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[1] Initial efforts toward developing a combined organic-inorganic sea spray source
function parameterization for large-scale models made use of chlorophyll-a (Chl-a) and
wind speed as input parameters to combine oceanic biology and atmospheric dynamics.
These studies reported a modest correlation coefficient (0.55) between chlorophyll-a and
organic matter (OM) enrichment in sea spray, suggesting that chlorophyll-a is only
partially suitable for predicting organic enrichment. A reconstructed chlorophyll-a field of
the North Atlantic Ocean from GlobColour reveals an improved correlation of 0.72
between the fractional mass contribution of organics in sea spray and chlorophyll-a
concentration. A similar analysis, using colored dissolved and detrital organic material
absorption and particulate organic carbon concentration, revealed slightly lower correlation
coefficients (0.65 and 0.68). These results indicate that to date, chlorophyll-a is the best
biological surrogate for predicting sea spray organic enrichment. In fact, considering the
minimal difference between the correlation coefficients obtained with the three ocean color
products, there is no reason to substitute chlorophyll-a, which is the most accurate
parameter obtained from ocean color data, with other biological surrogates being generally
affected by larger and less known errors. The observed time lag between chlorophyll-a
concentration and organic matter enrichment in aerosol suggests that biological processes
in oceanic surface waters and their timescales should be considered when modeling the
production of primary marine organic aerosol.

Citation: Rinaldi, M., et al. (2013), Is chlorophyll-a the best surrogate for organic matter enrichment in submicron
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1. Introduction

[2] The existence of a source of submicron primary
organic aerosol (POA), mainly from biologically active
seawater, has recently been demonstrated [O’Dowd et al.,

2004; Keene et al., 2007; Facchini et al., 2008; Ovadnevaite
et al., 2011]. In particular, submicron marine aerosol water-
insoluble organic matter (WIOM) has been associated with
sea spray aerosol [Facchini et al., 2008; Ceburnis et al.,
2008]. In order to evaluate the global burden of biogenic
POA from the oceans and achieve a better understanding
of its relevance to climate, it is necessary to include this
source in regional and global models.
[3] This paper presents an effort toward developing a

combined organic-inorganic sea spray source function
parameterization for use in large-scale models, using a
combination of chlorophyll-a (Chl-a) and wind speed
(WS) as primary input parameters for combining the
biological and dynamical contributions. In the work
reported here, the term “sea spray” is used as a synonym
of primary marine aerosol, intended as composed of both
sea salt and biogenic organic matter (OM), regardless of
its “atmospheric age.”
[4] Previous studies [O’Dowd et al., 2008; Langmann et al.,

2008; Vignati et al., 2010], performed using satellite-derived
chlorophyll-a fields with low temporal resolution (monthly
averages), reported only a modest linear correlation between
chlorophyll-a (Chl-a) concentration and organic matter
(OM) enrichment in sea spray (at best r=0.55). This
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suggested that Chl-a is only partially suitable as a surrogate for
biological activity for predicting the organic mass fraction of
sea spray.
[5] Recently, Gantt et al. [2011] demonstrated that Chl-a

satellite fields with a higher time resolution of 8 days can
provide a higher correlation (r = 0.66) for an extended ver-
sion of the marine aerosol database used by Vignati et al.
[2010], even though, in this case, an exponential fitting
was preferred to a linear one. Moreover, the cited paper
compared Chl-a with other ocean color parameters, namely,
particulate and dissolved organic carbon, and it turned out to
be the best surrogate to predict the organic matter enrich-
ment in sea spray aerosol.
[6] To check whether satellite ocean color parameters with

higher time resolution can improve the observed correlation
between ocean chemistry and sea spray chemical composi-
tion and if different ocean color parameters can surpass
Chl-a in predicting the chemical properties of sea spray,
the present work investigates the correlation between the
chemical composition of submicron sea spray aerosol
measured at Mace Head from 2002 to 2009 and daily
satellite ocean color fields.
[7] The study by Vignati et al. [2010] was the first to

apply a source function for marine primary organic aerosol
derived from observations at Mace Head and satellite Chl-a
data, on the global scale, estimating a global emission of
primary marine organic matter in the accumulation mode of
5.8 TgCyr�1. This compares well with the 5.5 TgCyr�1

obtained by Spracklen et al. [2008], using a different top-
down approach, although nonetheless based on correlations
between aerosol data and satellite Chl-a data. More recently,
Gantt et al. [2011] also estimated a global source of the same
magnitude (2.8–5.6 TgCyr�1), using a source function de-
rived from a data set encompassing that of Vignati et al.
[2010], by means of a similar approach. Nevertheless, these
estimates are significantly lower than those produced by other
studies based on different methods. Roelofs [2008]
estimated a submicron global marine organic aerosol source
of 50TgCyr�1, using a simple top-down approach, of which
30–50% was attributed to secondary sources, while Long
et al. [2011] provided an estimate of 29TgCyr�1,
including, however, also the contribution from supermicron
particles.
[8] The interest of the scientific community in the above

preliminary approaches is reflected by further developments
and deployment of the organic sea spray scheme in a number
of global models [Gantt et al., 2009; Myriokefalitakis et al.,
2010; Ito and Kawamiya, 2010; Westervelt et al., 2012] and
provides the motivation to improve the parameterization of
the organic-inorganic sea spray source function.

2. Experimental Methods

2.1. Aerosol Measurements at Mace Head

[9] Submicron marine aerosol chemical composition data
collected discontinuously at the Mace Head station, on the
Irish west coast, from 2002 to 2009, for a total of 52
samples, were used to calculate the organic mass fraction
of submicron sea spray (OMSS), employing the equation
OMSS =WIOM/(WIOM+ sea salt), first adopted by O’Dowd
et al. [2008]. The equation is based on the assumption that
marine POA is mainly water insoluble and that water-

soluble organics are mainly representative of secondary
organic aerosols (SOAs). This is supported by Facchini et al.
[2008], who described sea spray organics as mainly water
insoluble, and by the nuclear magnetic resonance (NMR)
spectroscopy analyses by Decesari et al. [2011], showing
strong similarity between marine aerosol WIOM and the water-
insoluble lipopolysaccharides isolated by Facchini et al.
[2008]. Moreover, SOA is typically more oxidized and there-
fore more water soluble than POA. The possible uncertainties
in marine POA predictions related to such an assumption
have been discussed by Gantt et al. [2011].
[10] The data set comprises all the samples used in previ-

ous studies [O’Dowd et al., 2008; Vignati et al., 2010], plus
27 new samples collected between 2006 and 2009. Details
on aerosol sampling and chemical analyses are given by
O’Dowd et al. [2008], Vignati et al. [2010], and cited refer-
ences. Briefly, up to 2006, aerosol samples were collected in
parallel using an eight-stage Berner impactor (BI8) and a
Sierra Andersen high-volume sampler (HiVol). The BI8
was equipped with Tedlar foils, collecting particles in eight
size fractions between 0.06 and 16 mm diameters (cutoffs:
0.06, 0.125, 0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mm at 50%
efficiency), and operated at a flow rate of 30 Lmin�1. The
HiVol operated at 1m3min�1, segregating fine (aerody-
namic diameter smaller than 1.5 mm) and coarse particles
(aerodynamic diameter between 1.5 and 10 mm) on quartz
filters. After Milli-Q water extraction, sea salt was measured
on the BI8 samples by ion chromatography, following the
method of Cavalli et al. [2004]. The first four stages of the
impactor were summed to obtain the submicron sea salt
concentration. The WIOM was determined on the fine HiVol
samples by subtracting the water-soluble organic carbon
(WSOC) content from the total carbon (TC) content and
by multiplying for a correction factor of 1.4 to consider the
mass-to-carbon ratio [Facchini et al., 2008]. Both WSOC
and TC analyses were performed by an Analytik Jena multi
N/C 2100 elemental analyzer, as described in Rinaldi et al.
[2009]. From 2008 on, aerosol samples were collected by a
LVS3 Small Filter Device (Kleinfiltergeräte) sampler (Sven
Leckel Ingenieurbüro GmbH), collecting particulate matter
with aerodynamic diameter lower than 1 mm (PM1) and
operating at 48 Lmin�1. The device has an inlet which
removes supermicron particles from sample air by impac-
tion mechanism and collects submicron particles in bulk
on a prefired 47mm quartz fiber filter.
[11] A total of 37 samples was collected before 2006,

accounting for 71% of the database, and 15 from 2008 on.
Although the database was obtained with data derived by
two different methods, it can be considered homogeneous
as the two data subsets, comprising at least one complete
year each, present very similar OMSS data distributions
(34%, 23.3%, 32%, 2%, and 78% versus 34%, 16.4%,
39%, 10%, and 63% in terms of average, standard deviation,
median, minimum, and maximum), suggesting that the two
sampling methods are comparable and none of the two was
biased toward the estimate of OMSS. Moreover, a
Kolmogorov-Smirnov (KS) test performed on the two data
subsets does not reject the null hypothesis that the two sam-
ples are drawn from the same distribution (with KS statistics
D = 0.23 and consequently a probability that two random
samplings of the same distribution produce the same or a
larger value D of p = 0.56).
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[12] Since all the samplers collected particles at ambient
relative humidity, all of the diameters cited henceforth
should be taken to be aerodynamic diameters at ambient
relative humidity, as defined by the sampler cutoff.
[13] All the aerosol samples were collected by an active

sector-controlled sampling system developed to avoid
anthropogenic contamination. The computer-based system
used wind direction (see below for details regarding wind
measurements) to sample onshore air masses and also a con-
densation particle counter (TSI 3010) to trigger sampling
shutdown when counts exceeded 700 particles cm�3. This
low level not only excluded incursions of polluted air but
also excluded coastal nucleation events and, consequently,
any coastal influences. Such a cautious approach also aimed
to exclude the open ocean nucleation events recently docu-
mented by O’Dowd et al. [2010], causing a modest increase
of particle number concentration up to 1500 cm�3. In addi-
tion, the active control of sampling conditions excluded
sampling during occasional short-term spikes in particle
concentration due to sporadic local shipping traffic. A
postsampling analysis revealed these air masses did not
reach land for 4–5 days (as confirmed by air mass back tra-
jectories) and black carbon (BC) concentrations measured
by an aethalometer (AE-16, Magee Scientific, with single
wavelength at 880 nm) did not exceed 50 ngm�3 and were
typically about 35 ngm�3. The air masses had spent the pre-
vious 48 h (at least) in the marine boundary layer, as
evidenced by Cavalli et al. [2004] and Ceburnis et al.
[2011]. The clean sector selection criteria were identical
for all the samples used in the present study.
[14] Ceburnis et al. [2011] used carbon isotope analysis

(13C and 14C) to quantify anthropogenic, marine biogenic,
and terrestrial nonfossil carbon sources in submicron parti-
cles over the northeast Atlantic Ocean, deploying a subset
of the samples used in this study. The contribution of anthro-
pogenic carbon in marine air masses sampled by the sector-
controlled system accounted for as little as 8–20%,
confirming that the organics observed in the samples were
mainly marine biogenic in origin. Similarly, the results of
Decesari et al. [2011], based on the factor analysis of
NMR spectra of marine aerosol WSOC, collected with the

same system, show a contribution of anthropogenic sources
at Mace Head of 17% on average.
[15] Moreover, different from that in Shank et al. [2012],

no correlation was observed in the data set between WIOM
and BC data (Figure 1). This further confirms that the contri-
bution of anthropogenic sources is of minor importance in
the samples collected at Mace Head with the sector-
controlled system and that the observed WIOM is mainly
biogenic.
[16] The term “clean marine air masses” used herein refers

to air masses selected by the above system, following the
criteria previously described.
[17] Samples were collected with a typical exposure time

of 1week (with a small subset of the samples collected over
a period of up to 15 days). During the period, the effective
sampling time was limited to the occurrence of clean marine
sector conditions (as described above) with a typical
sampling duration of 30–150 h.
[18] The 52 samples constituting the data set are represen-

tative of the different conditions encountered at Mace Head
over the year, with samples collected during the season of
high biological activity, the quiescent period, and the transi-
tion periods. More in detail, winter, summer, and autumn are
equally represented, each accounting for approximately 20%
of the samples, while the remaining 40% were collected dur-
ing spring. The representativeness of the data set was further
investigated by comparing the probability distribution of
wind speed (WS; see below for details) during the sampling
periods with that measured from 2002 to 2009 at Mace Head
in clean marine conditions, as defined by the active sector-
controlled sampling system. WS was selected as the refer-
ence meteorological parameter as it drives the production
of sea spray. Figure 2 shows a very good degree of agree-
ment between the two WS probability distributions,
supporting the representativeness of the data set with respect
to the meteorological conditions occurring at Mace Head
during periods of marine air advection.
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Figure 1. WIOM versus BC for the aerosol samples used
to derive the organic-inorganic sea spray source function
parameterization.
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Figure 2. Wind speed probability distribution at Mace
Head. The blue curve refers to clean marine air mass condi-
tions from 2002 to 2009, as defined by the sector-controlled
sampling system, while the red one to the subset of the sam-
pling periods.
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[19] WS and direction were measured on the 10m tower at
Mace Head by a Vector Instruments wind monitor (model
W200P/A100L) with a resolution of 3 s. Data were then
averaged to hourly values, and only periods overlapping
with aerosol sampling time, corresponding to clean marine
air masses, were taken into consideration. The coastal
measurements were extensively compared with offshore
wind data by Gantt et al. [2011] (auxiliary material), who
found a very good level of agreement.

2.2. Ocean Color Data Treatment

[20] Daily satellite ocean color data from 1998 to 2010,
with 1� spatial resolution, were obtained from the
GlobColour data set, developed in the framework of
the European Space Agency Data User Element program
to support global carbon cycle research. In detail, use was
made of fully normalized water-leaving radiances (nLw),
chlorophyll-a concentration, and colored dissolved and
detrital organic material absorption (CDM). The daily
GlobColour data are available on the Web sites of
GlobColour (http://www.globcolour.info) and MyOcean
(http://www.myocean.eu/).
[21] The GlobColour products were obtained by merging

Medium-Resolution Imaging Spectrometer (MERIS), Moder-
ate Resolution Imaging Spectroradiometer (MODIS), and
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data
using advanced retrieval based on fitting an in-water bio-
optical model to the merged set of observed normalized
water-leaving radiances. The technique is referred to as
GSM because it originates from the Garver-Siegel-
Maritorena bio-optical model [Maritorena and Siegel, 2005].
[22] The use of the three sensors reduced the data gaps

while increasing the coverage over ocean by a factor which
is nearly twice that of any single mission’s observations
[Maritorena et al., 2010]. The GlobColour products were
validated by Maritorena et al. [2010], who performed
matchup analyses (e.g., comparison between corresponding
in situ and satellite data) and compared them with the data
sets obtained from individual missions.
[23] We computed seawater particulate organic carbon

(POC) concentration following the approach described by
Stramska [2009], starting from remote sensing reflectances
derived from GlobColour nLw and the corresponding
extraterrestrial solar irradiance F0. It should be pointed out
that here, POC refers to seawater particulate matter, as is
standard terminology in marine biology and the ocean color
community, and not to atmospheric aerosols. Therefore, to
avoid any confusion to readers, who are likely to come from
the atmospheric sciences community, the expression
“seawater POC” (SW-POC) will be used henceforth.
[24] Missing data are a typical problem in the analysis of

time series of satellite data. In fact, depending on the type
of instrumentation, remote sensing is influenced by atmo-
spheric conditions and can be hampered by clouds, aerosols,
or heavy precipitation. The availability of ocean color data is
mainly limited by the presence of clouds. Data voids repre-
sent a problem in the analysis and modeling of the spatio-
temporal variability of ocean color derived parameters,
biasing the analysis to good weather conditions and
distorting the oscillatory modes upon which the observed
satellite time series are based. Gap-filling methods can alle-
viate such problems by extracting the most significant

oscillatory modes from the time series, thus allowing a more
quantitative comparison with other independent time series.
[25] Multichannel singular spectrum analysis (M-SSA)

was used to fill daily gaps in Chl-a, CDM, or SW-POC maps
due to cloud cover or other environmental factors. The
method (Appendix A) uses temporal, as well as spatial,
correlations to fill in the missing points [Ghil et al., 2002;
Kondrashov and Ghil, 2006].
[26] It was borne in mind that due to atmospheric correc-

tion algorithm limits, only ocean color data with solar zenith
angle less than 75� are permitted [Wang, 2002; Gregg and
Casey, 2007] and that 70� is the maximum angle for which
atmospheric correction algorithms based on plane-parallel
radiative transfer calculations have been developed. Thus,
the interpolation of the data voids was conservatively limited
to areas where the absolute value of the Sun zenith angle was
below 70�, also excluding polar night conditions.
[27] Given that the aerosol samples were collected at

Mace Head with filter exposition times of several days, sat-
ellite data had to be averaged in order to produce the average
values of Chl-a, CDM, and SW-POC to associate with each
aerosol sample. To this end, the time window for the satellite
data averaging was set as identical to the filter exposition
time of each sample, using different time lags between the
averaging period and the filter exposition start time, from
0 to 15 days. The correlation coefficients between OMSS

and the ocean color products, obtained by standard least
squares regression, at each grid point of a domain covering
the northeastern Atlantic Ocean and for each time lag, were
computed to obtain correlation maps.

3. Results

[28] The results of the correlation analysis are reported in
Figure 3, in the form of correlation maps, while the whole
data set is reported in the auxiliary material. In the maps,
the colors represent the correlation coefficient (r) result-
ing from the regression analysis between Chl-a, CDM, or
SW-POC and OMSS at each point of the domain. Analysis
of the correlation maps obtained with different time lags
between the satellite data averaging time window and the
filter exposition time (see section 2.2) shows that the
maximum correlation, within the broad oceanic region
facing Mace Head (40–60�N and 10–30�W), is found with
a time lag of 8 days for Chl-a and SW-POC and of 10 days
for CDM (Figure 4). The maps corresponding to the maxi-
mum correlation time lags have been selected and reported
in Figure 3. The delay of about 1week between the Chl-a,
CDM, and SW-POC time series with respect to OMSS, while
the typical travel time for an air parcel between the above
region and the Mace Head station is of the order of 1–2 days,
might be the result of the biological processes responsible
for the production of transferable organic material during
the bloom evolution, which are not necessarily in phase with
Chl-a, CDM, and SW-POC. This could be an important
parameter to consider for the implementation of the source
function into models and a possible explanation for certain
disagreements previously observed between models and
measurements [e.g., O’Dowd et al., 2008; Vignati et al.,
2010]. However, the resolution of the aerosol data is too lim-
ited to attribute firm significance to the observed time delay,
and further investigation is required to better assess the role
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and typical timescales of biological processes producing
transferable organic material at the ocean surface.
[29] The maps in Figure 3 clearly identify the oceanic

region exerting the maximum influence on the chemical
composition of the sea spray aerosol measured at Mace
Head, i.e., the area where the correlation between ocean
parameters and OMSS is maximum (black squares in
Figures 3a, 3b, and 3c). The region is located west of Mace
Head, between 47 and 57�N and between 14 and 24�W. The
oceanic region identified here corresponds quite closely to
the Chl-a data averaging region chosen by O’Dowd et al.
[2008] based on back trajectory analysis of the air masses
affecting Mace Head during the aerosol sampling.
[30] Averaging Chl-a and SW-POC concentrations and

CDM absorption in the maximum correlation area (see
above) reveals linear relationships between the three ocean
color parameters and OMSS (Figure 5). The relationships
are as follows:

OMSS ¼ 75:9� Chl-a� 3:99 (1)

OMSS ¼ 2455� CDM� 37:8 (2)

OMSS ¼ 0:709� SW-POC� 34:7 (3)

where Chl-a and SW-POC are expressed as mgm�3, CDM
as m�1, and OMSS as percentage units. Consistent with the
results described above, time lags of 8, 10, and 8 days for
Chl-a, CDM, and SW-POC have been considered,
respectively. The three relations are characterized by correla-
tion coefficients r = 0.72, 0.65, and 0.68 for Chl-a, CDM,
and SW-POC, respectively. Considering the minimal differ-
ences among the correlation coefficients and the fact that
chlorophyll-a is the most widely available and validated
ocean color parameter, there is no reason to substitute
chlorophyll-a by other biological surrogates, which might
be affected by larger errors and based on less tested algo-
rithm parameters estimates [Maritorena et al., 2010].
[31] The use of highly time-resolved Chl-a maps, with

the appropriate data treatment and time lag, reduces the
dispersion of data around the best fit line and increases
the correlation coefficient of the mixed organic-
inorganic sea spray source function. In fact, the presented
Chl a-OMSS linear relation has a correlation coefficient
far higher than those previously proposed (e.g., 0.55 in
Vignati et al. [2010]). Gantt et al. [2011], operating an
exponential fitting, obtained a lower correlation coeffi-
cient (0.66) for a subset of the aerosol database used in
this work (37 samples out of 52) and 8 day averaged
SeaWiFS chlorophyll-a fields.
[32] The Chl a-OMSS linear relationship reported in

equation (1) is characterized by a higher slope than the
source function presented in Vignati et al. [2010]. The
implementation of this new source function in a global
model is beyond the province of this paper. Nevertheless,
it can be argued that the new function will modify
the results of Vignati et al. [2010], by reducing POA
emission in chlorophyll-a depleted waters and increas-
ing emission under high chlorophyll-a concentrations.
Given that a general overestimation of WIOM concentra-
tion in low-chlorophyll conditions was reported by

a)

b)

c)

Figure 3. Correlation maps for (a) Chl-a, (b) CDM, and (c)
SW-POC. Colored regions represent areas where the correla-
tion was significant at the 95% confidence level. The box
indicates the area selected to compute the regression curves
reported in Figure 4 (see text for details).
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Vignati et al. [2010], with respect to measurements
performed at Mace Head, this result is encouraging.
[33] Gantt et al. [2011] demonstrated that the fractional

contribution of organic matter in sea spray does depend
not only on marine biology but also on a physical param-
eter, namely, WS. More precisely, they found a signifi-
cant inverse correlation between OMSS and WS in two
marine aerosol data sets, one of which was a subset of
the data set used in the present study. It is worth
highlighting that the inverse dependency on WS relates
only to OMSS, i.e., the fractional contribution of organic
matter in sea spray aerosol, and not to the absolute
concentration of sea spray, which is still enhanced under
high-WS conditions. The observed correlation (OMSS

versus WS) was explained by the formation of a thick,
stable sea surface microlayer (which can be extremely
enriched in organics in high biological activity condi-
tions) under low-WS conditions, enhancing the transfer
of organics to the atmosphere through the bubble burst-
ing process. For the same degree of biological activity,
high wind speeds drive a continuous mixing of the
organic-enriched layer with below-surface waters, which
are poorer in organics, resulting in the reduction of sea
spray enrichment.
[34] The inverse correlation between OMSS and WS was

confirmed in the extended data set used in the present study
(slope =�7.29� 2.57 sm�1, intercept = 91.11� 19.9%, and
r =�0.65). As a consequence, in order to derive a reliable
relation to predict the fractional contribution of OM in sea
spray aerosol, a two-dimensional regression analysis
between OMSS, Chl-a, and WS was deemed necessary.
The result of this correlation analysis is reported in Figure 6
and equation (4):

OMSS ¼ 56:9� Chl-að Þ þ �4:64�WSð Þ
þ 40:9 r ¼ 0:82ð Þ (4)

where Chl-a is expressed as mgm�3, WS as m s�1, and
OMSS as percentage units. It is worth noting that the

correlation coefficient of the regression curve is further
increased once the reverse correlation with WS is intro-
duced in the system.
[35] As a conclusion of this study, we propose equation

(4) as a novel organic-inorganic sea spray source function
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parameterization, based on biological (Chl-a) and physical
(WS) parameters, for implementation in large-scale models,
to improve on the present capability of predicting the emis-
sion of submicron POA from oceans. The function was
obtained using Chl-a data with a time resolution of about
1 week and considering a time delay of 8 days between
Chl-a and the OMSS time series. Therefore, it is essential
to consider such aspects when implementing the function
in climate models. For example, if an atmospheric model
is forced with monthly mean oceanic fields, the 8 day lag
should be used when interpolating in time the fields needed
for the function. Moreover, we recommend the use of the
same Chl-a input data as those used to derive the function
(GlobColour data, derived from the merging of MERIS,
MODIS, and SeaWiFS data), for better reliability of the
predicted marine POA.
[36] The newly developed source function has several

conditions. The maximum observed OMSS in the data-
base was 78%, which should be used as an upper limit
for any combination of Chl-a and WS values producing
OMSS in excess of that value. At the lower end, certain
combinations of Chl-a and WS values will produce
negative enrichment, e.g., for Chl-a = 0.1mgm�3 and
WS above 10m s�1 or for any Chl-a value < 0.9 mgm�3

if WS is above 20m s�1. Therefore, the lower limit of
0% should be applied whenever OMSS becomes negative.
It is also worth noting that the source function should not
be used when WS is < 3–4m s�1, which is the onset of
whitecap and, therefore, of primary aerosol production.
Finally, we would like to invite future users to be careful
in extrapolating their modeling results at global level.
The source function has been developed from measure-
ments performed over the eastern North Atlantic Ocean,
and at present, we are not able to predict if application

at global level could result in significant biases of the
modeled marine POA source or not.
[37] Although organic enrichment as a function of

particle diameter was not considered in this study, we
believe that the present function can be implemented also
in size-resolved aerosol models, operating with due caution.
For example, in Vignati et al. [2010], the previous source
function was implemented in TM5-M7, where aerosol is
treated by seven internally mixed modes, attributing the
marine POA to the accumulation mode. This is reasonable,
as PM1 measurements (on which the present and previous
functions are based) are dominated by the accumulation
mode in terms of mass. Finally, as for sea spray size distri-
bution, we would recommend future users to follow the
approach of O’Dowd et al. [2008] and Vignati et al.
[2010], where a Chl-dependent modal diameter was
adopted for marine POA, following the seasonal variation
in the sea spray diameter observed by Yoon et al. [2007].

4. Timescales of the Chl-a-OMSS Correlation

[38] The correlation between Chl-a and OMSS, on which
the sea spray source function parameterization is based,
does not distinguish between the different timescales
present in the signals. In practice, however, it is important
to use the source function, to understand which temporal
windows determine the observed correlation, and to ascer-
tain whether timescales other than the mean seasonal varia-
tion are also correlated. In particular, the correlation
between Chl-a and OMSS can be generated by (1) the mean
seasonal signal, (2) interannual variability (a slow modula-
tion with a timescale longer than 1 year), and (3) “fast”
fluctuations (timescale shorter than a year).
[39] To elucidate this point, the seasonal signal of both

data sets was calculated by applying a moving average
window filter (90 day width) to the data to eliminate
short-term fluctuations and averaging the observations of
the different years, to obtain a “climatological” seasonal
signal. In this way, Chl-a and OMSS mean seasonal
variations were obtained, which were smooth over
periods of less than 3months. By removing the periodic
signals from the measurements, Chl-a and OMSS

anomalies were obtained, which included both short-
term fluctuations and interannual variability. A lower,
but still significant, correlation (r = 0.48) was observed
between these anomalies, with the usual 8 day time lag,
suggesting that the observed correlation was due not only
to the seasonal signal but also to processes occurring on
different timescales.
[40] To investigate the role of the mean seasonal

signal in greater depth, surrogate time series were gener-
ated from the data set, by shuffling the sequence of the
years. Thus, for both Chl-a and OMSS, the years in the
2002–2009 period were randomly reordered. For exam-
ple, one surrogate signal was obtained from the
measurements in 2006, followed by those of 2003, and
so on. The operation cancels the correlations both in
interannual variability and in the fluctuations at time-
scales shorter than 1 year, leaving only the mean
seasonal signal. Considering 200 of the surrogate
signals, we derived the confidence interval (CI; 95%)
for the null hypothesis that the correlation is solely
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OMSS = a * Chl-a + b * WS + c
a = 56.9 ± 20.7
b = -4.64 ± 2.21
c = 40.9 ± 23.9
R = 0.82

Figure 6. Scatterplot showing the relation between Chl-a,
WS, and OMSS. The equation of the fitting curve resulting
from the two-dimensional regression analysis is also
reported. Uncertainties associated to the fit parameters refer
to the 95% confidence interval.
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due to the mean seasonal signal. For time lags from 2 to
13 days, the correlation in the data set exceeded this
interval, confirming that interannual variability and/or
faster fluctuations also play a role.
[41] The same approach was adopted to analyze the

anomaly signals obtained by removing the true running
mean from the Chl-a data, obtained by continuously
shifting a window of different widths along the time
series. This removed from the Chl-a data any variability
at scales longer than the window length, retaining only
the “faster” component. Unfortunately, the same could
not be done for the OMSS data, due to the sparseness
of the measurements. In this case, we removed the
seasonal signal from OMSS, as shown above. Following
the previous approach, we tested against the null hypoth-
esis of no correlation, by shuffling the measurement
years. While, with a 60 and 90 day averaging window for
Chl-a, the fast anomalies still presented significant correla-
tions (with a peak at a lag of 8/9 days), fluctuations faster than
30 days turned out to be undistinguishable from the surrogates
falling within the 95% CI. In conclusion, no significant corre-
lations were observed for fluctuations faster than 1month, but
at longer timescales (60 or 90 days), fluctuations faster than
1 year were recognized to be responsible for a significant cor-
relation between Chl-a and OMSS.
[42] The above findings support the idea that the organic-

inorganic source function parameterization obtained in this
work is reliable for averaging timescales of 1month and
longer and that the seasonal signal plays a major role in
determining the correlation between Chl-a and OMSS. It is
therefore plausible that the reliability of the source function
could be lower if applied in ocean areas characterized by a
less pronounced seasonality of the Chl-a concentration. To
test this hypothesis quantitatively is very complex, how-
ever, given the lack of parallel submicron sea salt and
WIOM measurements in unpolluted marine sites.

5. Conclusion

[43] The present study indicates that to date, chlorophyll-a
is the best biological activity surrogate available from
satellite measurements for predicting the organic mass
fraction of submicron sea spray, at least from measurements
performed at Mace Head. In fact, considering the minimal
difference between the correlation coefficient values
between Chl-a, CDM, or SW-POC and OMSS, there is
no reason to substitute chlorophyll-a, which is the most
accurate parameter obtained from ocean color data, with
other biological surrogates which are generally affected by
larger and less known errors.
[44] The results of this work show that the careful treat-

ment of the satellite data is more important than the
choice of the ocean color parameter in order to improve
the correlation coefficient of the mixed organic-
inorganic sea spray source function. More specifically,
the use of highly time-resolved satellite maps, with the
appropriate treatment of the data voids, was able to
reduce the dispersion of the data around the best fit line
with respect to the previous approaches [O’Dowd et al.,
2008; Vignati et al., 2010].
[45] The new approach experimented indicates that the

oceanic region that exerts the maximum influence on the

chemical composition of submicron sea spray aerosol
measured at Mace Head is located between 47 and 57�N
and between 14 and 24�W. Moreover, it has evidenced a
systematic delay of 8–10 days between the Chl-a, CDM,
and SW-POC time series and OMSS that cannot be justified
by the aerosol transport time. This delay could be related to
the timescale of the biological processes responsible for the
production of transferable organic materials during the
bloom evolution. The time delay should be taken into
account when modeling the production of primary organic
aerosols from the oceans applying the present source
function (equation (4)), as it was considered in developing
the function itself. Nevertheless, given the limited resolution
of the aerosol data, the relation between the observed time
delay and the timescale of oceanic biological processes
remains a hypothesis requiring further investigation in future
studies. Additionally, even though demonstrated for the
eastern North Atlantic Ocean, a certain caution should be
entertained when dealing with other oceanic regions.
[46] A new relationship describing the organic enrichment

of sea spray aerosol as a function of both wind speed and sea
surface chlorophyll-a concentration has been presented. The
source function will contribute to improving the skill of
present global models in predicting the production of submi-
cron primary organic aerosols from the oceans. We believe
that the proposed approach currently provides the most
reliable tool for predicting the organic enrichment in sea
spray aerosol and for estimating the magnitude of the
primary organic aerosol source from the oceans.

Appendix A

[47] In the present work, multichannel singular spectrum
analysis (M-SSA) was used to fill daily gaps in Chl-a,
CDM, or SW-POC maps due to cloud cover or other
environmental factors [Ghil et al., 2002; Kondrashov and
Ghil, 2006]. This is a nonparametric method relying on data
alone. It does not require the setting of any a priori parameter
or model, which may introduce artificial oscillations that are
not present in the “true” time series.
[48] The method uses both temporal and spatial correla-

tions to fill in the missing points, and representing a
generalization of the Beckers and Rixen [2003] spatial
empirical orthogonal functions (EOFs) based reconstruc-
tion (RC), it is particularly useful for data sets that, as
in our case, exhibit relatively long and continuous gaps
[Kondrashov and Ghil, 2006].
[49] To illustrate the basic principles of the method, we

briefly recall the basic equations for M-SSA. M-SSA is a
generalization of its univariate version (SSA) to a multivar-
iate L-channels time series:

Xl tð Þ : l ¼ 1; . . . ; L; t ¼ 1; . . . ;Nf g

[50] In our case, L is the number of sea grid points and N is
the length of the time series, i.e., the number of ocean color
maps.
[51] The approach used to compute the lagged cross covari-

ance [Broomhead and King, 1986a, 1986b] is to form a matrix
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eX by first augmenting each channel {Xl(t): t=1, . . ., N} of X
with M lagged copies of itself:

eX l ¼

Xl 1ð Þ Xl 2ð Þ : : Xl Mð Þ
Xl 2ð Þ Xl 3ð Þ : : Xl M þ 1ð Þ
: : : : :

Xl N ’� 1ð Þ : : : Xl N � 1ð Þ
Xl N ’ð Þ Xl N ’þ 1ð Þ : : Xl Nð Þ

0
BBBB@

1
CCCCA

where 1 ≤ l ≤ L and N0 =N�M. The lag covariance matrix is
then given by

eCX ¼ 1

N ’
eXT eX ¼

C1;1 C1;2 : : : C1;L

: C2;2 : : : :
: : : : Cl;l’ :
: : : : : :
: : : : : :

CL;1 CL;2 : : : CL;L

0
BBBBBB@

1
CCCCCCA

an LM�LM matrix with blocks

Cl;l’ ¼ 1

N ’
eXT
l
eX l’

[52] The diagonalization of the covariance matrix gives
the eigenvectors {Ek: 1< k ≤ LM} and the eigenvalues lk.
The space-time principal components, i.e., the projection of
the data onto the EOFs, are

Ak tð Þ ¼
XM
j¼1

XL
l¼1

Xl t þ j� 1ð ÞEk
l jð Þ

where t varies from 1 to N0.
[53] Finally, the time series can be reconstructed using a

linear combination of the principal components:

RK
l tð Þ ¼ 1

Mt

XUt

j¼Lt

Ak t � jþ 1ð ÞEk
l jð Þ

where K is the set of EOFs on which the reconstruction is
based. Mt and the interval Lt to Ut are as long as M in the
central part of the time series while smaller near the
endpoints [see Ghil et al., 2002, equation 12].
[54] Based on this reconstruction (RC) formula, the

sequence of steps for the gap filling is as follows.1.
The original time series is centered by computing the
unbiased value of the mean and setting the missing data to
zero.1.
The first EOF E1 of this time series is computed, and a new
time series is reconstructed with this EOF-alone RC R1.1.
SSA is performed again on RC R1.1.
The reconstruction is repeated using the new R1 and tested
against the previous one, until a convergence test has been
satisfied.
[55] The process is repeated for each chosen EOF, starting

from the solution with data filled in by R1 and repeating the
inner iteration.
[56] It is important to underline that the above method can

neither create phytoplankton signals that are not already
present in the input data nor produce new oscillatory modes.
Nevertheless, the interpolation error still depends on the
amount and distribution of the available input data.

[57] Kondrashov and Ghil [2006] demonstrated that an
increased number of gaps yield the same effect of increasing
the noise in the measurements. The most uncertain situation
occurs in the presence of a long, continuous gap of data cor-
responding to a very persistent overcast period. Even in this
case, Kondrashov and Ghil [2006] showed that the period of
the oscillation can be determined correctly, provided the gap
is not larger than any significant spatial-temporal correla-
tions present in the data, i.e., the time period of the slowest
oscillatory mode. This means that a gap of a few weeks does
not preclude the determination of the oscillatory modes that
describe the seasonal variability present in our time series.
[58] Previous works based on the Beckers and Rixen

[2003] method, which is a particular case of M-SSA, have
demonstrated that the bias and root-mean-square (RMS)
errors between interpolated ocean color and in situ data do
not differ from the corresponding one when only real mea-
sured satellite data are used [Volpe et al., 2012]. Finally,
Kondrashov and Ghil [2006] showed that the interpolation
RMS error depends on the choice of the window length
and is always lower than the corresponding RMS error
obtained using the Beckers and Rixen [2003] method, by
approximately 40% for M greater than about 40. Even if
we do not have available in situ measurements to repeat
the Volpe et al. [2012] estimation for our area of investiga-
tion, the above consideration suggests that also in our case,
the interpolation did not introduce undesirable biases in the
analyzed field.
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