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Abstract

Population-based clinic-pathological studies have established that the most common pathological 
substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer’s 
disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these 
could be just two frequent unrelated comorbidities in the elderly, epidemiological research has 
reinforced the idea that mid-life (age < 65 years) vascular risk factors increase the risk of late-
onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such 
as leisure activities, physical exercise, and Mediterranean diet are considered protective against 
AD. Remarkably, several large population-based longitudinal epidemiological studies have 
recently indicated that the incidence and prevalence of dementia might be decreasing in Western 
countries. Although it remains unclear whether these positive trends are attributable to 
neuropathologically definite AD versus CVID, based on these epidemiological data it has been 
estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss 
the current evidence about modifiable risk factors for AD derived from epidemiological, 
preclinical, and interventional studies, and analyze the opportunities for therapeutic and 
preventative interventions.
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PATHOLOGICAL HETEROGENEITY UNDERLYING DEMENTIA

Dementia is a health care problem with an enormous economic and societal impact. 
Alzheimer’s disease (AD) is considered the most common cause of dementia, the most 
common neurodegenerative disease, and one of the most common neurological disorders 
[1,2]. AD affects 5.4 million Americans and is the fifth leading cause of death among 
Americans aged 65 years or older [3]. While we have witnessed considerable advances in 
our understanding of its molecular and cellular underpinnings in the last four decades [4], 
AD remains incurable.
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Although AD is pathologically defined by the presence of amyloid plaques and 
neurofibrillary tangles (NFTs) in sufficient number and distribution to cause dementia [5], 
population-based clinic-pathological studies have established that the most common 
pathological substrate of dementia in community-dwelling elderly people is not pure AD, 
but mixed pathologies, especially some proportion of AD and cerebrovascular ischemic 
disease (CVID), but also Lewy body disease and hippocampal sclerosis with Tar DNA 
binding protein 43 KDa (TDP-43) pathology [6–9]. CVID is a heterogeneous clinic-
pathological entity that encompasses both large vessel infarcts and small vessel disease. 
Attempts to operationalize CVID as a cause of cognitive impairment and a clinic-
pathological entity distinct from AD have evolved from the first vascular dementia criteria 
[10,11] to the more recent and broader vascular cognitive impairment construct [12,13] . 
Within this CVID spectrum, it is small vessel disease due to lipohyalinosis of small size 
arteries that frequently coexists with some degree of AD neuropathological changes. Of 
note, CVID contributes to the severity of cognitive decline even in a convenience sample 
selected to represent the AD clinic-pathological continuum and devoid of cases with 
vascular dementia as the primary neuropathological diagnosis [14]. Up to 30% of subjects 
clinically diagnosed with probable AD dementia in the United States Alzheimer Disease 
Centers database actually do not meet neuropathological criteria for AD, mainly due to 
insufficient AD neuropathological changes and the co-occurrence of CVID and other 
neuropathologic findings [15,16].

The expansion of brain imaging and cerebrospinal fluid (CSF) AD biomarkers in clinical 
practice is enabling clinicians to appreciate this clinic-pathological heterogeneity when 
diagnosing and treating patients with dementia and mild cognitive impairment (MCI) [17–
19]. Brain magnetic resonance imaging (MRI) has become the gold-standard imaging 
diagnostic method to evaluate both the CVID burden and the severity and regional pattern of 
brain atrophy in patients with dementia. A bilateral temporo-parietal hypometabolism in 
[18F]-fluoro-deoxy-glucose positron emission tomography ([18F]-FDG-PET) is typical of 
AD dementia and can often be already seen in patients with MCI due to AD. Similarly, 
amyloid PET and CSF AD biomarkers (amyloid-β (Aβ) and phospho-tau) can demonstrate 
the presence of AD pathology already at the MCI stage and predict conversion from MCI to 
AD dementia with high accuracy. Tau PET radiotracers are being developed and may soon 
be added to our clinical practice.

Although AD and CVID could just be frequent brain comorbidities in the elderly, the 
realization of this clinic-pathological complexity and heterogeneity has led researchers to 
inquire about a pathophysiological link between both entities. If this link exists, controlling 
the modifiable vascular risk factors and promoting cardio- and cerebrovascular health could 
help prevent AD dementia, as well as vascular dementia.

In this review, we discuss the current evidence about modifiable risk and protective factors 
for AD derived from epidemiological, preclinical, and interventional studies, and analyze the 
opportunities for therapeutic and preventative interventions. While multiple other risk factors 
have been postulated, we selected only those for which there are sufficient data within these 
three domains. Whenever the distinction was available, we will discern between all-cause 
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dementia, vascular dementia, and AD, and between autopsy-proven, biomarker-supported, 
and clinically-based diagnosis.

AGE-ADJUSTED INCIDENCE AND PREVALENCE OF DEMENTIA MIGHT BE 

DECREASING

Remarkably, although the expansion of human lifespan is leading to an increase in the total 
number of patients with dementia in developed and many developing countries, many recent 
longitudinal epidemiological studies have revealed that the age-adjusted estimates of 
incidence and prevalence of dementia might be decreasing, especially in Western countries 
(Figs. 1 and 2) [20–35].

It should be noted that, in order to obtain comparable measures of incidence and prevalence 
of dementia across decades in the same population, the methods of ascertainment of incident 
and prevalent cases must be kept constant in spite of the remarkable advances achieved in 
diagnostic biomarkers. Moreover, implementation of imaging and CSF diagnostic 
biomarkers in population scale epidemiological studies is logistically and financially 
challenging. Thus, most of these epidemiological studies ascertained dementia using either 
old sets of clinical diagnostic criteria or algorithms based on predetermined cut-off scores in 
brief cognitive screening tests, which might not be sensitive or specific for the detection of 
very mild dementia, and do not discern between different etiologies of dementia such as 
CVID and AD. Hence, it is not possible to accurately know what proportion of the observed 
decrease in dementia incidence and prevalence is attributable to AD versus CVID. For 
example, stroke incidence is decreasing among people aged 65 years and older in the United 
States [36], which predicts a decrease in vascular dementia incidence.

Also of note, dementia prevalence studies were overall less positive than dementia incidence 
studies (Figs. 1 and 2). One possible explanation is that prevalence measures can be strongly 
influenced by changes in survival trends. While no disease-modifying drugs are yet available 
for AD, currently approved drugs and specialized care might be prolonging AD survival 
[37], and therefore increasing its age-adjusted prevalence. Stroke care has improved 
enormously in the last two decades with the expansion of cardiovascular secondary 
prevention, in-hospital acute interventions, and rehabilitation programs, which could be 
contributing to decrease stroke mortality [36,38] but, secondarily, increasing the prevalence 
of vascular dementia [38].

Notwithstanding these potential caveats, the findings of these epidemiological studies have 
reinforced the role of modifiable environmental factors in AD pathophysiology and fueled 
optimism in preventative strategies. Indeed, it has been estimated that between a third to half 
of AD cases could be attributable to modifiable risk factors and, therefore, preventable [39–
41]. However, it should be noted that many of these “AD cases” likely bear mixed 
pathologies in the brain and that the preventable component could just be the concurrent 
CVID burden. In any case, whether this decreasing incidence and prevalence of dementia is 
due to a resistance to accumulate AD neuropathological changes and/or CVID, or to 
resilience mechanisms that enable elderly people to better cope with their AD 

Serrano-Pozo and Growdon Page 3

J Alzheimers Dis. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuropathological and CVID burdens (“cognitive reserve” and “brain reserve” hypotheses) 
[42], remains to be elucidated.

GENETIC RISK FOR ALZHEIMER’S DISEASE

Besides aging itself, the main other unmodifiable risk factor for sporadic AD is a genetic 
polymorphism in the APOE gene encoding for apolipoprotein E: the ϵ4 allele. Compared to 
ϵ3/ ϵ3 individuals—the most common genotype in the general population—, carrying one 
APOE ϵ4 allele increases the risk of developing AD ≈3 fold, whereas carrying two APOE 
ϵ4 alleles increases the risk up to 12 times. In addition, the APOE ϵ4 allele anticipates the 
clinical onset of AD in a dose-dependent fashion, with individuals who are homozygous 
often presenting before age 65. By contrast, carrying the APOE e2 allele reduces the risk of 
developing AD by half, delays its clinical onset, and reduces the age-related burden of AD 
neuropathological changes [43,44]. Among other mechanisms, it has been proposed that the 
apolipoprotein E4 isoform encoded by the APOE ϵ4 allele leads to Aβ accumulation in 
amyloid plaques and cerebral amyloid angiopathy (CAA) [43] by both reducing its clearance 
and promoting its aggregation [45]. Of note, clinic-pathological studies have also linked the 
APOE ϵ4 allele to an increased risk of CVID [46] and TDP-43 pathology [47] in the context 
of AD.

While APOE ϵ4 is the strongest known genetic factor for sporadic AD, it is not necessary 
nor sufficient to cause AD, and it is by no means the only genetic risk factor. Genome-wide 
association studies have discovered multiple susceptibility loci in as many genes, which 
correspond to common variants of small effect size [48]. These genetic variants have been 
used to devise polygenic hazard scores that improve the estimation of the genetic risk for 
AD beyond the APOE genotype [49]. However, as with many common diseases, the 
development of AD is thought to be ultimately determined by the combination of the 
individual’s genetic make-up and his/her exposure to certain (modifiable) environmental 
factors. In fact, APOE and many of the recently discovered susceptibility gene 
polymorphisms are related to the innate immune system, thus highlighting the crucial role of 
microglia—the macrophage of the brain—in AD pathophysiology, and linking the 
individual’s genome with his/her response to environmental exposures.

MODIFIABLE RISK AND PROTECTIVE FACTORS FOR ALZHEIMER’S 

DISEASE

Given the premises above, we sought to review the literature on the main modifiable risk and 
protective factors for the development of AD, which include the classic vascular risk factors 
(hypertension, diabetes mellitus, hypercholesterolemia, and smoking), alcohol drinking, 
physical exercise, diet, educational attainment, and leisure and social activities. We will 
analyze the findings of epidemiological studies, the discoveries of preclinical research in AD 
mouse models, and the results of randomized clinical trials (RCTs) conducted in human 
subjects. We will highlight the opportunities for therapeutic and preventative interventions, 
as well as the remaining areas of uncertainty and knowledge gaps.
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Hypertension

Epidemiological studies—Midlife hypertension has been associated with an increased 
risk of all cause and AD dementia in multiple longitudinal studies [50–53]. In a clinic-
pathological study, hypertension was associated with increasing numbers of amyloid plaques 
and NFTs, as well as lower brain weight (indicating greater atrophy) [54]. However, the 
relationship between blood pressure and dementia is probably complex; a “goldilocks” 
phenomenon, whereby not only midlife hypertension but also late-life hypotension 
(hypoperfusion), have deleterious effects on brain health and cognition has been suggested. 
Both low blood pressure in late-life and a steeper decline in blood pressure between mid and 
late life have been associated with an increased risk of dementia and AD [53,55–58]. It has 
been recently reported that the association of blood pressure with AD dementia is U-shaped, 
with the lowest risk of AD dementia near the center of the systolic and diastolic blood 
pressure ranges [59]. Along the same lines, the age of onset of hypertension might be 
relevant to the risk of developing dementia and AD because, in fact, onset of hypertension in 
octogenarians and nonagenarians has been associated with a lower risk of dementia [60]. 
Notwithstanding this finding, an alternative possible explanation to this phenomenon is that 
incident AD dementia is associated with a reduction in body mass index (BMI), which 
would lead to a reduction in blood pressure.

Preclinical studies—Numerous experimental animal studies have linked hypertension 
and AD pathophysiology. Chronically induced hypertension in transgenic AD mice via 
administration of high salt diet plus deoxycorticosterone (DOCA), angiotensin II or 
hypertensive drugs [i.e., Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME)] 
increases brain Aβ accumulation in the form of amyloid plaques and CAA—leading to 
disruption of the blood-brain barrier (BBB)—, accelerates neuron loss, and worsens 
cognitive decline [61–63]. Conversely, a high salt diet alone induced an increase in cerebral 
blood flow without hypertension, and led to a reduction of amyloid plaque burden in 
transgenic AD mice [64]. Angiotensin II has been shown to increase Aβ levels through 
favoring the amyloidogenic processing of AβPP [63]. Multiple classes of anti-hypertensive 
drugs have shown to improve pathological and/or behavioral/cognitive phenotypes in 
transgenic AD mice, including beta-blockers [65,66], calcium-channel blockers [67], ACE 
inhibitors [68], and angiotensin receptor blockers [69]. Proposed mechanisms are unrelated 
to blood pressure control and include: decreased Aβ production [67], increased Aβ 
degradation by insulin degrading enzyme (IDE) [66,69], increased clearance of Aβ through 
the BBB [67], inhibition of Aβ oligomerization into high molecular weight neurotoxic 
species [69], and reduction of inflammation [65,68] and oxidative stress [68]. Of note, blood 
pressure may be less responsive to anti-hypertensive drugs in hypertensive transgenic AD 
mice than in wild-type mice [70].

Interventional studies—The Perindopril Protection Against Recurrent Stroke Study 
(PROGRESS) was a secondary prevention RCT conducted in elderly people with history of 
prior stroke or transient ischemic attack who were randomized to either the ACE inhibitor 
perindopril/indapamide (n = 3,051) or placebo (n = 3,054). Cognitive impairment, as 
indicated by a new diagnosis of dementia [based on the Diagnostic and Statistical Manual of 
Mental Disorders IV (DSM-IV) criteria] or a decline in Mini-Mental State Examination 
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(MMSE) score of 3 or more, was a primary outcome. Compared to placebo, the perindopril/
indapamide combination was associated with a statistically significant reduction in the risk 
of dementia and cognitive decline [71]. However, this risk reduction was only significant for 
the subgroups of “dementia/cognitive decline with recurrent stroke”, not for the “other 
dementia/cognitive decline” subgroup, indicating that vascular cognitive impairment rather 
than AD was driving the beneficial effects of perindopril/indapamide on cognition.

Diabetes mellitus

Epidemiological studies—Longitudinal epidemiological studies have yielded 
conflicting results regarding whether diabetes mellitus (DM) in midlife increases the risk of 
developing late onset dementia and AD. Some studies have shown such association [72–75], 
but others have failed to detect it [76]. A recent meta-analysis of 17 longitudinal cohort 
studies amounting ≈1.7 million people concluded that DM increases the risk of developing 
AD with a relative risk (RR) of ≈1.5 [77]. However, clinic-pathological studies have 
reported either no association between a DM diagnosis and the extent of AD 
neuropathological changes, or exacerbated AD neuropathology only in APOE ϵ4 carriers 
[78–80].

Preclinical studies—Experimental studies in AD mouse models have supported a 
contribution of DM to AD pathology and cognitive impairment. Although multiple links 
between Aβ and DM have already been unveiled, the mechanism(s) by which DM promotes 
AD remains an area of active research. As mentioned above, IDE is one of the major Aβ-
degrading enzymes [81]. The receptor for advanced glycation end-products (RAGE) is a 
receptor for Aβ present in neurons, microglia, and endothelial cells [82]. RAGE mediates 
the influx of Aβ from the plasma to the brain interstitial fluid (ISF) through the BBB [83]. 
Plasma insulin growth factor I (IGF-I) reduces brain Aβ levels and amyloid plaque burden in 
transgenic AD mice [84]. Plasma hyperinsulinemia in the setting of normoglycemia leads to 
an increase in brain ISF Aβ levels without altering brain insulin levels or brain insulin 
signaling, whereas direct delivery of insulin to the brain does not affect Aβ levels, despite 
stimulating the insulin signaling pathway [85]. Acute hyperglycemia can increase ISF Aβ 
levels by augmenting neuronal activity, which is known to enhance Aβ generation, in a K-
ATP channel dependent fashion [86]. Peritoneal administration of streptozotocin leading to 
hypoinsulinemia (a model of type 1 DM) reduces amyloid plaque deposition but increases 
the levels of soluble Aβ species and the severity of CAA, accelerates neurodegeneration, and 
worsens cognition in transgenic AD mice [87]. A similar phenotype can be seen in 
transgenic AD mice fed with high fat diet to develop insulin resistance and 
hyperinsulinemia, or crossed with the leptin receptor null mice (db/db), the most widely 
used mouse model of insulin resistance and type 2 DM [88].

Interventional studies—Small pilot randomized placebo-controlled clinical trials have 
suggested that metformin [89,90], intranasal regular insulin [91,92], and intranasal long-
acting insulin (detemir) [92,93] may have a beneficial effect on cognition in patients with 
amnestic MCI or mild AD dementia. In addition, a positive effect on AD biomarkers has 
been suggested in these pilot trials, including a slower rate of brain atrophy by MRI, an 
improved cerebral hypometabolism by [18F]-FDG-PET scan, an improved profile of CSF 
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AD biomarkers (Aβ/phospho-tau) with intranasal regular insulin [91,92], and an improved 
cerebral perfusion with metformin by resting-state arterial spin labeling MRI [90]. Larger 
phase III RCTs are needed to confirm these promising results. Conversely, rosiglitazone did 
not impact cognition compared to placebo in subjects mild to moderate AD dementia [94].

Hypercholesterolemia

Epidemiological studies—The relationship between hypercholesterolemia and AD risk 
remains unclear and is probably complex. For example, two studies assessing the effects of 
mid-life serum cholesterol on late-life risk of dementia and AD have yielded conflicting 
results. One showed a positive association between serum cholesterol level in midlife and 
development of AD 21 years later [95], whereas the other did not find any significant 
association between midlife serum cholesterol level and risk of AD 32 years later [96]. 
However, both studies concurred in finding that a decrease in serum cholesterol levels 
between mid and late life is associated with a higher risk of developing AD. Survival and 
competing risk biases associated with death from cardiovascular causes could explain these 
apparently contradictory results. In addition, late life hypercholesterolemia has been 
reported to both reduce [97] and not change [98] dementia risk. Similarly, while early cross-
sectional revealed an up to 70% reduction in dementia risk in statin users [99,100], 
longitudinal prospective studies subsequently rendered mixed results [101–105]. Moreover, 
mild hypercholesterolemia has been associated with increased early amyloid plaque 
deposition in the brain independently of the APOE genotype [106], but no association 
between late life cholesterol and AD neuropathological changes was found in the Adult 
Changes in Thought (ACT) population-based study [107]. Last, statin use has been 
associated with reduced AD neuropathological changes, specifically NFTs, in the autopsy 
cohort of the ACT study [108], but not in the Religious Orders Study [104].

Preclinical studies—Diet-induced hypercholesterolemia enhances Aβ plaque deposition 
in transgenic AD mice [109,110]. Atorvastatin and pitavastain therapy can reduce Aβ plaque 
burden and microglial inflammation in transgenic AD mice [111], whereas simvastatin has 
been reported to improve the cognitive deficits in these mice without altering amyloid 
plaque burden [112,113]. Simvastatin, atorvastatin, and ezetimibe have been shown to 
reduce NFTs in a mouse model of tauopathy [114].

Interventional studies—Two large RCTs investigated the effects of statins on cognition 
in non-demented elderly people with high cardiovascular risk and both concluded that statins 
have no significant protective effect on cognition. The Heart Protection Study (HPS) 
compared the effects of simvastatin versus placebo at reducing cardiovascular risk in a large 
sample of elderly individuals at high risk of suffering cardiovascular disease. Cognitive 
impairment was assessed at baseline and at the trial completion by means of the modified 
Telephone Interview for Cognitive Status (TICS-m), which was administered either in 
person or by telephone, and considered a tertiary endpoint. No significant differences were 
found in TICS-m scores or the proportion of TICS-m impaired versus non-impaired subjects 
between the simvastatin (n=10,269) and the placebo (n=10,267) groups [115]. The 
PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) trial enrolled high 
cardiovascular risk elderly subjects to test the effects of pravastatin (n=2,891) versus placebo 
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(n=2,913) in cardiovascular morbidity and mortality. Cognitive function was evaluated at 
baseline and 5 more times over a 42-month follow-up with the MMSE and a brief battery of 
executive and memory tests (Stroop-Color-Word test, Letter-Digit Coding test, and Picture 
Learning test immediate and delayed recall), and included as a tertiary endpoint. No 
significant differences in cognitive scores between pravastatin and placebo were observed at 
any follow-up visit [116,117].

RCTs of statins in patients at the stage of mild-to-moderate AD dementia have also rendered 
disappointing results. A positive signal in cognitive, functional, and behavioral outcome 
measures was observed in the Alzheimer’s Disease Cholesterol-Lowering Treatment 
(ADCLT) trial, which compared atorvastatin (80 mg/day, n = 32) with placebo (n = 31) in a 
small sample (n = 63) of mild to moderate AD dementia patients [118]. However, longer and 
larger clinical trials failed to reproduce these promising results. The Lipitor’s Effect in 
Alzheimer’s Dementia (LEADe) study randomized 640 patients with mild to moderate AD 
dementia to atorvastatin (80 mg/day, n = 297) or placebo (n = 317). After 72 weeks, no 
differences were observed in the primary endpoints: a measure of global cognition and a 
measure of global level of functioning [119]. Similarly, simvastatin (40 mg/day) also failed 
to impact rate of cognitive decline in another clinical trial conducted in 406 patients with 
mild-to-moderate AD dementia and normal lipid profile [120].

Smoking

Epidemiological studies—Several large population-based cohort studies have reported a 
2–4-fold increased risk of being diagnosed with AD among current smokers, but only within 
APOE ϵ4 non-carriers [121–123]. A more recent meta-analysis of 37 prospective cohort 
studies has confirmed that smoking increases the risk of all-cause dementia and vascular 
dementia, whereas AD risk is significantly increased only among APOE ϵ4 non-carriers 
[124]. Of note, the analysis of the Honolulu-Asia Aging Study (HAAS) autopsy cohort 
revealed an association between mid-life smoking and higher numbers of cortical neuritic 
amyloid plaques at autopsy independently of age of death, presence of the APOE ϵ4 allele, 
systolic blood pressure, and neuropathological evidence of stroke [125]. Environmental 
tobacco exposure, colloquially called passive or second-hand smoking, has also been 
associated with an increased risk of dementia and AD [126,127]. Importantly, ex-smokers 
have a similar risk of dementia as never smokers, suggesting that smoking cessation alone 
could prevent many dementia cases 124].

Preclinical studies—Exposure of transgenic AD mice to high dose cigarette smoke in a 
smoking chamber leads to an increased amyloid plaque deposition, microglial and astrocyte 
responses, and hyperphosphorylated tau in plaque-associated neuritic dystrophies, but not 
neuron loss [128]. Studies investigating the effects of nicotine have yielded conflicting 
results. Chronic nicotine administration has been reported to reduce amyloid deposition in 
one mouse model of β-amyloidosis [129], but not in another more aggressive model [130], 
and to worsen tau aggregation in a triple transgenic mouse which develops both plaques and 
tangles [131]. Cotinine, the main metabolite of nicotine, reduced Aβ deposition and 
ameliorated cognitive deficits in AD transgenic mice [132].
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Interventional studies—A smoking cessation program in the elderly led to significantly 
slower rates of cognitive decline over the following 2 years in successful quitters compared 
with unsuccessful quitters [133]. Smoke-free laws banning smoking in workspaces and 
designated public areas have been implemented in many developed countries. In some of 
these countries, the anti-tobacco legislation is more comprehensive and encompasses also 
restrictions to tobacco advertising in mass media, as well as the addition of a “healthcare” 
tax on tobacco purchase. Smoke-free legislation has been shown to reduce the number of 
hospitalizations for acute coronary syndrome [134] and the rates of preterm birth and 
hospital attendances for childhood asthma [135]. Thus, although research evidence is 
awaiting, it is conceivable that anti-tobacco public health policies could be contributing to 
reduce the incidence of vascular dementia and possibly AD.

Alcohol drinking

Epidemiological studies—Although epidemiological studies based on self-reported 
measurements such as alcohol intake should be taken with caution, light to moderate alcohol 
consumption in late life has been associated with a reduced risk of AD dementia [136–138]. 
A meta-analysis of 15 longitudinal prospective studies confirmed that moderate alcohol 
drinkers have a significantly reduced risk of AD and vascular dementia compared to non-
drinkers [139]. With regards to the alcohol beverage type, the Rotterdam study [137] found 
no difference between wine, beer, or liquor, whereas the Washington Heights Inwood-
Columbia Aging Project [138] found that only wine was protective. Somewhat surprisingly, 
late life heavy drinking has been shown to have no effect on the risk of dementia compared 
to non-drinkers [137,139]. However, the HUNT study, a large population-based study from 
Norway, found that, relative to infrequent alcohol intake (1–4 times in last 14 days), frequent 
alcohol intake (≥5 times in last 14 days) is associated with an increased risk of both AD and 
vascular dementia up to 27 years later [140].

Despite this epidemiological evidence, the relationship between alcohol and dementia may 
not be straightforward; confounding factors such as socioeconomic status, education, and 
healthy lifestyle choices (such as diet and exercise), which are frequently associated with 
light to moderate alcohol consumption, could be influencing or even driving the above 
results.

Preclinical studies—Multiple studies have shown that resveratrol, a sirtuin 1 (SIRT1) 
activator, and other polyphenols present in the grapes of red wine reduce Aβ plaque burden 
and improve cognitive phenotype, through specific mechanisms depending on the 
polyphenol: promoting the non-amyloidogenic pathway of AβPP processing [141], 
interfering with Aβ oligomerization [142,143], favoring Aβ degradation through the 
proteasome [144], and reducing oxidative stress [145].

Interventional studies—A phase II double-blind, placebo-controlled RCT of resveratrol 
in mild-to-moderate AD patients showed that resveratrol is detectable in CSF and is safe and 
well tolerated. Of note, resveratrol reduced CSF Aβ40 and Aβ42 levels but accelerated brain 
atrophy [146]. A larger phase III RCT is needed to confirm these promising results.
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Obesity and diet

Epidemiological studies—Numerous epidemiological studies have agreed that midlife 
obesity, measured with anthropometric parameters such as BMI and/or the waist-to-hip ratio, 
is associated with an increased risk of late-life dementia independently of other vascular or 
socioeconomic risk factors [147–153]. However, most of these studies have also concurred 
in that there is a reverse causality effect whereby the BMI declines in the years prior to the 
onset of dementia. It has been proposed that this “obesity paradox” or weight loss 
immediately prior to and during the clinical phase of dementia is related to an increase in 
energy expenditure and a hypothalamic dysregulation. Whether the significant association 
between mid-life obesity and late-life dementia is driven by AD, vascular dementia, or 
mixed AD/vascular dementia remains controversial [147,150]. However, obesity (higher 
BMI) has been linked with greater cortical atrophy in 700 AD and MCI patients in a large 
study combining the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the 
Cardiovascular Health Study-Cognition Study (CHS-CS) datasets [154], and midlife obesity 
was associated with an earlier age of AD clinical onset, greater amyloid burden by PET 
imaging, and greater Braak NFT stage at autopsy, but not higher CERAD neuritic plaque 
score, in the Baltimore Longitudinal Study of Aging (BLSA) [155].

Mediterranean diet, that is, a diet rich in fruits, vegetables, whole-grain cereals, fish and 
olive oil, has been associated with cognitive health and a lower risk of developing MCI and 
AD dementia, and of converting from MCI to AD dementia [156–159]. Furthermore, 
adherence to Mediterranean diet might be associated with a lower mortality risk in AD 
patients [160]. While it is clear that adherence to Mediterranean diet is associated with 
cardiovascular health and protects against cerebrovascular disease [161–165], the protective 
association between Mediterranean diet and AD dementia does not seem to be mediated by 
its effects on the incidence of stroke and/or vascular risk factors [166]. In fact, of particular 
relevance to AD prevention, a 3-year serial amyloid and FDG-PET imaging study has 
recently reported that adherence to a Mediterranean-style diet by middle-aged cognitively 
healthy adults slowed down both amyloid plaque deposition and cerebral hypometabolism 
independently of APOE genotype and vascular risk factors [167]. This finding strongly 
supports a preventative or protective effect of Mediterranean diet against AD.

Perhaps because of the cumulative beneficial effects of its many components, the evidence in 
favor of the Mediterranean diet as a whole is more solid that the evidence on individual 
nutrients or food groups [168]. Attempts to dissect which components of the Mediterranean 
diet are beneficial for cognition have supported a role of nutrients and bioactive compounds 
contained in fish [169,170], and cruciferous and green leafy vegetables, but not fruits [171–
173]. Conversely, a diet rich in saturated fat has generally been associated with an increased 
risk of dementia [174–176] (but see also [177]). Low vitamin E and D levels have been 
associated with a higher risk of developing dementia [178–180], whereas studies 
investigating the association between vitamin B12 and folic acid levels and dementia have 
yielded conflicting results [181,182]. It should be noted, however, that patients with AD can 
exhibit an impaired nutritional status already at the stage of mild dementia and that this 
aspect of the disease could be a confounder of many of the above cross-sectional 
epidemiological studies [183,184].
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Preclinical studies—As mentioned above, a high fat diet promotes amyloid plaque 
deposition and cognitive deficits in transgenic AD mice [88,185,186]. Of note, these effects 
can be effectively reverted by environmental enrichment and exercise, despite continuation 
of high fat diet [185,186]. It is unclear whether high fat diet-induced obesity can also 
accelerate tau pathology independently of its effects on Aβ [187,188]. The components of 
Mediterranean diet have been extensively studied in AD mouse models. Oleuropein 
aglycone, the main polyphenol present in extra virgin olive oil, reduced Aβ plaque burden in 
transgenic AD mice through enhancing autophagy [189]. Oleocanthal, another phenolic 
component of extra virgin olive oil, reduced Aβ plaque burden in transgenic AD mice by 
facilitating Aβ clearance through the BBB [190]. A diet deficient in folate, and vitamins B6 
and B12 can accelerate Aβ plaque deposition in transgenic AD mice [191]. Vitamin E 
supplementation can prevent Aβ plaque deposition in young, but not aged, transgenic AD 
mice [192]. Genetic depletion of vitamin E in transgenic AD mice increases Aβ plaque 
deposition through a reduction in plaque clearance, a phenotype than can be reverted with 
vitamin E supplementation [193,194]. Studies investigating the effects of supplementation 
with ω3-poly-unsaturated fatty acids (ω3-PUFA) such as docosahexaenoic acid (DHA) in 
the brain Aβ levels and cognition of transgenic AD mice have rendered contradictory results 
[195,196].

Interventional studies—Despite all this epidemiological and preclinical evidence, all 
diet-based clinical trials have essentially failed to slow down the progression of cognitive 
decline in AD. Vitamin E supplementation failed to prevent the progression from MCI to 
AD dementia [197]. A combination of the antioxidants vitamin C, vitamin E, and lipoic acid 
in a small sample of mild to moderate AD patients failed to impact AD biomarker levels in 
CSF and, actually, accelerated cognitive decline compared to placebo [198]. 
Supplementation with ω3-PUFA failed to delay cognitive decline in a small RCT enrolling 
174 patients with mild to moderate AD dementia [199]. Moreover, ω3-PUFA, with or 
without a multi-domain intervention consisting of a physical exercise program, cognitive 
training and dietary advice, failed to prevent cognitive decline in a 3-year RCT conducted in 
elderly people with memory complaints but not demented [200]. Souvenaid®, containing 
Fortasyn Connect®, a micronutrient combination including DHA, eicosapentaenoic acid 
(EPA), uridine monophosphate, choline, vitamins B12, B6, C, E, and folic acid, 
phospholipids and selenium, improved cognition in a 12-week proof-of-concept RCT in 
drug-naïve patients with mild AD [201]. A subsequent 24-week RCT in drug-naïve mild AD 
patients also revealed a trend towards cognitive improvement in the experimental group 
[202]. However, another 24-week RCT of Souvenaid® as add-on therapy in patients treated 
for mild-to-moderate AD dementia [203] and a 24-month RCT targeting the earliest stage of 
AD (prodromal or pre-symptomatic AD) [204] failed to show improvement of the cognitive 
primary outcome. Of note, Souvenaid® corrected the micronutrient deficits in the plasma of 
mild and mild-to-moderate AD patients [205], preserved a quantitative 
electroencephalogram measure representing brain network integrity in mild AD patients 
[206], and improved both a cognitive/functional secondary outcome and an MRI-based 
hippocampal volume measurement in prodromal AD patients [204]. If these findings are 
confirmed in larger samples of cognitively intact individuals, it would support its value as a 
protective, rather than therapeutic, intervention. The FINGER trial is a 2-year RCT that 
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compared a multi-modal intervention with diet, exercise, cognitive and social stimulation 
against just counseling in a large cohort (n = 1260) of at risk but non-demented elderly 
subjects. A significant beneficial effect of the intervention on the cognitive outcome measure 
(Neuropsychological Test Battery or NBT), especially on the executive functioning and 
processing speed scores, was reported. While the contribution of each of the components of 
this multi-domain intervention to this favorable result is unclear, the recommended diet was 
very similar to a Mediterranean-style diet [207].

Exercise

Epidemiological studies—A vast majority of epidemiological longitudinal prospective 
studies have established that a lower level of physical activity is associated with a higher risk 
of developing AD dementia and, conversely, a higher level of physical activity protects 
against AD dementia [208–213]. While elderly people who exercise are more likely to 
follow a healthy diet, the beneficial effect of exercise is independent of the protective effects 
of Mediterranean diet [214]. According to a recent meta-analysis of prospective studies, the 
protective association between leisure time physical activity and AD risk is dose-dependent 
[215].

Preclinical studies—Numerous studies have established that aerobic physical exercise 
can ameliorate neuropathology and cognition in multiple Aβ [216,217] and tau [218,219] 
mouse models of AD. Exercise can promote neuronal plasticity and the non-amyloidogenic 
processing of AβPP through enhancing brain-derived neurotrophic factor (BDNF) signaling 
[220]. Another protective mechanism invoked is a change in microglia phenotype towards 
inhibition of neuroinflammation [217].

Intervention studies—A number of clinical trials have indicated that a program of 
regular aerobic exercise has beneficial effects on cognition and level of functioning in 
patients with subjective cognitive complaints [221], MCI [221–224], and very mild AD 
dementia [225], but not in patients with mild to moderate dementia [226]. In the successful 
FINGER trial described above, the exercise program consisted of 1 to 3 weekly sessions of 
progressive muscle strength exercises for the eight main muscle groups plus 2 to 5 weekly 
sessions of aerobic individual and group activities [207]. Of note, in its new guidelines for 
the assessment and management of MCI, the American Academy of Neurology has recently 
issued a Level B (moderate confidence) recommendation for regular (twice per week) 
exercise in MCI patients [227], based on the promising results of two 6-month-long RCTs 
[223,224].

Education attainment, leisure, and social activities

Epidemiological studies—Epidemiological research has established that the level of 
education is inversely correlated with the risk of developing dementia due to both CVID and 
AD [228–232]. Leisure cognitive and physical activities have also been associated with a 
reduced risk of developing dementia [233–235]. Conversely, loneliness and single or widow/
widower marital status have been associated with a higher risk of developing dementia 
[236,237]. It should be noted that education and leisure and social activities are intimately 
related to other lifestyle factors (i.e., level of physical exercise, diet quality, alcohol/tobacco 
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use, adherence to pharmacological treatment of vascular risk factors), which could be 
driving or contributing to these effects and may not have been fully accounted for in the 
above studies.

Nonetheless, this epidemiological evidence has lent support to the “cognitive reserve” 
hypothesis, which posits that some highly educated individuals can exhibit either resistance 
to the development of AD neuropathology, or a special resilience that allows them to remain 
asymptomatic despite high burdens of amyloid plaques and NFTs thanks to their “brain 
reserve” (so called “mismatch AD”, “high pathology control”, or “asymptomatic AD” 
individuals) [238–243]. Recent imaging studies in cognitively healthy subjects support the 
existence of both resistance and resilience pathways linking education and intellectual 
enrichment with risk of AD dementia [244–249]. Specifically, some studies have reported 
that a higher education attainment and intellectual enrichment during midlife predict greater 
cortical thickness in brain MRI, even after adjusting for early life intelligence [249], lower 
amyloid burden in amyloid PET scan [246,248], and greater cortical metabolism in FDG-
PET [246] in late life, whereas other studies have found an association between a higher 
education and intellectual activity levels and better cognitive performance in late life 
independently of cerebral amyloid burden, metabolism, and atrophy [244,247].

Multiple mechanisms have been proposed to explain the resilience of some individuals to 
high AD neuropathological burden, including a higher or preserved number of neurons and 
synapses [241], a compensatory hypertrophy of the neuronal somas and nuclei [239,240], 
lower levels of toxic Aβ and tau oligomers at the synapses [241,242], limited microglial and 
astrocyte inflammatory responses [238,241], and a greater expression of the glutamate 
transporter GLT-1 in astrocytes to palliate glutamate-mediated neuronal excitotoxicity [243].

Preclinical studies—Social isolation by housing individual mice in separate cages can 
exacerbate AD-like pathology and cognitive deficits in mouse models of AD [250–252]. 
Conversely, environmental enrichment by introduction of novel objects in their cages as a 
method of cognitive stimulation has been reported to reduce the AD-like pathology and 
alleviate or prevent cognitive impairment in multiple mouse models of amyloid plaque [253–
259] as well as NFT deposition [257,260] (but see [261]).

Intervention studies—A meta-analysis of 17 RCTs of computerized cognitive training in 
patients with MCI rendered small to moderate but significant benefits in cognition, whereas 
the beneficial effects for dementia patients were weaker. Unfortunately, most studies are 
short-lasting and have not assessed long term effects on cognition [262]. A recent 2-year 
RCT testing a behavioral activation paradigm designed to increase the level of cognitive, 
physical and/or social activity versus supportive (counseling) therapy in a sample of 221 
black patients with MCI revealed a significant slowing in memory and functional decline in 
the behavioral activation group [263]. The recent American Academy of Neurology 
guidelines for the assessment and management of MCI assign a Level C (low confidence) 
recommendation for cognitive stimulation interventions at this early stage [227].
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OPPORTUNITIES FOR THERAPEUTIC AND PREVENTATIVE 

INTERVENTIONS

We have shown that there is a substantial body of epidemiological evidence consistent with 
the idea that mid-life vascular risk and metabolic factors increase the risk of late-onset 
dementia and AD, whereas education attainment, leisure and social activities, physical 
exercise, and Mediterranean diet protect against AD dementia (Fig. 3). Importantly, although 
the most widely used AD mouse models only recapitulate some aspects of the disease (i.e., 
either plaques or NFTs), the results of preclinical mechanistic research are largely in 
agreement with these epidemiological findings, adding support to the pursuit of preventative 
and therapeutic interventions that target these factors. Moreover, it is tempting to speculate 
that the recently reported trends of reduction of all-cause dementia and AD incidence and 
prevalence are related to a higher prevalence of modifiable protective factors and/or a lower 
prevalence of modifiable risk factors [264]. Indeed, a more widespread and stricter control 
of vascular risk factors through the popularization of antiplatelet, antihypertensive and statin 
drugs [265], the smoke-free policies resulting in lower numbers of tobacco users and 
second-hand smokers [266], and the expansion of college level education [267] could all be 
contributing to some extent to this positive trend. Noteworthy, while antiplatelet drugs have 
proven to be beneficial in secondary prevention of cardiovascular events, recent large 
primary prevention RCTs with aspirin have failed to prevent cardiovascular events and 
dementia in healthy elderly subjects [268,269]. Conversely, the rapidly propagating vicious 
cycle of sedentary life, high fat diet, obesity, and type 2 diabetes mellitus could threaten this 
positive trend in the near future [270].

Despite this epidemiological and preclinical evidence, virtually all attempts of clinical 
translation have failed to date, casting doubts about the validity of these modifiable factors 
as therapeutic targets. Rather than attributing the failure of these interventions to the 
selection of wrong targets, one alternative plausible explanation could be that most 
interventional studies have been designed with a therapeutic rather than preventative goal. 
For example, many of the RCTs have targeted MCI or mild-to-moderate AD dementia 
patients, when the AD neurodegenerative cascade has already begun and seems unstoppable. 
In addition, in most cases the diagnosis of MCI or AD dementia at enrollment was based on 
clinical criteria without biomarker support, but the clinical constructs of MCI and AD 
dementia are pathologically heterogeneous due to the high frequency of pathological 
comorbidities and to clinical misdiagnosis [8,15,16].

Whereas efforts to reduce cardiovascular and metabolic and increase healthy lifestyle factors 
have weak therapeutic impact in patients with established AD dementia, they may play 
much larger roles in lowering the risk of AD in cognitively normal individuals. It is now 
clear that both amyloid plaques and NFTs start to accumulate one to two decades before the 
first cognitive symptoms arise, and that this preclinical phase is a window of opportunity for 
preventative interventions [271]. The challenge, therefore, is to identify and then treat 
individuals at heightened risk for AD before cognitive symptoms and signs develop. To 
address this opportunity for preventative therapy, a recent consensus research framework has 
redefined the concept of AD based on CSF and imaging biomarkers of the AD 

Serrano-Pozo and Growdon Page 14

J Alzheimers Dis. Author manuscript; available in PMC 2019 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathophysiological process, rather than on the presence of clinical symptoms. A biomarker-
based staging system termed AT(N) has been proposed, where A+ indicates evidence of Aβ 
accumulation (either by amyloid PET or low CSF Aβ levels), T+ indicates evidence of 
hyperphosphorylated tau pathology (either by tau PET or elevated CSF phospho-tau levels), 
and (N)+ refers to evidence of neurodegeneration (either by a typical atrophy pattern in brain 
MRI, hypometabolism in FDG-PET, or elevated CSF total tau levels) [272]. While this 
staging system is a working research model that remains to be fully validated [273], 
biomarker-based staging may enable the design of primary prevention RCTs in cognitively 
intact individuals with negative AD biomarkers [A−T−(N)−] and secondary prevention RCTs 
in cognitively normal subjects who have positive AD biomarkers [i.e., those with A+T−(N)− 

(termed “preclinical Alzheimer pathologic change”), and those with A+T+(N)− or A+T+(N)+ 

(categorized as “preclinical AD”)]. By identifying different groups of subjects with different 
pathologies, it will be possible to determine the target populations in which interventions to 
modify risk factors for AD are most likely to prevent or delay onset of dementia. The 
observation that nutritional [167,202,206] and educational factors [244–249] can alter some 
of these biomarkers emphasizes the potential these modifiable risk and lifestyle factors have 
for reducing the risk of developing AD in healthy populations.

Last, future research should clarify the effects of other potential environmental risk factors, 
such as mild traumatic brain injury [274,275], air pollution [276,277], and other toxic 
exposures [278]. If confirmed as risk factors, appropriate public health policies against them 
could also have a huge beneficial impact on AD incidence and prevalence. Moreover, 
although methodologically challenging, a lifespan approach to evaluate whether and how the 
above genetic and acquired risk and protective factors influence brain development and/or 
vulnerability to injury in early life [279–282] could decisively inform public health policies 
aimed at preventing AD in late-life.
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Fig. 1. Trends in dementia prevalence.
Dementia prevalence appears to be decreasing in the United States and Western Europe, but 
not in Japan or Sweden. Graphs depicting the changing prevalence of cognitive impairment 
not dementia (CIND, light grey diamonds), all-cause dementia (black circles), Alzheimer’s 
disease (AD, steel grey squares), vascular dementia (VaD, aluminum grey triangles), and 
other/unclassified dementias (inverted silver-grey triangles). Error bars represent 95% 
confidence intervals (95%CI). A) Prevalence results for all-cause dementia and CIND from 
the 2000 and 2012 waves of the Health and Retirement Study (HRS) [34], conducted among 
people ≥ 65 years across the United States. B) Prevalence results for all-cause dementia and 
AD from the 1992 and 2001 waves of the Indianapolis-Ibadan Dementia Project (IIDB) [25], 
conducted among ≥ 70 years old African-Americans in Indianapolis, Indiana (USA). C) 
Prevalence results for all-cause dementia from the waves I (1989–1994) and II ( 2008–2011) 
of the Medical Research Council Cognitive and Function Aging Study (MRC-CFAS) [27], 
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conducted among people ≥ 65 years old in three geographically defined areas of England 
(UK). D) Prevalence rates for the algorithmic diagnosis of dementia (“cognitive impairment 
with disability” or CIWD) from the Persones Agées Quid (PAQUID, 1988–1989) and the 
Aging Multidisciplinary Investigation (AMI, 2007–2009) studies [31], conducted among 
farmers aged 65 and older in the area of Bourdeaux, France. E) Crude prevalence rates for 
all-cause dementia in the 1976–1977, 2000–2001, and 2005–2006 waves of the H70 study 
[22], conducted among 70- and 75-year-old residents of Gothenburg, Sweden (95%CI not 
available). F) Crude prevalence rates for all-cause dementia from the Nordanstig Project 
(NP, 1995–1998) and the Swedish National study on Aging and Care in Nordanstig (SNAC-
N, 2001–2003), derived from residents aged 78 and older in the municipality of Nordanstig, 
Sweden [33]. G) Prevalence rates for all-cause dementia from the Kungsholmen Project (KP, 
1987–1989) and the Swedish National study on Aging and Care in Kungsholmen (SNAC-K, 
2001–2004) [23], conducted among people ≥ 75 years old in central Stockholm, Sweden. H) 
Prevalence rates for all-cause dementia from the waves 0 (1988–89) and I (1994–1996) of 
the Zaragoza Dementia Depression Project (ZARADEMP) [21], conducted among people ≥ 
65 years old in the city of Zaragoza, Spain. I) Prevalence rates for all-cause dementia, AD, 
VaD, and other/unclassified dementia from the 1985, 1992, 1998, 2005, and 2012 waves of 
the Hisayama Study [32], conducted among people ≥ 65 years old in Hisayama, Japan.
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Fig. 2. Trends in dementia incidence.
Dementia incidence appears to be decreasing in the United States and Western Europe, but 
not in Japan. Graphs depicting the changing incidence of all-cause dementia (black circles), 
Alzheimer’s disease (AD, steel-grey squares), vascular dementia (VaD, aluminum-grey 
triangles), and other/unclassified dementias (inverted silver-grey triangles). Error bars 
represent 95 confidence intervals (95%CI). A) Age- and sex-adjusted 5-year cumulative 
hazard rate (cumulative incidence per 100 persons over a period of 5 years) for all-cause 
dementia, AD, and VaD from the Framingham Heart Study (FHS) [29], conducted among 
people ≥ 65 years old in Framingham, Massachusetts (USA). B) Age-standardized annual 
incidence rate (%) for all cause dementia and AD from the 1992 and 2001 waves of the 
Indianapolis-Ibadan Dementia Project (IIDB) [26], conducted among ≥ 70 years old 
African-Americans in Indianapolis, Indiana (USA). C) Crude dementia incidence (expressed 
as rate per 100 person-years) of the serial birth cohorts from the Einstein Aging Study [35], 
conducted among people ≥ 70 years old in the Bronx County, New York (USA) (95%CI not 
available). D) Incidence rates per 1000 person-years from the Medical Research Council 
Cognitive and Function Aging Study (MRC-CFAS) I and II [28], conducted among people ≥ 
65 years in three geographically defined areas from England (UK). E) Age-adjusted 
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incidence per 1000 person-years from the 1990 and 2000 waves of the Rotterdam Study 
[20], conducted among people aged 60 to 90 in Rotterdam, Netherlands. The 95%CI are not 
available, but the incidence rate ratio of the 2000 cohort relative to the 1990 cohort was 0.75 
(0.56–1.02). F) Crude dementia incidence per 1000 person-years based on the algorithmic 
diagnosis from the Three-City Study (3C, 2000s cohort) compared with the Personnes Agées 
Quid study (PAQUID, 1990s cohort) [30], both conducted among people ≥ 65 years old in 
the Bourdeaux area of France. The 95%CI are not available, but the fully adjusted (for age, 
education, vascular risk factors and depression) hazard ratio of the 3C versus the PAQUID 
cohorts was 0.77 (0.61–0.97). G) Age-standardized annual incidence rate (%) for all cause 
dementia and AD in the 1992 and 2001 waves of the Indianapolis-Ibadan Dementia Project 
(IIDB) [26], conducted among ≥ 70 years old Yoruba in Indaba, Nigeria. H) Age- and sex-
adjusted incidence per 1000 person-years for all-cause dementia, AD, VaD, and other/
unclassified dementia from the 1988 and 2002 cohorts of the Hisayama Study [32], 
conducted among people ≥ 65 years old in Hisayama, Japan.
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Fig. 3. 
Schematic representing the risk of dementia and Alzheimer’s disease as a balance between 
modifiable and unmodifiable protective and risk factors.
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