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Abstract

A key problem in learning multiple objects from unla-
beled images is that it is a priori impossible to tell which
part of the image corresponds to each individual object,
and which part is irrelevant clutter which is not associ-
ated to the objects. We investigate empirically to what ex-
tent pure bottom-up attention can extract useful informa-
tion about the location, size and shape of objects from im-
ages and demonstrate how this information can be utilized
to enable unsupervised learning of objects from unlabeled
images. Our experiments demonstrate that the proposed ap-
proach to using bottom-up attention is indeed useful for a
variety of applications.

1. Introduction

The field of object recognition has seen tremendous
progress over the past years, both for specific domains such
as face detection [26, 30], and for more general object do-
mains [16, 32, 8, 25, 24]. Most of these require segmented
and labeled objects for training, or at least that the train-
ing object is the dominant part of the training images. None
of these algorithms can be trained on unlabeled images that
contain large amounts of clutter or multiple objects.

Imagine a situation in which you are shown a scene, e.g.
a shelf with groceries, and later you are asked to identify
which of these items you recognize in a different scene, e.g.
in your grocery cart. While this is a common situation in ev-
eryday life and easily accomplished by humans, none of the
methods mentioned above is capable of coping with this sit-
uation. How is it that humans can deal with these issues with
such apparent ease?

The human visual system is able to reduce the amount of
incoming visual data to a small but relevant amount of in-
formation for processing in the thalamus and visual cortex

� These authors contributed equally to this work.

using selective visual attention. Attention is a process of se-
lecting and gating visual information based on saliency in
the image itself (bottom-up) and on prior knowledge about
the scene (top-down) [5, 12]. We postulate that the key to
solving the “grocery cart problem” is visual selection. If
bottom-up attention processes could select image regions
that contain objects with high likelihood, then a recogni-
tion system could be trained on such patches and could thus
learn the appearance of individual objects.

While several computational implementations of mod-
els of visual attention have been published [29, 4, 14], lit-
tle work has been done in investigating its benefits for ob-
ject learning and recognition in a machine vision context
(but see [6, 20, 31]). In this paper, we examine the useful-
ness of saliency-based visual attention for object learning
and recognition in three different experimental settings – (i)
learning and recognition of individual objects in highly clut-
tered scenes; (ii) learning sets of objects (inventories) from
single images, and identifying these objects in cluttered test
images containing target and distractor objects; and (iii) on-
line learning and recognition of landmarks useful for spatial
orientation and robot navigation.

2. Approach

We intend to investigate whether and to what extent im-
ages contain useful information about the location, shape
and size of objects. We furthermore aim to demonstrate how
this information about objects can be utilized for unsuper-
vised object learning and recognition. Our goal is to inves-
tigate this in a task-independent manner and we thus do not
make use of top-down attention and rely solely on bottom-
up attention. While understanding of the theoretical basis
of attention requires more research, multiple bottom-up at-
tentional frameworks have been established on an empiri-
cal basis [12]. For the experiments in this paper we use a
saliency-based framework [14] (see section 2.1).

In contrast to key-point or interest point selectors [9] [32]
we are not extracting multiple features of the same object
but rather the region of the image where the object is lo-
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cated. Others have proposed a segmentation based approach
to achive the same goal [28].

For object recognition we use Lowe’s algorithm, which
uses local scale-invariant features [16], as an example for
a state-of-the-art general purpose recognition system with
one-shot learning capability.

2.1. Bottom-up saliency-based region selection

Our attention system is based on the Itti et al. [14] im-
plementation of the Koch & Ullman [15] saliency-based
model of bottom-up attention. While the model’s useful-
ness has been demonstrated in various contexts (e.g. predic-
tion of eye movements of humans [22]), its ability to serve
as a front-end for object recognition is limited by the fact
that its output is merely a pair of coordinates in the im-
age corresponding to the most salient location. We intro-
duce a method for extracting the image region that is likely
to contain the attended objects from low-level features with
negligible additional computational cost. We briefly review
the saliency model in order to explain our extensions in the
same formal framework.

The input image I (fig. 1a) is sub-sampled into a Gaus-
sian pyramid [2], and each pyramid level is decomposed
into channels for red (R), green (G), blue (B), yellow (Y ),
intensity (I) and local orientation (Oθ). If r, g and b are
the red, green and blue channels, normalized by the im-
age intensity I, then R � r� �g� b��2, G � g� �r� b��2,
B � b� �r�g��2, and Y � r�g�2��r�g��b� (negative
values are set to zero). Local orientations Oθ are obtained
by applying steerable filters to the images in the intensity
pyramid I [18]. From these channels, center-surround “fea-
ture maps” are constructed and normalized:

FI�c�s � N ��I�c�� I�s��� (1)
FRG�c�s � N ���R�c��G�c��� �R�s��G�s���� (2)
FBY�c�s � N ���B�c��Y�c��� �B�s��Y�s���� (3)
Fθ�c�s � N ��Oθ�c��Oθ�s��� (4)

where � denotes the across-scale difference between two
maps at the center (c) and the surround (s) levels of the
respective feature pyramids. N ��� is an iterative normal-
ization operator (for details see [13]). The feature maps
are summed over the center-surround combinations using
across-scale addition�, and the sums are normalized again:

F̄l � N

�
4�

c�2

c�4�

s�c�3

Fl�c�s

�
with l � LI �LC �LO (5)

and

LI � �I�� LC � �RG�BY��
LO � �0Æ�45Æ�90Æ�135Æ� (6)

Figure 1: Illustration of the processing steps for obtaining an es-
timation for the object shape at the attended location and for using
this for object recognition: (a) original image I ; (b) the saliency
map S , obtained from eqs. 1-8; (c) the feature map Flw�cw�sw

with
the strongest contribution at �xw�yw� – in this case the lw � BY
blue/yellow contrast map with the center at pyramid level cw � 3
and the surround at level sw � 6, see eqs. 9 and 10; (d) the seg-
mented feature map F̂w; (e) the smoothed object mask M ; (f) the
contrast-modulated image I � (see eq. 11) with extracted features
(keypoints) for the recognition algorithm, marked in red.

For the general features color and orientation, the contribu-
tions of the sub-features are linearly summed and normal-
ized once more to yield “conspicuity maps”. For intensity,
the conspicuity map is the same as F̄I obtained in eq. 5:

CI � F̄I � CC �N

�
∑

l�LC

F̄l

�
� CO �N

�
∑

l�LO

F̄l

�
(7)

All conspicuity maps are combined into one saliency map
(fig. 1b):

S �
1
3 ∑

k��I�C�O�

Ck (8)

The locations in the saliency map compete for the highest
saliency value by means of a winner-take-all (WTA) net-
work of integrate-and-fire-neurons. The winning location
�xw�yw� of this process is attended to (the yellow circle in
fig. 1).

While Itti’s model successfully identifies this most
salient location in the image, it has no notion of the ex-
tend of the image region that is salient around this loca-
tion. We introduce a method to estimate this region based
on the maps and salient locations computed thus far. Look-
ing back at the conspicuity maps we find the one map that
contributes most to the activity at the most salient loca-
tion:

kw � argmax
k��I�C�O�

Ck�xw�yw� (9)
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We look further which feature map contributes most to
the activity at this location in the conspicuity map Ckw :

�lw�cw�sw� � argmax
l�Lkw �c��2�3�4��s��c�3�c�4�

Fl�c�s�xw�yw� (10)

with Lkw as defined in eq. 6. The “winning” feature map
Flw�cw�sw (fig. 1c) is segmented using region growing around
�xw�yw� and adaptive thresholding [11] (fig. 1d). The seg-
mented feature map F̂w is used as a template to trigger
object-based inhibition of return (IOR) in the WTA net-
work, thus enabling the model to attend to several objects
subsequently, in order of decreasing saliency.

We derive a mask M at image resolution by threshold-
ing F̂w, scaling it up and smoothing it with a separable two-
dimensional Gaussian kernel (σ � 20 pixels). In our imple-
mentation, we use a computationally more efficient method,
consisting of opening the binary mask with a disk of 8 pix-
els radius as a structuring element, and using the inverse of
the chamfer 3-4 distance for smoothing the edges of the re-
gion. M is 1 within the attended object, 0 outside the ob-
ject, and has intermediate values at the edge of the object
(fig. 1e). We use this mask to modulate the contrast of the
original image I (dynamic range �0�255�):

I ��x�y� � �255�M �x�y� � �255� I �x�y��� (11)

where ��� symbolizes the rounding operation. Eq. 11 is ap-
plied separately to the r, g and b channels of the image
(fig. 1f). I � is used as the input to the recognition algorithm
instead of I .

It is not guaranteed that the approach of segmenting an
object by its most salient feature yields a good estimate of
the object’s size and shape, but the approach works remark-
ably well for a variety of natural images and videos [1]. An
advantage of using the map of the most salient feature for
segmenting instead of the saliency map is the sparser rep-
resentation in the feature map, which makes segmentation
easier. The computational cost for the shape estimation is
minimal, because the feature and conspicuity maps have al-
ready been computed during the processing for saliency.

2.2. Object recognition

For all experiments described in this paper we use the ob-
ject recognition algorithm by Lowe et al. [16, 17]. The algo-
rithm uses a Gaussian pyramid built from the original im-
age to extract local features (“keypoints”) at the extreme
points of differences between pyramid levels. A model of
an object is built from the keypoints, which are represented
as vectors in a 128-dimensional space. Recognition is per-
formed by matching keypoints found in the test image with
stored object models.

In our model, we have the additional step of finding
salient patches as described above for learning and recogni-

Figure 2: (a) Six of the 21 objects used in the experiments. Ev-
ery objects is scaled such that it consists of approximately 2500
pixels. Artificial pixel and scaling noise is added to every instance
of an object before merging it with a background image; (b,c) Ex-
amples of synthetically generated test images. Objects are merged
with the background at a random position by alpha-blending. The
ratio of object area vs. image area (ROS) varies between (b) 5%
and (c) 0.05%.

tion before keypoints are extracted (fig. 1f). The use of con-
trast modulation as a means of deploying object-based at-
tention is motivated by neurophysiological experiments that
show a tight link between luminance contrast and bottom-
up attention [23, 19], as well as by its usefulness with re-
spect to Lowe’s recognition algorithm. Keypoint extraction
relies on finding luminance contrast peaks across scales. As
we remove all contrast from image regions outside the at-
tended object, no keypoints are extracted there, and we limit
the forming of a model to the attended region.

3. Objects in cluttered scenes

In these experiments we investigate how attention affects
learning and recognition of objects in cluttered scenes. To
maintain close control of the amount of clutter, we con-
struct the test images by merging various objects with nat-
ural backgrounds at random locations (fig. 2). For experi-
ments with natural images see section 4.

3.1. Experimental setup

To systematically evaluate recognition performance with
and without attention, we use images generated by ran-
domly merging an object with a background image (fig. 2).
This design of the experiment enables us to generate a large
number of test images in a way that gives us good control of
the amount of clutter versus the size of the objects in the im-
ages, while keeping all other parameters constant. By con-
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struction, this procedure also gives us easy access to ground
truth. We choose natural images for the backgrounds so that
the abundance of local features in our test images matches
that of natural scenes as closely as possible.

We quantify the amount of clutter in the image by the rel-
ative object size (ROS):

ROS �
#pixels�ob ject�
#pixels�image�

(12)

A scene is more cluttered for a smaller ROS. To avoid is-
sues with the recognition system due to large variations in
the absolute size of the objects, we left the number of pix-
els for the objects constant (with the exception of intention-
ally added scale noise), and varied the ROS by changing the
size of the backgound images in which the objects were em-
bedded.

To prevent template matching, each object was rescaled
by a random factor between 0�9 and 1�1, and uniformly dis-
tributed random noise between �12 and 12 was added to
the red, green and blue value of each object pixel (dynamic
range is �0�255�). The objects were merged with the back-
ground by alpha blending with a low blending factor at the
border and a high blending factor in the middle of the ob-
ject to prevent artificially salient borders [27].

We created four test sets with ROS values of 5%, 2.78%,
1.08%, and 0.05%, each consisting of 21 images for train-
ing (one image of every object) and 420 images for testing
(20 test images for every object). This amounts to a total of
4� 441 � 1764 images. The background images for train-
ing and test sets were randomly drawn from disjoint image
pools.

During training, object models were learned at the five
most salient locations of each training image. That is, the
object had to be learned by finding it in a training image.
During testing, the most salient regions of the test images
were compared to each of the learned models. As soon as
a match was found, positive recognition was declared. Fail-
ure to attend to the object during the first five fixations led
to a failed learning or recognition attempt.

3.2. Results

Learning from our data sets results in a classifier which
can recognize K � 21 objects. Performance of this classi-
fier is evaluated by determining the number of true positive
detections Ti and the number of false positives Fi for each
object i. By construction, for each object there are 20 posi-
tive samples (Ni � 20), and the remaining images are used
as negative samples (Ni). Thus, the TP of the multi-object
classifier is [7]:

T P �
1
K

K

∑
i�1

Ti

Ni
(13)

The false positive rate is calculated similarly:

FP �
1
K

K

∑
i�1

Fi

Ni
(14)

We evaluate performance (TP) for each data set with
three different methods: (i) learning and recognition with-
out attention; (ii) learning and recognition with attention
and (iii) human validation of attention. The third procedure
attempts to explain what part of the performance difference
between (ii) and 100% is due to shortcomings of the atten-
tion system, and what part is due to the recognition sys-
tem. It is sufficient to evaluate only the true positive rate,
since the false positive rate is consistently below 0.05% for
all conditions, and therefore the total error rate is approxi-
mately equal to the false rejection rate �1�TP�.

For human validation, all images that could not be recog-
nized automatically were evaluated by a human subject. The
subject could only see the five attended regions of all train-
ing images and of the test images in question, all other parts
of the images were blanked out. Solely based on this infor-
mation, the subject was asked to indicate matches. In this
experiment, matches were established whenever the atten-
tion system extracted the object correctly during learning
and recognition.

In the cases in which the human subject was able to iden-
tify the objects based on the attended patches, the failure of
the automated system was clearly due to shortcomings of
the recognition system. On the other hand, if the human sub-
ject failed to recognize the objects based on the patches, the
attention system was the component responsible for the fail-
ure of the combined system. As can be seen in fig. 3, in most
failure cases, the recognition system was the cause. Only for
the smallest relative object size (0.05%), the attention sys-
tem contributed significantly to the failure rate.

The results (fig. 3) demonstrate that attention has a sus-
tained effect on recognition performance for all relative ob-
ject sizes reported. For smaller objects (more clutter), the
influence of attention becomes more accentuated. In the
most difficult cases (0.05% ROS), attention increases the
true positive rate by a factor of 10.

4. Multiple objects in natural images

In the previous section, we used artificially created stim-
uli in a controlled setup. In the following experiments we
move to natural images and test the hypothesis that atten-
tion can improve, or in many cases enable, the learning
and recognition of multiple objects in natural scenes. We
use two classes of images – high-resolution digital pho-
tographs of home environments, and low-resolution images
acquired at random by an autonomous robot while navigat-
ing through an office environment.
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Figure 3: True positive (TP) rate for a set of artificial images. The
relative object size is varied by keeping the absolute object size
constant (2500 pixels �10%) and varying the size of the back-
ground images. Error bars indicate the standard error for averag-
ing over the performance of the 21 classifiers. It can be observed
that recognition and learning with attention (green solid line) per-
forms much better than without attention (red dashed line). This
effect is more pronounced for smaller relative object sizes, i.e. for
larger amounts of clutter. The human validation of the attention
system shows that the difference between the recognition with at-
tention and 100% is largely due to shortcomings of the recogni-
tion system. Note that for relative object sizes � 5%, learning and
recognition done on the entire image (red dashed line) works well,
as reported in [16, 17].

4.1. Digital photographs

Our experiments with high-resolution digital pho-
tographs are aimed at addressing the “grocery cart prob-
lem” mentioned in the introduction. These are explorations
of the possibilities of learning and recognizing several ob-
jects in real-world scenes, rather than systematic experi-
ments. In section 4.2 we describe a more rigorous approach
to learning and recognition of multiple objects from natu-
ral images.

We used a digital camera to take pictures of home en-
vironments, while re-arranging various objects. For pro-
cessing, the images were sub-sampled to a resolution of
1024� 1536 pixels. In each set of images, one image was
selected for training, from which our combined model had
to learn objects at the 15 most salient locations. The remain-
ing images (typically two to five more images) were tested
for the occurrence of any of the learned objects.

In most cases, excellent recognition performance was
achieved. Fig. 4 shows an example (for more examples see
the supplementary material). In a few cases the target ob-
jects in the training image were not salient enough and

Figure 4: An example for learning an object inventory from a
high-resolution digital photograph. The task is it to memorize the
items in the cupboard (a) and to identify which of the items are
present in the test scenes (b) and (c). The patches, which were ob-
tained from segmenting regions at multiple salient locations, are
color coded – blue for the soup can, yellow for the pasta box, and
red for the beer pack. In (a), several patches are learned for the
soup can, and the models learned from them match with each other
very well. All three objects are found successfully in both test im-
ages. There is one false positive in (c) – a bright spot on the table
is mistaken for a can. The images were processed at a resolution of
1024�1536 pixels, 15 fixations were used for training, and 20 fix-
ations for testing. In (a), only those patches are shown that have a
match in (b) or (c), in (b) and (c) only those that have a match in
(a).

could hence not be learned.
While we are encouraged by the very good results in

most of the examples that we tested, this uncontrolled setup
makes systematic testing difficult. One of the biggest con-
cerns is the inherent bias of human photographers, who will
invariably center and zoom on interesting objects. Another
issue is the difficulty of acquiring a large image set that
would be necessary for a systematic analysis. In order to
overcome these issues and make more systematic testing
possible, we made use of a robot as an unbiased image ac-
quisition tool.

4.2. Landmark learning and detection using a
robot

In order to assess the multiple object recognition capa-
bilities of our model in a more controlled and rigorous fash-
ion, we used an autonomous robot to acquire images of in-
door office scenes.

4.2.1. Experimental setup The robot’s navigation fol-
lowed a simple obstacle avoidance algorithm using in-
frared range sensors for control. A camera was mounted
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Figure 5: Two sample frames taken from the sequence consist-
ing of 1749 frames. Each frame has a resolution of 320�240 and
was taken by an autonomously navigating robot. In the two frames,
matching regions identified by the combined attention and recog-
nition system are marked with matching colors. The whole video,
recorded with 5 fps, is available as an mpeg file in the supplement
to this paper.

on top of the robot at about 1.2 m height. Color im-
ages were recorded at 320� 240 pixels with 5 frames
per second. A total of 1749 images were recorded dur-
ing an almost 6 min run†. Since vision was not used for
navigation, the images taken by the robot are unbiased. Be-
cause the robot moved in a closed environment (indoor of-
fices/labs, four rooms, approximately 80 m2), the same
objects appear multiple times in the sequence (fig. 5). Ob-
jects are extracted and learned as follows:

1. Extract the most salient patch;

2. Has the patch at least three keypoints? (A minimum of
three keypoints are necessary for model learning [16].)
yes: go to 3; no: go to 5;

3. Test the patch with every known object model;

4. Do we have a match? yes: increment the counter for
the matched object; no: learn the object model at this
location as a new object;

5. Repeat 1-4 for the three most salient regions in each
image.

All learned objects are automatically given a unique la-
bel which is used as an index to count recognized objects.
Applying this procedure to each frame of the video enables
us to tell which objects were recognized how many times.

For these experiments, it is not possible to compare the
results obtained with attention to the performance of the
recognition algorithm without attention, because the recog-
nition algorithm by itself is not capable of interpreting a
scene as consisting of several objects. Instead, we repeat the
same procedure as described above but with three randomly
chosen patches as a control. These patches are created by
using a pseudo region growing operation at the saliency map

† The video as recorded and with segmented salient regions marked is
available at [1] and the supplement for this paper.

resolution. Starting from a randomly selected location, the
4-connected neighborhood is explored recursively. For each
visited location, a random number is drawn from a uniform
distribution. The location is accepted to belong to the ran-
dom patch if the random number exceeds a preset threshold,
and the recursion continues with the 4-connected neighbor-
hood of this location. Otherwise the location is rejected, and
the recursion is terminated. The threshold is adjusted such
that the random patches have approximately the same size
distribution as the attention patches. These random patches
are then treated the same way as true attention patches for
up-scaling and smoothing (see section 2.1).

Our current implementation, which is in no way opti-
mized for speed, is capable of processing about 1.5 frames
per second at 320� 240 pixels resolution on a 2.0 GHz
Pentium 4 mobile CPU. This includes attentional selection,
shape estimation and recognition or learning.

4.2.2. Results A patch is considered “useful” if it is rec-
ognized at least once after learning, thus appearing at least
twice in the sequence. Attentional selection identifies 3934
useful patches in the approximately 6 min of processed
video, associated with 824 objects. Random patch selec-
tion only yields 1649 useful patches, associated with 742
objects (table 1).

Table 1: Results using attentional selection and random patches.
An object is suitable as a landmark if it is recognized at least 10
times after learning it.

Attention Random
# of patches recognized 3934 1649

average per frame 2.25 0.95

# of objects 824 742

# of objects suitable as landmarks 87 (10.6%) 14 (1.9%)

# of patches associated
with suitable landmarks 1910 (49%) 201 (12%)

false positives 32 (0.8%) 81 (6.8%)

To judge how appropriate the learned objects are as land-
marks we sort the objects by their number of occurrences
and set an arbitrary threshold of requiring at least 10 recog-
nized occurrences for an object to be suitable as a landmark
(fig. 6).

With this threshold in place, attentional selection finds
87 landmarks with a total of 1910 patches associated with
them. With random patches, only 14 landmarks are found
with a total of 201 patches. The number of patches associ-
ated with landmarks is computed from fig. 6 as:

NL � ∑
�i:ni�10

ni �ni � O� (15)
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Figure 6: Learning and recognition of objects from a stream of
frames of a webcam mounted on a robot. An image patch that
is not recognized is automatically learned. Learned objects are
labeled (x axis), and every recognized instance is counted. The
threshold for an object to be suitable as a landmark is set to 10 in-
stances. Object extraction with attention finds 87 landmarks with a
total of 1910 instances. With random patches, 14 landmarks with
201 instances are found.

where O is an ordered set of all objects learned, sorted de-
scending by the number of detections.

Ground truth for the two sequences is established manu-
ally. This is done by displaying every match established by
the algorithm to a human subject who has to rate the match
as either right or wrong. The false positive rate is derived
from the number of patches that were wrongly associated
with an object. The results for attentional selection and ran-
dom patches are summarized in table 1.

From these results it is clear that the attentional mech-
anism selects more useful patches than the random algo-
rithm, i.e. those patches are more frequently identified,
making them more useful for navigation. Frequently, sep-
arate object models are learned for the same physical ob-
ject. This is usually due to limitations in the scale and view-
point invariance of the recognition system.

These results demonstrate that attentional selection is a
useful mechanism for stable landmark detection in cluttered
environments. Moreover, this shows that the interplay of at-
tention and recognition is capable of functioning in a real-
world online-learning environment with low-resolution im-
ages and completely unbiased image acquisition.

Note that we used the robot only as an image acquisition
tool in this experiment. For details on vision-based robot
navigation and control see for instance [3, 10].

5. Discussion

We have set out to explore if and how attentional re-
gion selection can enhance object recognition. In the ex-
periments presented in this paper we have shown by ex-
ample and by rigorous quantitative analysis that saliency-
based bottom-up attention is indeed useful for object recog-
nition. We have shown that recognition performance for ob-
jects in highly cluttered scenes can be improved dramat-
ically. Other modes of operation, such as learning multi-
ple objects from single images, are only possible using at-
tention. Furthermore, attentional mechanisms are useful for
identifying landmarks for visual navigation, making use of
online learning, and novelty detection.

Although we have limited our experiments to a particu-
lar attention system and to a particular recognition system,
we believe that our results can be generalized to other sys-
tem configurations. It is conceivable, e.g., that in certain ap-
plications top-down knowledge can be very useful for vi-
sual processing in addition to the bottom-up saliency-based
attention described here (see for instance [21]). We have
selected Lowe’s recognition algorithm for our experiments
because of its suitability for general object recognition.

By the example of the configuration that we have cho-
sen, we have demonstrated the usefulness of the synergy
between recognition and attention in three domains – learn-
ing and recognition in highly cluttered scenes, learning and
recognition when several objects are presented in each im-
age, and online learning of landmarks suitable for robot nav-
igation.
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