumed) or wet route (precipitated, gel and

colloidal) [1]. SAS is primarily produced as nano-sized

primary particles (1–100 nm in diameter) that form

micron-sized aggregates and agglomerates of aggregates

during their production process [2, 3]. Aggregates are

composed of particles that are strongly linked by

chemical bonding, whereas, in agglomerates, the parti-

cles/aggregates are bound together by reversible weak

forces such as charge and Van der Waals interactions

[4]. Thus aggregates are the smallest secondary structure

of SAS in their manufactured form.

SAS is widely used in industrial applications ranging

from food (food additive E551) and cosmetics to

pharmaceutical applications [1, 5–8]. SAS is traditionally

considered as non-toxic due to their amorphous nature

and several authors argued that it is very unlikely they

pose health hazards as they are aggregated in structures

of larger sizes [3, 9, 10]. However, our recent reviews in-

dicate that all types of SAS cause acute effects such as
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cytotoxicity in several cell types mainly via the induction

of oxidative stress and/or pro-inflammatory responses

[1, 11]. Some forms of SAS, such as colloidal SAS, have

also the potential to induce DNA damage in cell cul-

tures. However, while these studies focus on the hazard

of nano-sized SAS, influence of SAS aggregation on

cytotoxicity/biological acitivity remains unexplored.

In the recommended regulatory definition of NMs by

the European Union (EU), an important aspect is the

use of the term “aggregates”. It states that “manufac-

tured material containing particles, in an unbound state

or as an aggregate or as an agglomerate and where, for

50 % or more of the particles in the number size distribu-

tion, one or more external dimensions is in the size range

1 nm-100 nm” [12]. There is paucity of evidence that

AA are significantly relevant from a nanotoxicological

perspective.

Here we aim to determine the impact of SAS aggrega-

tion on their cytotoxicity/biological activities, and to

determine the toxicological relevance of aggregates of

different sizes using in vitro cell cultures. The most

quoted nanotoxicity paradigm is “the smaller the size of

the nanoparticles the greater the toxicity/biological re-

sponses” [13–16]. Therefore, we hypothesized that, small

aggregates of SAS induce stronger cytotoxicity compared

to their larger counterparts. We used a precipitated

amorphous silica (primary particle size 14–23 nm),

which is a representative of SAS used as food additives

[3]. Using different dispersion methods, we generated

four suspensions with different aggregate size distribu-

tions and tested their cytotoxicity/biological activities in

several cell types. Dispersions included de-aggregated

(by sonication) and aggregated (vortexed) SAS, as well as

fractionation of the aggregated suspension to separate

rapidly precipitating aggregates from others that remain

in suspension in the dispersion medium.

Results
Dispersion of SAS

Figure 1 shows how the four different suspensions of

SAS were freshly prepared before each independent ex-

periment. The ‘DE-AGGR’ suspension was prepared

using the generic NANOGENOTOX protocol [17] deliv-

ering the energy of 7056 J to the suspension by sonic-

ation. The ‘AGGR’ suspension was prepared in the same

dispersion medium and vortexed for 10 s. The super-

natant ‘SuperN’ and precipitate ‘PREC’ suspensions were

obtained from the ‘AGGR’ suspension by leaving it un-

disturbed for 15 min (see materials and methods).

Size characterization of SAS suspensions

Transmission electron microscopy (TEM) micrographs

revealed that SAS in the DE-AGGR fraction (Fig. 2a)

were much less aggregated than in AGGR (Fig. 2b),

SuperN (Fig. 2c) and PREC (Fig. 2d). Aggregates in all

suspensions showed a fractal-like structure. Table 1

shows the size of SAS in the different suspensions mea-

sured by TEM and dynamic light scattering (DLS). The

mean equivalent circle diameter (ECD) was 100 nm for

DE-AGGR and 2000 nm for AGGR. The mean hydro-

dynamic diameter (Z-average) of DE-AGGR was 264 nm

and 10 μm for AGGR. Feret min, which describes the

smallest external dimension according to the EU defin-

ition, was 28 nm and 600 nm for DE-AGGR and AGGR

SAS, respectively. Feret min and ECD analysis was not

possible for PREC and SuperN due to their low stock

concentration, therefore, the sizes were manually mea-

sured (arbitrary line measurement) and determined as

Fig. 1 Preparation of synthetic amorphous silica suspensions (SAS). DE-AGGR - 2.56 mg/mL of SAS sonicated with an energy of 7056 J (a); AGGR -
2.56 mg/mL of SAS vortexed for 10 s (b); SuperN (0.64 mg/mL) - AGGR dispersion left undisturbed for 15 min after vortexing and fractionated in
supernatant (c) and PREC (1.92 mg/mL) - precipitates of AGGR (d)
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600 and 750 nm, respectively; Z-average of SuperN and

PREC suspension was around 3953 nm and 3332 nm.

Measurements by centrifugal liquid sedimentation

(CLS), given its larger useful range, is somewhat less

dependent on the stability of the samples. Therefore,

CLS was used to measure the approximate sizes of

SuperN and PREC aggregates and the results revealed

some slight differences between SuperN and PREC.

SuperN was mainly composed of one size population

(mean size 4580 nm) and PREC of two populations

(3900 nm and 6370 nm) (data not shown in the table). In

conclusion, a clear difference in size distribution was ob-

served for DE-AGGR and AGGR. Although SuperN and

PREC appeared visually different (Fig. 1), such difference

could not be established using TEM, DLS or CLS.

To establish the difference between PREC and

SuperN, images were taken using bright field micros-

copy (Fig. 3). Pictures indicate that the aggregates in

PREC (Fig. 3d) are much larger than the aggregates in

SuperN (Fig. 3c) and DE-AGGR (Fig. 3a). Using an ar-

bitrary line measurement tool, the size of 100 aggre-

gates from representative pictures were measured

manually. The mean size of PREC aggregates was

roughly about 25 μm in diameter while SuperN aggre-

gates measured only 2.5 μm. In conclusion, we showed

by different approaches that all suspensions generated

in this study were composed of aggregates of different

size distributions.

The stability of the suspensions in exposure media was

measured by DLS (Table 2). The stock suspensions were

Fig. 2 Representative TEM micrographs of freshly prepared SAS stock suspensions. DE-AGGR (a), AGGR (b), SuperN (c) and PREC (d)

Table 1 Size characterization of SAS dispersed in 0.05% Bovine Serum Albumin (BSA)

Stock
suspensions

Stock
concentration
(mg/mL)

TEM DLS

Mean ECD (nm) Mean Feret min (nm) Z-average (nm)

DE-AGGR 2.56 100 ± 14 28 ± 0.6 264

AGGR 2.56 2000 600 12,530

SuperN 0.64 600a n/a 3953

PREC 1.92 750a n/a 3332

Mean equivalent circle diameter (ECD) and mean feret minimum (Feret min) measured by TEM; Mean hydrodynamic diameter (Z-average) by DLS; n/a-not

available. asize was measured manually using the arbitrary line measurement tool of the iTEM software
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diluted in different exposure media and mean sizes were

measured directly and after 24 h. Z-average of DE-

AGGR SAS in DMEM/F12 (used for HBE cell cultures)

and RPMI 1640 (used for THP-1) exposure media was

approximately 225 nm and remained unchanged after

24 h except in DMEM/HG medium (used for Caco2), in

which Z-average increased to 1275 nm. The mean size of

SuperN was 4 μm at the beginning, and did not drastic-

ally change after 24 h (except in DMEM/HG). Although

the measurements of AGGR and PREC do not reflect

the size of aggregates, the results are given in the table

for completeness.

Si quantification in SAS SuperN and PREC suspensions

The quantification of Si by inductively coupled plasma

mass spectrometry (ICP-MS) in SuperN and PREC sus-

pensions derived from the AGGR suspension indicated

that Si was distributed in each fraction at a ratio of

24.7% ± 0.67 (mean ± SEM) in SuperN and 75.3% ± 0.67

for PREC. Therefore, the mass concentration of PREC

Fig. 3 Representative bright field microscopic images of freshly prepared SAS stock suspensions. DE-AGGR (a), AGGR (b), SuperN (c) and PREC (d).
Scale bar -20 μm

Table 2 Size characterization of SAS in stock suspensions and exposure media (for HBE, Caco2 and THP-1) using DLS

Stock HBE Caco2 THP1

AM Z-avg PDI Z-avg PDI Z-avg PDI Z-avg PDI

DE-AGGR 0 h 264 0.33 228 0.35 225 0.34 228 0.36

24 h 260 0.32 233 0.37 1275 0.28 226 0.42

AGGR 0 h 10,040 0.90 3212 0.72 4321 0.82 3566 0.97

24 h 12,374 0.88 3059 0.80 1637 0.46 2688 0.75

SuperN 0 h 3953 0.94 4507 0.87 4500 0.89 4507 0.95

24 h 3661 1.00 3851 0.83 2233 0.85 3866 0.95

PREC 0 h 3332 0.90 1101 0.85 1370 0.83 1561 0.93

24 h 4329 0.96 957 0.88 1376 0.82 955 0.91

Freshly prepared stock suspensions were diluted to 100 μg/mL in different exposure media (without serum) and, hydrodynamic sizes (Z-avg) and polydispersity

index (PDI) were measured directly and after 24 h (incubated at 37 °C)
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and SuperN suspensions were determined as 1.92 mg/

mL and 0.64 mg/mL, respectively.

Influence of aggregation on in vitro dosimetry

In vitro dosimetry simulation was performed using

DMEM/F12 (used for HBE cell cultures) and RPMI 1640

(THP-1) because SAS diluted in DMEM/HG (Caco2) ex-

posure medium agglomerated further over 24 h incuba-

tion (change in agglomerate size > 30%) and did not

meet the criteria to apply the volume centrifugation

method (VCM) method. Additional file 1: Table S1 lists

the main parameters used to perform the dosimetry

simulation and Fig. 4 shows the estimated SAS concen-

tration reaching the bottom of the wells as a function of

nominal (applied) dose. Regardless of the exposure

media, nearly 7–9% of the DE-AGGR applied concentra-

tion reached the cells while it was at least 5-fold higher

for AGGR SAS (41–47%) at the simulated concentra-

tions (Fig. 4a and c). It is important to mention here that

the delivered concentrations for AGGR could be under-

estimated since the DLS size used for dosimetry simula-

tion did not reflect the PREC aggregates in AGGR

suspension. Based on ICP-MS analysis, we found that

the highest concentration tested for SuperN suspension

in biological experiments was 32 μg/mL. Therefore, the

dosimetry for SuperN was simulated for nominal con-

centrations from 2 to 32 μg/mL and compared with DE-

AGGR (Fig. 4b and d). The delivered dose between these

suspensions was not substantially different. The percent-

age of concentrations delivered to the cells also did not

differ much for 96 and 24 well plates as the height of the

cell culture medium was similar (6 mm).

Comparison of in vitro biological responses

Food additive SAS are produced in large quantity.

Therefore, in addition to ingestion, exposure via inhal-

ation during production and processing is also inevit-

able. Therefore, we used both a human bronchial

(16HBE14o- or HBE) and colon epithelial cell line

(Caco2) to investigate the cytotoxic effects in vitro. In

addition, we used a human monocytic cell line (THP-1)

as monocytes/macrophages are the first line of defence

once particles enter into the body. Physiologically

relevant doses for short term exposure (0–128 μg/mL)

estimated from Occupational Exposure Limits (OELs) of

amorphous silica were used in this study [11]. To inves-

tigate the short-term cytotoxicity/biological activity

in vitro, we assessed different endpoints including

Fig. 4 Estimated concentration reaching the bottom of the wells after 24 h as a function of nominal concentrations applied in cell based assays.
Dosimetry simulation was performed by a distorted grid (DG) model and compared for different SAS suspensions using parameters obtained
from exposure media DMEM/F12 (a and b) and RPMI 1640 (c and d). The slope values are indicated near the respective lines. R2 > 0.9 for all the
suspensions. The percentage of dose delivered to the cells did not differ in 96 or 24 well plates, as the height of the liquid column was
equal (6 mm)
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cytotoxicity, oxidative stress, epithelial barrier integrity

and pro-inflammatory responses.

Since this study aims to compare the magnitude of re-

sponses induced by aggregates of different sizes, we first

selected endpoints for which a significant response was

recorded (Table 3). If no impact of SAS treatment on a

given endpoint was measured, this endpoint was not fur-

ther investigated. In a second step, we analysed only the

endpoints showing a significant difference after exposure

to SAS. Detailed data for all the endpoints are presented

only in Additional file 1: Figure S1-S3.

To determine the impact of aggregation, we first com-

pared DE-AGGR and AGGR suspensions using two-way

ANOVA. If differences were observed, a post hoc test

(Bonferroni’s multiple comparison test) was used to

determine which suspension induced a stronger effect at

the same mass concentrations (Table 4a). When com-

paring DE-AGGR vs AGGR, there was a significant dif-

ference in 14 comparisons out of 16, with DE-AGGR

inducing more pronounced effects than AGGR (see

Table 4a and Additional file 1: Figure S1).

Secondly, we compared AGGR with SuperN and PREC

(see Table 4b and Additional file 1: Figure S2). It is im-

portant to mention here that the concentrations of

SuperN and PREC suspensions were not adjusted to the

AGGR concentrations in this analysis (please refer to the

in vitro exposure conditions for explanation), which

allows to determine which of the SuperN or PREC sus-

pension accounts more for the effects induced by

AGGR. When comparing AGGR vs SuperN, 9 out of 14

comparisons indicate that AGGR suspensions induced

similar effects as SuperN (no significant difference).

When comparing AGGR vs PREC, 9 out of 12 compari-

sons showed that AGGR induced significantly stronger

effects compared to PREC. These results suggest that

the SuperN fraction accounts more for the effects in-

duced by AGGR than PREC.

Finally, to determine the toxic potency of SuperN

aggregates in comparison to the nano-sized aggre-

gates, we compared SuperN (the dose was adjusted

based of ICP-MS measurements) with DE-AGGR at

mass concentrations between 2 and 32 μg/mL. The

summary of the results are presented in Table 4c and

Additional file 1: Figure S3. Intriguingly, most com-

parisons (11 out of 14) indicated that SuperN and

DE-AGGR induced similar effects except for the LDH

assay in HBE and Caco2, and GSH depletion in THP-1,

where DE-AGGR was more potent than SuperN.

Discussion
To determine the impact of NM aggregation, we com-

pared the in vitro cytotoxicity/biological activities in-

duced by de-aggregated SAS (DE-AGGR) produced by

sonication at 7056 J and aggregated SAS (AGGR) in a

vortexed suspension. The AGGR SAS was also fraction-

ated into two suspensions based on aggregate sedimen-

tation (PREC and SuperN) and we also, compared their

cytotoxicity/biological activities separately and compared

to AGGR and DE-AGGR. Overall, aggregation resulted

in reduced toxicological activity of SAS. We observed

that large precipitating aggregates (PREC) were the least

cytotoxic/biologically active. Interestingly, aggregates in

SuperN, which were larger (> 100 nm) than DE-AGGR

aggregates (< 100 nm), exhibited similar activity as DE-

AGGR.

Preparation of the suspensions with aggregates of differ-

ent sizes were crucial in our study, but no standardized

protocol with minimal changes in dispersion medium has

been developed so far [1, 11]. Therefore, we explored the

potential of applying different levels of energy by sonic-

ation to obtain different aggregate sizes. This indeed re-

sulted in de-aggregation of SAS but did not yield sizes

with substantial differences whatever the energy delivered

(≥ 882 J, see Additional file 2: Figure S4). A recent study

also showed that different sonication energies used to dis-

perse SAS did not strongly affect the size distribution and

hence the biological effects [18]. Therefore, we used a

mechanically vortexed suspension (AGGR) to obtain a size

distribution different from DE-AGGR. European Food

Safety Authority (EFSA), in its recent scientific opinion,

insisted that the size distribution used so far in

toxicological studies (mostly de-aggregated NPs like the

Table 3 Summary of the in vitro responses to SAS exposure

Biological endpoints AGGR DE-AGGR SuperN PREC

HBE Caco2 THP1 HBE Caco2 THP1 HBE Caco2 THP1 HBE Caco2 THP1

Cell metabolic activity No Yes Yes Yes Yes Yes No Yes Yes No No Yes

Cell viability Yes No Yes Yes Yes Yes No Yes Yes No No No

GSH Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

TEER Yes No n/a Yes Yes n/a Yes Yes n/a No No n/a

IL-8 No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No

IL-6 No No No Yes Yes No Yes No No Yes No No

“Yes” indicates p < 0.05 (One-way ANOVA) and there is a significant difference compared to control at any of the tested concentrations; “No” indicates when p > 0.05

and no difference compared to control; n/a - not available
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DE-AGGR suspension presented here), might not be fully

representative of SAS in their pristine form [19]. There-

fore, the AGGR suspension produced by vortexing in this

study might represent a better model of SAS in their

pristine (manufactured) form.

The size characterization of SAS suspensions was not

straightforward and technically challenging due to the

polydisperse size distribution. The PREC fraction of

AGGR, predominantly composed of large aggregates

(few tens micrometers), did not appear different from

SuperN fraction based on TEM, DLS or CLS. This can

due to the fact that the PREC aggregates are not dis-

persed properly for TEM or DLS measurements. For

TEM grid preparations, grid-on-drop method was used

(refer to [20] for method description) and possibly, this

method did not allow very large aggregates to attach to

the EM grid due to their quick sedimentation/precipita-

tion. For DLS, very large aggregates might also have

sedimented very rapidly and were missed in the ana-

lysis. Therefore, measurements for AGGR and PREC

might actually not reflect reality. The CLS technique,

which separate particles/aggregates by sizes using cen-

trifugal sedimentation, also did not detect these very

large aggregates at the lowest centrifugal speed possible

because of its limitation to detect particles/aggregates

> 20 μm. However, aggregates > 20 μm were easily de-

tected using bright field microscopy. In conclusion, it

appeared that a panel of techniques are required to

Table 4 Summary of in vitro responses to differently aggregated SAS suspensions

“Green” indicates p>0.05 (Two-way ANOVA) and no significant difference between the suspensions; “Red” indicates p<0.05 and a significant difference between

the suspensions - in this case, Bonferroni’s multiple comparison test was used to statistically determine which suspension induced the strongest effect; nc-not

compared as both suspensions did not induce any significant activity compared to control
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reveal the true size distribution of polydispersed NMs

containing large aggregates.

SAS in their pristine form, exist as aggregates of few

hundred nanometers to few hundred micrometers [2, 3].

Size characterization of AGGR suspension indicated that

the particles were not only strongly aggregated but also

showed a high polydispersity in size. On the other hand,

DE-AGGR SAS were prepared by sonication, which is

the standard technique to prepare well-dispersed (least

aggregated or agglomerated) suspensions and to

characterize the hazard of nanoparticles. Size distribu-

tion analysis of DE-AGGR showed that particles in this

suspension were in their least aggregated form compared

to other suspensions, which is consistent with the results

obtained using the same dispersion protocol [21]. In

addition, though dosimetry simulation indicated that

much higher dose was delivered to cells for AGGR com-

pared to DE-AGGR SAS, AGGR SAS were consistently

less active in cell based assays than DE-AGGR. Further-

more, although changes in SAS behaviour (further ag-

glomeration) was noticed when different biological

exposure media were used, the activity was not much in-

fluenced by the cell types. This indicates that the

changes in particle characteristics in exposure media

and delivered doses were not essential confounders for

differential responses observed with these suspensions.

While preparing AGGR suspensions, we noticed two

fractions, one that quickly sedimented in a few min

(PREC) and the other that remained in suspension

(SuperN) for hours. Hence we studied their activity sep-

arately. Large aggregates in the PREC suspension did not

show any or a weak biological activity although its mass

concentration was 75% of the AGGR suspension

(Table 3). Rapidly sedimenting agglomerates were re-

ported to be more cytotoxic than the one that sediment

slowly [22, 23]. However, in the present study, rapid

sedimentation and hence high local concentration of

large aggregates, did not result in cellular damage, pos-

sibly because these aggregates were too large for cellular

interaction and uptake, and/or might not demonstrate

any nanoscale associated properties.

SuperN aggregates, which were larger than DE-AGGR,

showed similar cytotoxic/biological activity as DE-

AGGR. Most importantly, delivered doses was not a

confounder when comparing AGGR and SuperN aggre-

gates. These findings are somewhat in contrast with

studies demonstrating that sub-micron and micron sized

silica particles were less potent compared to nano-sized

silica [13, 24, 25], suggesting that the size alone may not

be necessarily the key determinant of toxicity of aggre-

gated SAS. Apart from size, other physico-chemical

characteristics of nanoparticles such as shape also influ-

ence the cellular interactions and toxicity. Particles with

sharper angular features or elongated were efficiently

taken up by cells compared to the spherical ones [26–

28]. In this study, SuperN aggregates were mostly non-

spherical and exhibited fractal-like structure. Further,

despite the fact that the size of these aggregates is far

greater than the nano-range, they may still possess the

surface of the primary particles. Thus, physico-chemical

characteristics such as shape, surface reactivity and sta-

bility in aqueous suspension, might contribute to the

toxic potential.

The physicochemical properties of different types of

silica NM might be different [1] and hence their bio-

logical activity [29]. Therefore, the results of this study

may only be applicable to the precipitated silica used

here, although this approach can be applied to investi-

gate the toxicity of other types of SAS or other NMs.

Conclusion
This study aimed to assess the impact of aggregation on

cytotoxic/biological activities in submerged cell cultures

and the toxicological relevance of SAS aggregates of dif-

ferent sizes. In general, aggregation resulted in reduced

toxicological activity of SAS. Looking closer, the large,

quickly precipitating aggregates (PREC) exhibited the

lowest cytotoxicity/biological activity in vitro. On the

other hand, an important fraction (25% of the mass of

AGGR) of non-precipitating aggregates (SuperN), which

contains aggregates larger than 100 nm, exhibited similar

activities as nano-sized aggregates (DE-AGGR). We con-

clude that aggregates with size greater than 100 nm

should not be necessarily considered as less toxic than

their nano-sized counterparts. This study suggests that

aggregates of SAS are toxicologically relevant and should

be part of the definition of NMs.

Materials and methods
SAS NMs

The European Commission’s Joint Research Centre (JRC,

Italy) kindly provided the representative NM silica

JRCNM02000. Detailed physico-chemical characterization

in their manufactured form is provided in the technical re-

port of JRC [21].

Dispersion of SAS

The ‘DE-AGGR’ suspension was prepared using the gen-

eric NANOGENOTOX protocol [17]: 15.36 mg SAS

were pre-wetted with 30 μL EtOH and then suspended

in 5.970 mL bovine serum albumin (BSA) 0.05% (2.56

mg SAS/mL, final volume 6mL). Then the suspension

was sonicated for 16 min (energy 7056 joules, Microson

XL 2000, 3 mm probe, Belgium).

The ‘AGGR’ suspension was prepared as follows:

15.36 mg SAS were pre-wetted with 30 μL EtOH and

then suspended in 5.970 mL BSA 0.05% (2.56 mg SAS/
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mL, final volume 6mL). This suspension was then vor-

texed for 10 s.

The ‘SuperN’ and ‘PREC’ suspensions were obtained

from the ‘AGGR’ suspension by leaving it undisturbed

for 15 min: the supernatant (5.8 mL) was removed and

200 μL of 0.05% BSA was added (‘SuperN’ fraction, final

volume 6mL); and 5.8 mL 0.05% BSA was added to the

precipitate (‘PREC’ fraction, final volume 6mL), which

was redispersed by vortexing for 10 s.

Dynamic light scattering (DLS)

DLS measurements were performed using a ZetaSizer Nano

ZS instrument (Malvern Instruments, Malvern, UK) to

evaluate the size distribution of SAS in suspensions. Freshly

prepared stock suspensions and SAS in cell exposure

medium (100 μg/mL) were tested for each condition. The

settings were 1.544 for the refractive index and 0.2 for the

absorption parameter. The selected dispersant was water

(refractive index, 1.33). The mean hydrodynamic diameter

(Z-average) and the polydispersity index (PDI) were mea-

sured using the version 7.11 of the Zetasizer software.

Transmission Electron microscopy (TEM)

TEM specimens of freshly prepared suspensions were

prepared by the “grid on top”method and examined

using a well-aligned Tecnai Spirit microscope (FEI, Eind-

hoven, Netherlands) operating at 120 kV, at a spot size 3

and imaged in BF-mode in parallel beam conditions. Im-

ages were typically recorded at approximately 500 nm

below minimal contrast conditions. Digital micrographs

were made using the bottom-mounted 4 × 4 K Eagle

CCD-camera and converted to tif-format using the TIA

software. Equivalent circle (ECD) and Feret minimum

diameter (Feret min diameter) measurements were per-

formed as described in [20] .

Centrifugal liquid sedimentation (CLS)

CLS measurements were performed with a DC24000

system (CPS instruments Inc., Stuart, Florida, USA),

equipped with a 405-nm wavelength laser detector, with

polystyrene particles standard (nominal particle size =

10 μm) at a centrifugal speed of 2000 rpm. Speed was

chosen in order to increase resolution of micron size ag-

gregates. Sizes are expressed in terms of hydrodynamic

diameter assuming all particles are spherical. Each meas-

urement was done by injecting 1 ml of a 0.64 mg SAS/

mL for SuperN or 1 ml of 10 mg/mL for PREC.

Bright field (BF) microscopy

A drop of freshly prepared suspensions was placed on a

slide and covered with a cover slip. The images were

taken immediately using microscopy (BX61, Olympus,

Belgium) in a BF mode and at a magnification of 40x.

The diameter of 100 particles from the pictures was

measured using an in-built arbitrary line measurement

tool and the mean diameter was calculated.

In vitro dosimetry

The Volume Centrifugation Method (VCM) was used to

determine the effective density of SAS in cell exposure

medium and the SAS concentration delivered to the

cells over 24 h exposure was simulated using the

Distorted Grid (DG) model as described in [30]. The re-

sults are presented as a function of nominal doses (pre-

sented as μg/mL).

Inductively coupled plasma-mass spectrometry (ICP-MS)

Si was quantified directly in SAS SuperN and PREC sus-

pensions by ICP-MS (Agilent 7500ce Octopole Reaction

System, Santa Clara, USA) using a collision cell in he-

lium mode, Sc as internal standard (Merck, Darmstadt,

Germany) and a six-point calibration curve (Si standard,

Merck). Measurements were carried out in 3 independ-

ent experiments on 28Si and 45Sc.

Cell culture conditions

The human bronchial epithelial cell line (16HBE14o- or

HBE) and the human monocytic cell line (THP-1) were

kindly provided by Dr. Gruenert (University of Califor-

nia, San Francisco, USA). HBE cells were cultured in

DMEM/F12 supplemented with 5% fetal bovine serum

(FBS), 1% penicillin-streptomycin (P-S) (100 U/mL), 1% L-

glutamine (2mM) and 1% fungizone (2.5 g/mL) while

RPMI 1640 supplemented with 10% FBS, 1% P-S (100 U/

mL), 1% L-glutamine (2mM) and 1% fungizone (2.5 g/mL)

was used for THP-1. Caucasian colon adenocarcinoma cell

line (Caco2) (P.Nr: 86010202) was purchased from Sigma-

Aldrich (Belgium). DMEM/HG supplemented with 10%

FBS, 1% P-S (100 U/mL), 1% L-glutamine (2mM), 1% fun-

gizone (2.5 g/mL) and 1% non-essential amino acids

(NEAA) was used for Caco2 cells. All cell culture supple-

ments were purchased from Invitrogen (Belgium) unless

otherwise stated. Cells were cultured in T75 flasks (FAL-

CON, USA) at 37 °C in a 100% humidified air containing

5% CO2. Fresh medium was changed every 2 or 3 days and

cells were passaged every week. Cells from passage 4 to 10

were used for the experiments.

In vitro exposure conditions

DE-AGGR and AGGR suspensions (2.56 mg/mL) were

freshly prepared and diluted in BSA 0.05% to prepare

different concentrations (20 μg/mL - 1280 μg/mL) and fur-

ther diluted 10 times in serum-free exposure medium to

achieve the final exposure concentrations (2–128 μg/mL).

Regardless of mass concentrations in SuperN and PREC

fractions, stocks were prepared and diluted exactly the

same way as for AGGR and DE-AGGR suspensions. For

toxicity testing, submerged cell cultures were used. For all
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experiments except TEER measurement, HBE, Caco2 and

THP-1 cells were seeded at a density of 1.5 × 105, 1.05 × 105

cm2 (surface area of culture well) and 3 × 105/mL respect-

ively in 96 or 24 well plates (Greiner bio-one, Belgium). For

the adherent cell-types (HBE and Caco2), the cell cultures

were exposed as confluent cultures, to resemble as closely

as possible NP exposure at the lung and intestinal epithelial

barriers (in vivo and/or in humans). For non-adherent

monocytic cell line (THP-1), the density 3 × 105 cells/mL

was selected based on the density of monocytes in 1mL of

human blood (3 × 105 - 10 × 105 monocytes/mL). After

seeding and overnight incubation at 37 °C, cells were

washed with HBSS (without Ca2+/Mg2+) once and exposed

to different concentrations of SAS for 24 h. Cell cultures ex-

posed to BSA 0.05% diluted ten times in serum-free expos-

ure medium served as untreated control. After 24 h

exposure, the cell cultures were washed twice with HBSS

and the respective assays were performed.

Cell metabolic activity

To determine cell metabolic activity, cell culture superna-

tants were removed after 24 h exposure and cells were in-

cubated with 120 μL water soluble tetrazolium salts

(WST-1) reagent (Roche, Belgium) diluted in medium

without phenol red at the ratio of 1:10. After 1 to 2 h incu-

bation at 37 °C, plates were centrifuged at 1600 g for 10

min, 100 μL was transferred to a new plate and the optical

density (OD) was recorded using a micro-plate reader

(Bio-Rad, USA) at 450 nm. After subtracting the blank

OD values from the sample OD values, results were

expressed as percentage of control (untreated) cells.

Effect on cell viability

Effect on cell viability was assessed by cellular leakage of

lactate dehydrogenase (LDH) using a kinetic assay [31].

At the end of exposure, supernatants were transferred to

a new plate and cells were incubated with triton 0.2%

(Sigma-Aldrich, Belgium). After 30 min, plates were cen-

trifuged at 1600 g for 10 min. After transfer to a new

plate, freshly prepared substrate solution (pyruvate +

NADH) was added and the absorbance was measured by

a spectrophotometer at 340 nm for 3 min with 15 s inter-

val. Slope was calculated according to the standard

curve. Cell viability was calculated as

slope of leakage= slope of lysate þ slope of leakageð Þ�100½ �
and relative viability as

�

sample viability=
untreated control viability

�

�100

Total glutathione measurements

Total glutathione (GSH) is a cellular antioxidant, which

is depleted when excessive reactive oxygen species

(ROS) are produced. Therefore, GSH depletion was

measured as an indicator of oxidative stress [32] using a

GSH detection kit (Enzo life sciences, Belgium). After

24 h exposure, cell cultures were washed and harvested

using trypsin 0.1% (Gibco, Belgium). Then, cells were re-

suspended in metaphosphoric acid 5% and homogenized

using an ultra turrax t25 tissue homogenizer (Janke &

kunkel, Germany). GSH was quantified according to

manufacturer’s protocol and the protein content of cell

cultures was assessed by the bicinchoninic acid (BCA)

protein assay kit (Thermo Scientific Pierce, Belgium).

GSH was normalized to the total protein content and

the results were expressed as percentage of control (un-

treated) cells.

Cytokine quantification

As indicators of pro-inflammatory responses, IL-8 and

IL-6 levels were measured using enzyme-linked im-

munosorbent assay (ELISA) kits (Sigma-Aldrich,

Belgium) in cell supernatants collected after 24 h expos-

ure according to manufacturer’s protocol. Results were

normalized to the total protein content and expressed as

a ratio to control (untreated) cells. Cells treated with li-

popolysaccharides 1 μg/mL were used as positive control

(data not shown).

Trans epithelial electrical resistance (TEER)

TEER was measured in epithelial (HBE and Caco2)

monolayers as an estimation of epithelial barrier integ-

rity. HBE and Caco2 cells were seeded at a density of

2.104 cells per well in 24 well transwell inserts (0.4 μm

pore size, polyester membrane, Corning, CLS3470

Sigma). TEER was monitored everyday using a Chop-

stick electrode and an epithelial voltohmmeter (EVOM)

(World Precision Instruments, Sarasota, USA). After 7 d,

cultures with TEER > 600Ω.cm2 were exposed to different

concentrations of SAS suspensions for 24 h and TEER was

measured. Cultures exposed to sodium dodecyl sulfate

(SDS) 200 μg/mL served as positive control for barrier in-

tegrity disruption (data not shown). Results were

expressed as percentage of control (untreated) cells.

Statistical analysis

Three independent experiments were performed in trip-

licate or duplicate and data were presented as mean ±

standard deviation (SD). Using GraphPad prism 7 soft-

ware (https://www.graphpad.com/), results were ana-

lysed with one-way ANOVA followed by a Dunnett’s

multiple comparison test to determine the significance

of differences compared to control. Two-way ANOVA

followed by Bonferroni’s multiple comparison test was

used to determine significance of differences between

suspensions (see Table 4 for explanation).
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