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Abstract— The human driver is no longer the only one
concerned with the complexity of the driving scenarios. Au-
tonomous vehicles (AV) are similarly becoming involved in the
process. Nowadays, the development of AV in urban places
underpins essential safety concerns for vulnerable road users
(VRUs) such as pedestrians. Therefore, to make the roads safer,
it is critical to classify and predict their future behavior. In this
paper, we present a framework based on multiple variations of
the Transformer models to reason attentively about the dynamic
evolution of the pedestrians’ past trajectory and predict its
future actions of crossing or not crossing the street. We proved
that using only bounding-boxes as input to our model can
outperform the previous state-of-the-art models and reach a
prediction accuracy of 91% and an F1-score of 0.83 on the
PIE dataset up to two seconds ahead in the future. In addition,
we introduced a large-size simulated dataset (CP2A) using
CARLA for action prediction. Our model has similarly reached
high accuracy (91 %) and F1-score (0.91) on this dataset.
Interestingly, we showed that pre-training our Transformer
model on the simulated dataset and then fine-tuning it on the
real dataset can be very effective for the action prediction task.

I. INTRODUCTION

During every moment of our waking life, our brains are

trying to predict what sights, sounds, and tactile sensations

will be experienced next [1]. During motion continuation,

viewers observe the trajectory of a moving object and si-

multaneously simulate its future trajectory, predicting where

it is likely to move next. Knowledge about whether an object

moves quickly or slowly affects these predicted trajectories

accordingly [2]. The shift in our mobility system to the

autonomous driving era is often regarded as adding an

artificial layer of cognitive intelligence on top of basic

vehicle platforms [3]. This layer of intelligence should be

capable of not only perceiving the world, but also predicting

and analyzing its future states. The predictive processing

can be applied everywhere, especially when interacting with

vulnerable road users (VRU) such as pedestrians. When

dealing with pedestrians, we can consider prediction as

a forecasting of the future state or states. For instance,

these states can be the future positions of the pedestrian

in the case of trajectory prediction. Also, we can formu-

late it as a higher-level semantic prediction such as the

early anticipation of the future action of the pedestrian,

for example, walking, running, performing hand gestures,

or most importantly crossing or not crossing the street in

front of the AV. Recently, trajectory and action prediction

solutions have been proposed based on sequential reasoning

that mainly use algorithms built on recurrent neural networks

(i.e., RNN, LSTM) [4, 5, 6, 7]. However, it has recently

become clear that LSTM lacks many capabilities to model

sequential data. For instance, LSTM suffers from long-term

prediction, often due to the vanishing gradient problem [8].

That leads to its inability to model the correlation between

non-neighboring inputs in the sequence. Furthermore, during

training, LSTM is not able to assign different weights to

different tokens based on their relative importance to the

output. This will force it to give equal attention to all inputs,

even if the capacity of the model does not allow it. Hence,

the attention coupled with LSTM [9] has enhanced the

previously suggested solution by proposing a mathematical

framework that can weigh each of the input tokens differently

depending on their importance to the input sequence itself

(self-attention) [10] or the output sequence (cross-attention).

Nevertheless, attention mechanisms coupled with LSTM

have limited the potential of “Attention” itself. We can see

that using only attention “Transformer architecture" [11] can

lead to better results. Transformers have first revolutionized

the natural language processing problems by outperforming

all the previously proposed solutions [12, 13]. However, it

was only until recently that were proved equally efficient for

non-NLP problems [14, 15, 16].

In this paper, we will apply Transformer Networks for

the pedestrian action prediction task of crossing or not-

crossing the street. This network will predict the crossing-

probability of a pedestrian in front of the ego-vehicle using

an observation sequence of 0.5 seconds with a prediction

horizon varying between one and two seconds in the future.

To our knowledge, we believe that we are the first to

apply Transformers for this task. We will propose multiple

variants of the Transformer architecture: the Encoder-alone

architecture, the Encoder coupled with pooling-layers, and

the Encoder-Decoder architecture. Our model will use only

bounding boxes as input features. Moreover, it will predict

the crossing probability with accuracy and F1-score that will

outperform the previous benchmarks even when using more

features as input [6]. These results are evaluated on the

PIE dataset [4], and on a simulated dataset (CP2A) that we

generated using the CARLA simulator. The latter dataset is



larger in size than PIE, and will equally confirm the high

efficiency of our models. Additionally, we will show that

the pre-trained weights on the CP2A dataset will increase

the efficiency of our fine-tuned models on the PIE dataset.

II. RELATED WORK

In this section, we review the recent advances in pedestrian

action and trajectory prediction. Then, we discuss the work

done using Transformers in various field of applications and

the effect of Transfer learning on Transformer models.

Pedestrian Action Anticipation is a highly important prob-

lem for autonomous cars. Where the objective is to anticipate

in advance if a pedestrian will cross the road in front of

the ego-vehicle. This problem was addressed using multiple

approaches. For instance, [5] used a network of convolutional

neural networks and LSTM to detect the pedestrians and

predict their actions up to 1.3 seconds ahead in the future

and their estimated time-to-cross. [17] used a stacked GRU

network composed of five GRUs each of which processes

a concatenation of different features (i.e., the pedestrian

appearance, the surrounding context, the skeleton poses,

the coordinates of the bounding boxes, and ego-vehicle

speed). [18] converted the human pose skeleton sequences

into 2D image-like Spatio-temporal representations and then

applied CNN-based models. [6] has published a benchmark

to evaluate action prediction on the PIE [4] and JAAD [19]

datasets. Additionally, they proposed a new state-of-the-art

model that uses attention mechanisms to combine implicit

and explicit features.

Pedestrian Trajectory Prediction is a closely related task

to the action prediction. In contrast, the output sequence

is a set of predicted positions in the future. In recent

works, we see that intention and action prediction can

be critical for trajectory prediction [4]. The M2P3 model

[7] used an Encoder-Decoder RNN along with conditional

variational auto-encoder (CVAE) to predict multi-modal tra-

jectories from an ego-centric vehicle view. GRIP++ [20]

builds a dynamic GNN (Graph Neural Network) to model

the interaction between agents in the scene. The Trajectron

[21] combines elements from CVAE, LSTM, and dynamic

Spatio-temporal graphical structures to produce multimodal

trajectories. Recently, a Transformer model was proposed

by [15] to predict the future trajectories of the pedestrians

conditioning on the previous displacement of each pedestrian

in the scene. The transformer used has the same architecture

as the Vanilla Transformer proposed in [11].

Transformers Networks are self-attention-based models

proposed by [11] for machine translation and have since

become the state-of-the-art method in many NLP tasks. Here

we focus on the development of Transformers for modeling

actions, motion dynamics, and visual context. For instance,

[22] introduced an Action Transformer model for recognizing

and localizing human actions in video clips. [16] proposed a

Spatio-temporal transformer for 3D human motion modeling

by learning the evolution of skeleton joints embeddings

through space and time. Also, [23] proposed the use of

transformer models for the prediction of dynamical systems

representative of physical phenomena. Recently, [24] and

[25] applied a Spatio-temporal transformer for video ac-

tion recognition. Similar to the NLP-oriented Transformers,

where Large Transformer-based models are often pre-trained

on large corpora and then fine-tuned for a particular task,

[24, 25] used a pre-trained Image Transformer [26] weights,

bootstrap the weights, and then fine-tuned the model on a

very large dataset [27] for action recognition. This training on

the large dataset has remarkably increased the performances

of Transformers for visual action recognition.

III. METHOD

The prediction and analysis block in autonomous car archi-

tectures receives its inputs from the perception block. We as-

sume that the sets of observations of every agent are arranged

in sequences. Every sequence describes the states on a time-

ordered scale from a specific time-step t = m, to another

time-step t = M : Om:M = {Om, . . . , OM}. Conditioning

on the whole history of observations, the prediction block

will answer the question of "what will be the future state (or

states) at the time t = A". More formally, the objective is to

calculate the following probability distribution:

p( Pa:A |Om:M )

Where Pa:A = {Pa, . . . , PA}, and Pt is the predicted state of

a particular object or agent at time t. For the case of trajectory

prediction, a is equal to the next time-step M + 1 of the

end-frame in the observation sequence. For the action early

anticipation, a is equal to A, where A is the time that the

pedestrian starts to cross, or the last frame the pedestrian is

observable in case no crossing takes place. The time between

the last observation frame M in the observation sequence and

the critical time A is called the Time-To-Event (TTE).

The input to our model is composed of the bounding box

coordinates of each pedestrian in the scene. The bounding

box is defined as the four coordinates (x_up, y_left, x_down,

y_right) around the pedestrian, without the use of images or

visual context. Certainly, these bounding boxes were first

extracted from images, either manually (i.e., in the case of

annotated datasets) or using a state-of-the-art object detector.

To predict the future states, we shall first build a rep-

resentative model of the world or the environment around

the vehicle. In the following section, we will present our

Transformer Network based model.

A. Input Embedding

Before feeding the input Om:M = XT ∈ R
T×4 to our

encoder, we first project the 4-dimensional bounding boxes

into a D-dimensional space via a linear layer.

ET = WeXT + be

Where ET ∈ R
T×D. We ∈ R

4×D and be ∈ R
D correspond

to the learnable weight and bias that project the bounding

boxes vector into the embedding space.

Unlike RNNs or CNNs, the Transformer has no notion

of ordering within a sequence. Following [11], we inject

sinusoidal positional encoding into the input embeddings.



Fig. 1: (Left) Encoder Alone Architecture; (Middle) Pooled-Encoder Architecture; (Right) Encoder-Decoder Architecture.

B. Attention Layer

Given a set of items, the attention mechanism estimates the

relevance of one item to other items. Basically, an attention

layer updates each component of a sequence by aggregating

global information from the complete input sequence. This is

done by defining three learnable weight matrices to transform

Queries (WQ ∈ R
D×dq ), Keys (WK ∈ R

D×dk ), and Values

(WQ ∈ R
D×dv ). In our model, dq = dk = dv = D. The

output of the attention layer is then given by:

Attention(Q,K, V,M) = softmax(QKT /
√

(dk) +M)V

Where the mask M prevents information leaking from

future steps.

Following [11], we use a multi-head attention (MHA)

mechanism to project the D-dimensional representation into

subspaces calculated by different attention heads i ∈
{1, . . . , H}. We concatenate all the output vectors to get the

final MHA output:

MHA(Qi,Ki, V i) = Concat(head1, . . . , headh)W
O

Where Qi , Ki, and V i ∈ R
T×F . We set F = D/H .

The headi = Attention(QWQ
i ,KWK

i , V WV
i ), and WO ∈

R
D×D.

C. Transformer Architecture

We proposed to apply multiple variations of the Trans-

former model:

1) Encoder-Only Architecture: The encoder-only model

takes the XT as input, proceeds into the embedding layer,

and then goes into a stack of N encoder layers. Each encoder

layer consists of a multi-head self-attention layer and point-

wise feed-forward neural networks (P-FFN). Both layers are

wrapped by a residual connection and layer normalization.

We define hn ∈ R
T×D as the output of the n−th encoder

layer, n ∈ {1, . . . , N}:

hn = LayerNorm(hn−1+MHA(Q = hn−1,KV = hn−1))

hn = LayerNorm(hn + P − FFN(hn))

The output sequence length of the encoder layers remains

the same as the input ∈ R
T×D. However, to predict the

action of crossing or not crossing the street, we compress the

output sequence in the temporal domain by applying a global

average pooling layer at the top of the encoder stacks. Then

we apply another embedding layer followed by a sigmoid

function to get the action crossing probability.

2) Encoder-Pooling Architecture: Instead of applying the

global average pooling at the top of the encoder stack

of layers directly, we proposed pooling intermediate layers

between the encoder blocks (Fig. 1 middle). We see this so-

lution as a compact way to reduce the observation sequence

length gradually from the input to the output as the layer gets

deeper. This solution will prevent the network from directly

transforming the last layer embedding size from R
T×D to

R
1×D to predict the one-dimensional action. Instead, the

final sequence length will be T ′, a reduced transformation

of the initial sequence size T . In fact, pooling layers have

been used in CNN architectures to reduce the dimensions

of the feature maps. Similarly, [28] proposed to adapt the

pooling layers to achieve representation compression and

computation reduction in transformer networks. At the output

of each encoder layer, we will apply a strided mean pooling

layer on the query vector to reduce its sequence length:

h′

n−1 = pooling(hn−1),



where h′ ∈ R
T ′

×D for T ′ < T , and the unpooled sequence

h serves the role of the key and value vectors:

hn = LayerNorm(hn−1+MHA(Q = h′

n−1,KV = hn−1))

3) Encoder-Decoder Architecture: The final architecture

is the encoder-decoder. The encoder block is identical to the

encoder-only architecture with the classification head on the

top of the encoder stacks. For the decoder architecture, we

input the target sequence Ta:A = YC ∈ R
C×4, where a is

equal to the next-observation time frame M + 1, and A is

equal to the critical time TTE. Each decoder layer consists

of a masked multi-head self-attention layer, a masked multi-

head cross-attention layer, and point-wise feed-forward neu-

ral networks (P-FFN). All layers are wrapped by a residual

connection and layer normalization. The cross-attention layer

takes the query from the previous self-attention layer plus the

keys and the values from the encoder memory vectors:

hdecn = LayerNorm(hdecn−1
+

MHA(Q = hdecn−1
,KV = hencN ))

The output of the decoder block is the target input shifted

by one representing the future trajectory of the pedestrian

from time step a+1 to A+1. This architecture will jointly

learn to classify the pedestrian’s future action as well as its

future trajectory. In the following sections, we will see that

jointly learning to predict the action and the trajectory is

beneficial to both parties, where knowledge of the trajectory

prediction increases the performance of the action prediction

and vice versa.

D. Training and Inference

We train the encoder-only and the encoder-pooling models

by optimizing the classification loss between the predicted

and target class. For the encoder-decoder model, we use a

combined weighted loss of the classification binary cross

entropy (BCE) and the l2 distance between the predicted

and target sequence:

L = λcls BCE + λreg l2(YC+1, ˆYC+1)

Where λcls and λreg are the classification and regression

hyperparameters to be tuned.

IV. EXPERIMENTS

In this section, We evaluate our proposed models on

two datasets following the evaluation protocols in [6]. We

compare our model results with the baselines based on

different features choices. We fix The observation length

for all models at 16 frames (i.e., 0.5 seconds) and the

Time-To-Event (TTE) between 30 and 60 frames (i.e., 1

and 2 seconds). We examine different settings of model

structure (ablation studies) and explore the effect of changing

the temporal prediction horizon on the results. Also, we

investigate the effect of transfer learning on our models.

TABLE I: Comparison of the CP2A dataset with other

pedestrian action prediction datasets.

Dataset Running Time # Peds S/R

PIE [4] 6 hours 740k Real

JAAD [29] 1.5 hours 391k Real

STIP [30] 15.4 hours 3.5M Real

CP2A (ours) 5.5 days 232.7M Simulated

A. Datasets

1) Pedestrian Intention Estimation (PIE) dataset: The

PIE dataset [4] provides 6 hours of continuous footage

recorded at 30 frames per second (FPS) in clear weather con-

ditions. The dataset represents a wide variety of pedestrian

behaviors at the crossing point and includes locations with

high pedestrian traffic and narrow streets. For each pedestrian

who can potentially interact with the ego vehicle driver, it

provides the coordinates of the bounding boxes, the critical

time where each pedestrian will cross, as well as their actions

of crossing or not crossing the street.

2) CARLA Pedestrian Action Anticipation (CP2A)

dataset: In this paper, we present a new simulated dataset

for pedestrian action anticipation collected using the

CARLA simulator [31]. Indeed, Transformer networks have

shown an advantage over other types of algorithms when a

large amount of training data is available [26]. Moreover,

pre-training Transformer networks on a large corpus of

data and then fine-tune it on pre-text tasks has proven to

be very beneficial [24]. To this end, we have simulated a

very large dataset (see Table I) that can be automatically

and freely labeled using the simulator itself. Using such a

dataset, we can first evaluate our model and then improve

the overall performance using transfer learning on the real

collected scenarios such as the PIE dataset. To generate

this dataset, we place a camera sensor on our ego-vehicle

and set the hyper-parameters to those of the camera used to

record the PIE dataset (i.e., 1920x1080, 110° FOV). Then,

we compute bounding boxes for each pedestrian interacting

with the ego vehicle as seen through the camera’s field

of view. We stored the bounding boxes information, along

with the current semantic label of the pedestrians, and their

critical time to cross the street. We generated the data in

two urban environments available in the CARLA simulator:

Town02 and Town03. Samples from the CP2A dataset are

shown in (Fig. 2). We used an Nvidia 1080 Ti GPU for data

simulation with a generation rate of about 600 pedestrian

sequences in one hour, which corresponds to the size of the

PIE dataset in 2 hours.

B. Baseline Models

Recently, [6] have published a benchmark on the PIE

dataset for evaluating pedestrian action prediction. They

unified multiple baseline models under the same evaluation

procedures and analyzed their performance with respect to

various properties of the data. Also, they introduced a new



Fig. 2: Samples from the simulated CP2A dataset in different

scenarios.

state-of-the-art model called PCPA:

1) Static: It is a baseline model that uses the VGG16 [32]

backend to predict the action using only the last frame in the

observation sequence.

2) Multi-stream RNN (MultiRNN) [33]: it is composed

of separate GRU streams independently processing the fol-

lowing feature types: Bounding boxes coordinates, the pose

skeletons, the ego-vehicle speed, and the local box frame

cropped around the bounding box that is processed by a

VGG16 backend.

3) Inflated 3D (I3D) network [27]: it takes as input a

stack of RGB frames or Optical Flow and generates final

prediction using a fully connected layer.

4) PCPA [6]: it is composed of multiple RNN branches

to encode non-visual features (e.g., bounding boxes co-

ordinates, the pose skeletons, and the ego-vehicle speed)

along with a C3D network to encode each pedestrian’s

local context. The outputs of the branches are then fed into

modality attention layers.

C. Results on PIE dataset

Table II shows the comparison of the results of our

proposed models with the state-of-the-art baselines on the

PIE dataset. Our Transformer models TEO (Transformer

Encoder-only), TEP (Transformer Encoder-Pooling), and

TED (Transformer Encoder-Decoder) based only on Bound-

ing Boxes features (BB) outperformer the state-of-the-art

baselines that use BB, PoseSkeletons (P), Ego-vehicle speed

(S), and RGB images features in term of accuracy. The TED

model is the best in terms of ACC (92 %), F1-score (0.86),

and AUC (0.9). This result exceeds the baselines’ results

by a large margin without using any of the other features.

It emphasizes the impact of learning to predict the future

position states and actions jointly and end-to-end. Addition-

ally, we show outstanding results when using Transformers

by comparing the PCPA model based on attention modules

coupled with LSTM layers using only the BB features. In

TABLE II: Accuracy (ACC), F1-score, and Area Under

Curve (AUC) comparison with baseline models. TEO: Trans-

former Encoder-only, TEP: Transformer Encoder-Pooling,

TED: Transformer Encoder-Decoder, FTEO: Fine-tuned

Transformer Encoder-only, BB: Bounding Boxes, P: Pose-

Skeletons, S: Ego-vehicle Speed. *: Ours. **: Trained on

the CP2A dataset.

Model Name Architecture Features ACC AUC F1-score

Static
CNN

RGB
0.71 0.60 0.41

I3D
0.80 0.73 0.62

Optical flow 0.81 0.83 0.72

MultiRNN GRU
BB, P, S, RGB

0.83 0.8 0.71
PCPA LSTM + ATT 0.87 0.86 0.77

PCPA LSTM + ATT

BB

0.48 0.42 0.57
TEO*

Trans
0.88 0.85 0.77

TEP* 0.88 0.87 0.77
TED* 0.91 0.91 0.83

FTEO* Fine-tuned Trans BB 0.89 0.89 0.88

CP2A** Trans BB 0.9 0.9 0.9

the latter case, the PCPA model results will drop dramatically

and prevent the model from learning any significant pattern

about the action prediction task.

D. Ablations

Figure 3 shows the performance of our TEO model when

trained with different numbers of layers and heads. We

obtained the best performance for the 4-layer and 8-head

configurations (shown in Table II) and 8-layer, 2-head config-

urations. For the TEP and TED, the best model goes for using

the 8-layer and 8-head settings. We experiment with different

hyperparameters for the regression and classification values

in the TED loss function settings. We obtained the best

model (Fig. 4) using the (1.8, 0.8) combination for the

regression and classification parameters respectively. In our

experiments, we use an embedding dimension D of 128, a

Fig. 3: Performance of the TEO model when trained with

different number of attention heads and attention layers.

Fig. 4: Performance of the TED model when trained with

different regression and classification hyper-parameters.



Fig. 5: Changing the prediction time horizon range for the

models trained on the [30, 60] frames TTE interval.

P-FFN hidden dimension Dff of 256, and batch size of

32. We use the Adam [34] optimizer with a learning rate of

10−4. Conforming with the findings in [35], we noticed that

using stochastic optimizers for our Transformer models was

not stable, and the results will change remarkably from one

experiment to another using the same hyper-parameters.

We study how the prediction performance changes when

we vary the temporal prediction horizon (equivalent to TTE

time). We set the length of the observation sequence to 16

frames (i.e., 0.5 s) and varied the TTE time from 0.5 seconds

to 3 seconds in the future (90 frames). These results were

reported on the test set by taking the same models that were

trained on the original 30-60 frame TTE interval. The graphs

(Fig. 5) show that our models reach their upper limit when

predicting the upcoming 1 to 1.3 s interval with an accuracy

of 93% for the TED model. Furthermore, the model still

performs reasonably well even when all prediction horizons

are 2 to 2.3 seconds, with an accuracy of about 80% for all

three models. We performed all our experiments on an Nvidia

1080 Ti GPU. We reported the inference time (Table III) of

the three proposed models using their best hyperparameters

scenarios. We should note here that we can use only the

encoder block of the TED model in the inference phase.

This strategy reduces the inference time since we predict the

future action without the future pedestrian trajectories.

E. Results on CP2A

Previously presented results on using Transformer models

with only bounding boxes as features and outperforming the

models even using other features have been controversial

because, in general, action prediction is related to under-

standing the visual context. The first assumption we can

make here is that the PIE dataset is biased. A biased dataset

TABLE III: Inference Time on Nvidia 1080 Ti GPU.

Model Name Number of Layers Inference Time (ms)

TEO 4 1.63

TEP 8 2.85

TED 8 2.76

is one where we can estimate the output independently of

the input but rather based on some constant patterns that are

uniquely related to that dataset. Although previous models

were not able to detect these patterns, Transformers was

able to find this bias. To test this hypothesis, we trained our

models on the CP2A dataset, which is 43x larger than the

PIE dataset and is highly unlikely to have the same bias that

can be exhibited in the PIE dataset. The raw CP2A in Table

II shows the performance of the 8-layer, 8-head TEO model

on the simulated dataset. It achieved 90% accuracy and 0.9

for AUC and F1-score, demonstrating the effectiveness of

using transformers with bounding boxes, regardless of the

choice of dataset.

1) Effect of Transfer Learning: Interestingly, another re-

sult we obtained is that using the pre-trained weights from

the CP2A model and fine-tuning them on the TEO model

using the PIE dataset also has an advantage over the PIE

results (FTEO model in Table II). In particular, we can see

the improvement in terms of F1 score, where we reached

0.88, which outperforms the TED model trained from scratch

on PIE, and slightly outperforms the baseline TEO model

in terms of accuracy and AUC. In brief, the transfer of

knowledge about action prediction from CP2A to PIE was

effective. The results obtained here are consistent with the

advantage observed in computer vision [24] when applying

transfer learning from larger datasets.

V. CONCLUSION

In this paper, we presented transformer-based models for

predicting pedestrians’ action to cross or not cross the road

in front of vehicles from an egocentric perspective. We

have shown that using a simple and lightweight type of

inputs (i.e., bounding boxes) with Transformers networks

achieves high performance and outperforms the state-of-the-

art in predicting the future up to 2 seconds in advance. The

Encoder-decoder Transformer was the best model in terms

of accuracy (91%) and F1-score (0.83) when we train from

scratch on the PIE dataset. These findings make it clear that

jointly predicting action and trajectory can be beneficial for

both parties. We also introduced the CP2A simulated dataset

that confirmed our results on the PIE dataset with accuracy

and an F1-score of 0.9. Also, applying Transfer learning on

the CP2A dataset from simulated scenarios to real cases

improved our models by increasing the F1-score to 0.88

in the Encoder-alone architecture. In future work, we will

apply Transformer models to visual context directly instead

of bounding boxes. The goal of using visual features will not

be to improve model performance in terms of accuracy, AUC,

and F1-score, as it is difficult to beat the results obtained.

However, it will help us focus on other types of criteria such

as the explainability and interpretation of the model.
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