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ABSTRACT
Motivation: Microarray classification typically possesses two
striking attributes: (1) classifier design and error estimation are
based on remarkably small samples and (2) cross-validation
error estimation is employed in the majority of the papers.
Thus, it is necessary to have a quantifiable understanding of
the behavior of cross-validation in the context of very small
samples.
Results: An extensive simulation study has been per-
formed comparing cross-validation, resubstitution and boot-
strap estimation for three popular classification rules—
linear discriminant analysis, 3-nearest-neighbor and decision
trees (CART)—using both synthetic and real breast-cancer
patient data. Comparison is via the distribution of differ-
ences between the estimated and true errors. Various stat-
istics for the deviation distribution have been computed:
mean (for estimator bias), variance (for estimator preci-
sion), root-mean square error (for composition of bias and
variance) and quartile ranges, including outlier behavior.
In general, while cross-validation error estimation is much
less biased than resubstitution, it displays excessive vari-
ance, which makes individual estimates unreliable for small
samples. Bootstrap methods provide improved performance
relative to variance, but at a high computational cost and
often with increased bias (albeit, much less than with
resubstitution).
Availability and Supplementary information: A compan-
ion web site can be accessed at the URL http://ee.tamu.edu/
∼edward/cv_ paper. The companion web site contains: (1) the
complete set of tables and plots regarding the simulation
study; (2) additional figures; (3) a compilation of references
for microarray classification studies and (4) the source code
used, with full documentation and examples.
Contact: edward@ee.tamu.edu

∗To whom correspondence should be addressed at 214 Zachry Engineer-
ing Center, Department of Electrical Engineering, Texas A&M University,
College Station, TX 77840, USA.

1 INTRODUCTION
A major interest in the application of expression microarrays
is to perform classification via different expression patterns—
for instance, cancer classification (see the companion web
site for a compilation of references on microarray-based can-
cer classification). This requires assessing expression levels
from RNA obtained from different tissues with microarrays,
determining genes whose expression levels can be used as
classifier variables, applying a rule to design the classifier
from the sample data, and then applying an error estimation
procedure.

Three critical issues arise. First, given a large set of vari-
ables (expression levels), how does one select a feature set?
Second, given a feature set, how does one design a classifier
from the sample data that provides good classification over
the population? Third, how does one estimate the error of
a designed classifier? Error estimation permeates the entire
process because it is often a required step in both feature and
model selection. A key point for microarray classification is
that error estimation is greatly impacted by small samples
(Dougherty, 2001). An estimator may be unbiased but have a
large variance, and therefore often be low or high.

Cross-validation error estimation has been quite popular for
microarray classification. Perhaps this is due to the fact that,
on average, cross-validation error estimates nearly agree with
the true errors. But is this important? Our concern is with error
estimation obtained from the particular data set we have. This
paper discusses the degree to which cross-validation proced-
ures can be expected to estimate the true classification error
from individual samples in a small-sample setting. Critical
scientific issues are raised by using imprecise error estima-
tion. Low estimation can lead to inferring a relation where
there is none, or a strong relation when it is weak. High
estimation can lead to inferring there is either no relation,
or at best one beset by uncertainty, when there is a tight rela-
tion. In the first instance, one can use the microarray data
in the context of gene discovery and attempt to validate the
inference; in the second, there is no recovery. The problem
can be so severe that perfectly consistent data (indicative of
deterministic regulation) can yield error rates that make the
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data appear substantially inconsistent (indicative of stochastic
regulation).

2 ERROR ESTIMATION
In statistical pattern recognition, there is a feature vector
X ∈ R

d and a label Y ∈ R, which takes on numerical values
representing the different classes; here, we assume a two-class
problem, Y = {0, 1}. A classifier is a function g: R

d → {0, 1}.
The error rate of g is ε[g] = P [g(X) �= Y ] = E(|Y −g(X)|),
which depends on the feature-label distribution F. The Bayes
classifier is given by gBAY(x) = 1 if P(Y = 1 | X =
x) > 1/2 and gBAY(x) = 0 otherwise. For any classifier g,
ε[gBAY] ≤ ε[g], so that gBAY is the optimal classifier.

In practice, F is unknown. Hence, one must design a
classifier from training data, which consists of a set of n inde-
pendent observations, Sn = {(X1, Y1), . . . , (Xn, Yn)}, drawn
from F. A classification rule is a mapping g: {Rd ×{0, 1}}n ×
R

d → {0, 1} (we use the same letter g to denote both a
classifier and a classification rule, the distinction being clear
from the context). A classification rule maps the training data
Sn into the designed classifier g(Sn, ·). The true error of
a designed classifier is its error rate given a fixed training
data set:

εn = ε[g(Sn, ·)] = EF(|Y − g(Sn, X)|), (1)

where the notation EF indicates expectation with respect to F.
The expected error rate over the data is given by E[εn] =
EFn

EF[|Y − g(Sn, X)|], where Fn is the joint distribution of
the data Sn. This is sometimes called the unconditional error
of the classification rule.

Were the underlying feature-label distribution F known, the
true error could be computed exactly, via (1). In practice,
one is limited to using an error estimator, that should be as
‘close’ as possible to the true error. Most error estimators
used in practice implement some form of sample-mean-like
approximation to the expectation in (1). This approximation
is unbiased if the test points come from independent samples,
not used to design the classifier.

For large samples, one can randomly choose a subset
Snt

⊂ Sn for test data, design the classifier on Sn \Snt
, and

then estimate its error by applying it to Snt
. This holdout estim-

ator approximates (1), with Sn replaced by Sn\Snt
, and is an

unbiased estimator of E[εn−nt
], with respect to expectation

over Sn (in this paper, the bias of error estimation always refers
to expectation over Sn). Holdout estimation is impractical with
small samples.

The resubstitution estimator, ε̂resub, estimates the error by
directly computing the error on the training data:

ε̂resub = 1

n

n∑
i=1

|yi − g(Sn, xi)|. (2)

It is usually low-biased as an estimator of E[εn]—and can
be severely low-biased. Typically, bias is worse for more
complex classifiers (Vapnik, 1998).

In k-fold cross-validation, Sn is partitioned into k folds S(i),
for i = 1, . . . , k (for simplicity, we assume that k divides n),
each fold is left out of the design process and used as a test-
ing set, and the estimate is the overall proportion of error
committed on all folds:

ε̂cvk = 1

n

k∑
i=1

n/k∑
j=1

|y(i)
j − g(Sn\S(i), x

(i)
j )|, (3)

where (x
(i)
j , y(i)

j ) is a sample in the i-th fold. The process
may be repeated, where several cross-validated estimates are
computed, using different partitions of the data into folds,
and the results averaged. In stratified cross-validation, the
classes are represented in each fold in the same proportion as
in the original data—there is evidence that this improves the
estimator (Witten and Frank, 2000). Clearly, a k-fold cross-
validation estimator is unbiased as an estimator of E[εn−n/k].
In leave-one-out estimation, a single observation is left out
each time, which corresponds to n-fold cross-validation. The
leave-one-out estimator is nearly unbiased as an estimator
of E[εn].

The bootstrap methodology is a general resampling strategy
that can be applied to error estimation (Efron, 1979). It is based
on the notion of an ‘empirical distribution’ F∗, which puts
mass 1/n on each of the n data points. A ‘bootstrap sample’
S∗

n from F∗ consists of n equally-likely draws with replace-
ment from the original data Sn. Hence, some of the samples
will appear multiple times, whereas others will not appear
at all. The probability that any given data point will not
appear in S∗

n is (1 − 1/n)n ≈ e−1. It follows that a bootstrap
sample of size n contains on average (1 − e−1)n ≈ 0.632n

of the original data points. The actual proportion of times
a data point (xi , yi) appears in S∗

n can be written as P ∗
i =

(1/n)
∑n

j=1 I(x∗
j ,y∗

j )=(xi ,yi), where IS = 1 if the statement S

is true, zero otherwise. The bootstrap zero estimator (Efron,
1983), ε̂0, mimics (1) with respect to the empirical distribu-
tion (note that Sn is fixed here): ε̂0 = EF∗( |Y − g(S∗

n , X)| :
(X, Y ) ∈ Sn\S∗

n). The classifier is designed on the bootstrap
sample and tested on the left-out data points. In practice, the
expectation EF∗ has to be approximated by a sample mean
based on independent replicates S∗b

n , for b = 1, . . . , B, where
B is recommended to be between 25 and 200 in Efron (1983):

ε̂0 =
∑B

b=1
∑n

i=1 |yi − g(S∗ b
n , xi)| IP ∗b

i =0∑B
b=1

∑n
i=1 IP ∗ b

i =0

. (4)

A variance-reducing technique often employed is the bal-
anced bootstrap resampling (Chernick, 1999), where each
sample is made to appear exactly B times in the computa-
tion. The bootstrap zero estimator tends to be a high-biased
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estimator of E[εn], as the number of data points available
for design is on average only 0.632n. The 0.632 bootstrap
estimator (Efron, 1983),

ε̂b632 = (1 − 0.632) ε̂resub + 0.632 ε̂0, (5)

tries to correct this bias via a weighted average of the zero and
resubstitution estimators.

For the sake of completeness, we also consider the bias-
corrected bootstrap estimator:

ε̂bbc = ε̂resub + 1

B

B∑
b=1

n∑
i=1

(
1

n
− P ∗b

i

)
|yi −g(S∗b

n , xi)|. (6)

This estimator tries to correct directly the bias of resubstitu-
tion, by adding to ε̂resub its bootstrap estimation of bias (Efron,
1983).

3 PERFORMANCE OF ERROR ESTIMATORS
In our view, the salient issue regarding performance of error
estimators in small-sample problems is variability. It is prefer-
able to have some (low) degree of bias and small variance than
to have unbiasedness and large variance. Unbiasedness is of
limited use if the estimate corresponding to a given sample can
be often far from the actual error value, due to high variabil-
ity. Cross-validation estimators are especially problematic in
small-sample settings, typically having higher variance than
that of resubstitution or bootstrap estimators. The variance
problem of cross-validation makes its use questionable for
the kinds of very small samples used in microarray analysis.
Let us quote Devroye, Gyorfi and Lugosi (Devroye et al.,
1996) on leave-one-out estimation: ‘One of the drawbacks of
the deleted estimate is that it requires much more computa-
tion than the resubstitution estimate. Another, and probably
more serious, disadvantage of the deleted estimate is its large
variance.’

We make a distinction regarding variability affecting error
estimation. An error estimator ε̂ is a function of the random
training data Sn. In some cases, it is also a function of other
random factors, such as the random fold partitions used in
cross-validation. Therefore, ε̂ is a random variable. The vari-
ance Var[ε̂ | Sn], i.e. the variance due to random factors other
than the data sample Sn, is sometimes called the internal
variance of the estimator (Efron, 1983). For example, in
bootstrap estimation, the internal variance is associated with
the variance of the sample mean used for approximating the
expectation over the bootstrap sample. Resubstitution and
leave-one-out have no internal variance. Of greater concern
is the full variance of the estimator, which takes into account
the variability due to the random sample Sn. This variance
is typically much larger than the internal variance. This is
an important point, because internal variance has been used
previously to compare error estimators (Azuaje, 2003).

A well-known factor in the variability of the error estimat-
ors considered here is that they are error-counting estimates.

Resubstitution and cross-validation count errors committed
in n tries and divide the result by n to get the error estimate.
Thus, these estimates can only change by 1/n increments. In
small-sample settings, 1/n can be quite large, which creates an
irreducible element of variability. Repeated cross-validation
and bootstrap are less affected by this problem, because they
average over more than n tries (e.g. for bootstrap, nB tries).

Another variability issue affecting cross-validation is the
manner in which expression (3) serves as a sample-mean
approximation to the unconditional error rate. The difficulty is
that the sets Sn\S(i) are not independent samples from F n−n/k ,
and this adds variance to the estimate (Hastie et al., 2001). The
problem is more serious for larger k.

So far, we have mostly discussed the variability of error
estimators as estimators of the unconditional error rate. This
assesses the global performance of an error estimator. In
practice, the conditional error rate (for the given data set)
εn in (1) is of greatest concern. Taking into consideration
how far the error estimator is from the conditional error rate
assesses the local performance of the estimator. Of course, the
local and global performance of an error estimator are related.
Viewed as estimators of the conditional error rate, resampling
estimators, such as cross-validation and bootstrap, have the
following issue: performance of the originally designed clas-
sifier is assessed in terms of ‘surrogate’ classifiers, designed
by the classification rule applied on reduced data from which
samples were left out. If these surrogate classifiers are too
different from the original classifier too often, then the estim-
ate may be far from εn—a similar observation was made in
Kohavi (1995), in connection with the stability of classifica-
tion rules. We call this the ‘surrogate problem’. This problem
is severely aggravated in small-sample settings; the designed
surrogate classifiers may look nothing like the original one.
The more sample points left out, and the more complex the
classification rule (in particular, the larger the number of bins
into which it divides the feature space), the worse is the sur-
rogate problem. Please see the companion web site for plots
of three cases corresponding to popular classification rules of
increasing complexity, which illustrate the surrogate problem.

In light of the preceding considerations, we propose to study
the performance of an error estimator ε̂, particularly in small-
sample settings, via the distribution of the error εn − ε̂, where
εn is the true error rate of the designed classifier from each
given sample Sn, as in (1). We call this the deviation distribu-
tion of the error estimator. It is the distribution of the random
variable εn − ε̂, which measures how far an error estimator
is from the true error. Note that ε̂ is unbiased if and only if
the mean on the deviation distribution is zero. Unbiasedness
will be of limited utility, however, if the deviation distribution
is highly variable, since then there will be a high probability
of the estimator being far from the true error for any given
sample Sn.

Several statistics of the deviation distribution provide use-
ful error-estimation properties. Estimator bias is reflected by
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the mean deviation, E[εn − ε̂]. Var[εn − ε̂] reflects the con-
fidence we can have in our estimates from actual samples.
The root-mean square (RMS) error,

√
E[(εn − ε̂)2], com-

bines the effects of both bias and variance: E[(εn − ε̂)2] =
E[(εn− ε̂)]2+Var[εn− ε̂]. Lastly, we consider the quartiles of
the deviation distribution, which are less affected by outliers
than the mean (these being visualized in our simulations via
box plots).

4 SIMULATION STUDY
In this section, we report the results obtained from a large
simulation study based on synthetic and real patient data,
which measured the performance of resubstitution, several
cross-validation estimators, and a pair of bootstrap estimat-
ors. The simulations were performed on a 2.5 GHz Pentium 4
computer, running Windows 2000 and Cygwin (a UNIX envir-
onment for Windows). The C code that was developed to
implement the various error estimators, with full documenta-
tion and examples, can be downloaded from the companion
web site.

4.1 Experimental setup
We consider in our experiments three classification rules: lin-
ear discriminant analysis (LDA), 3-nearest-neighbor (3NN)
and decision trees (CART). To improve performance and min-
imize overfitting in CART, the tree is not fully grown, but
splitting stops when there are six points or fewer in a node. The
error estimators studied are resubstitution (resub); four varia-
tions of cross-validation: leave-one-out (loo), 5-fold cross
validation (cv5), 10-fold cross validation (cv10) and repeated
cross-validation that averages 10 runs of 10-fold cross validat-
ion, while picking the folds randomly each time (cv10r); and
two bootstrap estimators, the 0.632 bootstrap (b632) and the
bias-corrected bootstrap (bbc). For the computation of cv5,
cv10 and cv10r, we use stratified cross-validation, and for
computation of b632 and bbc, we use balanced bootstrap
samples, with B = 100 replicates, which makes the number
of designed classifiers be the same as for cv10r.

4.2 Simulation based on synthetic data
Our catalog of simulations using synthetic data consists of a
total of 108 experimental conditions, each involving a thou-
sand replications using different sample data drawn from an
underlying model. The model for LDA consists of Gaussian
class-conditional densities, with spherical covariances and
means located at (δ, . . . , δ) and (−δ, . . . , −δ), where δ > 0 is
a separation parameter. The model for 3NN and CART cor-
responds to class-conditional densities given by a mixture of
Gaussians, with spherical covariances and means at opposing
vertices of a hypercube centered at the origin and side 2 δ;
e.g. in five dimensions, the class-conditional density for
class 1 has means at (δ, δ, δ, δ, δ) and (−δ, −δ, −δ, −δ, −δ),
whereas the class-conditional density for class 2 has means

at (δ, −δ, δ, −δ, δ) and (−δ, δ, −δ, δ, −δ). In all cases, we
assume equal prior probabilities for each class.

We consider 18 experiments and six sample sizes, vary-
ing from 20 to 120 in increments of 20, which make up the
total of 108 experimental conditions. The experiments cover
the three classification rules, under low (p = 2) or moderate
(p = 5) dimensionality. In each of these six cases, three dif-
ferent choices of class separation and variance are employed,
corresponding to a Bayes error of approximately 0.1, 0.15 or
0.2. The parameters for the 18 experiments are summarized
in a table that can be accessed on the companion web site.

For each experiment and sample size, we computed the
empirical deviation distribution, derived from the 1000 inde-
pendent draws of the observations. The true error for each
observation was computed exactly for LDA, and by Monte-
Carlo computation for 3NN and CART. Due to space con-
straints, we discuss three representative experiments, one for
each of the classifiers considered. In addition, we focus for
the most part on sample size n = 20. The full results for the
complete set of experiments can be found on the companion
web site. These include tables with the mean, variance and
RMS of the deviation distribution, along with the mean and
variance of the true error in each case.

The top two rows of Figure 1a display beta-distribution fits
and box plots of the empirical deviation distribution for the
three selected representative experiments (the full set being
on the companion web site). It is seen that all cross-validation
estimators perform similarly. As expected, they are slightly
high-biased. Their main drawback is high variability—their
distributions tend to be rather flat. Thus, they have low probab-
ility of being close to the actual classification error. They also
tend to produce large outliers, which can lead to severely mis-
leading conclusions. The disparity in performance between
cross-validation and the other estimators increases as one goes
from LDA to CART; i.e. as the complexity of the classifica-
tion rule increases. Resubstitution is low-biased, as expected,
but shows smaller variance than cross-validation. The over-
all performance of bias-corrected bootstrapping is slightly
better than cross-validation, but in a few experiments cross-
validation is better. The 0.632 bootstrap proved to be the
best overall estimator in our simulations; however, in the
case of CART, where resubstitution is badly low-biased, both
bootstrap estimators are low-biased (since the resubstitution
estimate is used in their computation).

The best performing cross-validation estimator, by a small
margin, is cv10r, but this comes at a steep computational price.
In the same vein, the bootstrap estimators show good perform-
ance, but their computational cost is very high. The companion
web site includes average computation time tables for all
experiments and sample sizes. The speed of loo is accept-
able for small sample sizes, but it quickly slows down as the
sample size increases. The timings of cv5 and cv10 equal that
of resubstitution only in the 3NN case, since this is a ‘lazy’
classifier; i.e. no explicit design of the surrogate classifiers
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Fig. 1. Empirical deviation distribution for selected simulations. (a) Synthetic data. Top row: beta fits, n = 20. Middle row: box plots,
n = 20. Bottom row: variance as a function of sample size. (b) Patient data. Top row: beta fits, n = 20. Bottom row: box plots, n = 20.
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has to take place. The bootstrap estimators benefit far less
from this, because in their case, resampling produces no data
reduction. As expected, cv10r takes about 10 times longer to
compute than cv10, in all cases. Except in the case of CART,
with small sample sizes, the bootstrap estimators take longer
to compute than cv10r. Overall, cv10r, bbc and b632 are very
slow compared to the other estimators. In a large experiment
with thousands of genes, where hundreds of thousands of gene
subsets have to be considered for feature extraction, repeated
cross-validation and bootstrap estimation, as well as leave-
one-out if many samples are considered at a time, can be
impractical.

The bottom row of Figure 1a displays the variance of the
empirical deviation distribution, plotted as a function of the
sample size (analogous mean and RMS curves can be accessed
on the companion web site). These curves confirm the facts
that resubstitution and the bootstrap estimators have smaller
variances than cross-validation estimators, and the discrep-
ancy increases as the sample size becomes smaller. Note that
for all cross-validation estimators, the slope of the curves
becomes very steep for small sample sizes, indicating rap-
idly degenerating performance in that case. By analyzing the
slopes, we can also determine the approximate sample size
beyond which there is no considerable additional improve-
ment in variance. This happens for cross-validation around
n = 100, whereas for resubstitution and the bootstrap estim-
ators, this value is smaller in the case of 3NN, and much
smaller in the case of CART. Note, however, that bias is not
taken into consideration in this analysis, which in practice will
increase the number of samples needed by resubstitution and
the bootstrap estimators. Note also that LDA is the case in
which the variance curves are most similar; i.e. LDA is the
classification rule that is the most insensitive to the choice of
error estimator.

4.3 Simulation based on patient data
To support the preceding findings, we have conducted sim-
ulations based on real patient data. These data come from
a recently published microarray-based cancer classification
study (van de Vijver et al., 2002), which analyzes a large num-
ber of microarrays, prepared with RNA from breast tumor
samples from 295 patients. Using a previously established
70-gene prognosis profile (van’t Veer et al., 2002), a pro-
gnosis signature based on gene-expression is proposed in van
de Vijver et al. (2002), which correlates well with patient
survival data and other existing clinical measures. Of the
295 microarrays, 115 belong to the ‘good-prognosis’ class,
whereas the remaining 180 belong to the ‘poor-prognosis’
class.

Our simulation was set up in the following way. We used
log-ratio gene expression values associated with the top p = 2
and top p = 5 genes, as ranked by a correlation-based
measure, described in van’t Veer et al. (2002). In each
case, 1000 observations of size n = 20 and 40 were drawn

independently from the pool of 295 microarrays. Sampling
was stratified in the sense that half of the sample points
were drawn from each of the two prognosis classes. The
true error for each observation of size n was approximated
by a holdout estimator, whereby the 295 − n sample points
not drawn are used as the test set (a very good approxim-
ation to the true error, given the large test sample). This
allowed us to compute the empirical deviation distribution
for each error estimator, using the three classification rules
(LDA, 3NN and CART), with either p = 2 or 5 genes, which
led to a total of six experiments (per sample size). These
experiments are summarized in a table on the companion
web site.

Note that, as the observations are not independent, there
is a degree of inaccuracy in the computation of the deviation
distribution. However, for sample sizes n = 20 and 40 out of
a pool of 295 sample points, the amount of overlap between
samples will be small: as can be easily computed, for n = 20,
the probability of overlap of 3 or fewer points between any two
given observations is over 95%, with a mean overlap of 1.425
points; for n = 40, the situation degrades a little—the prob-
ability of overlap is over 96% for 9 or fewer sample points,
with a mean overlap of 5.701 sample points. These numbers
mean that, especially with n = 20, the observations are only
weakly dependent, and the resulting empirical deviation dis-
tribution can be considered to be a good approximation to the
true deviation distribution.

Statistics, beta fits, box plots and average timings were com-
puted as previously (complete results being on the companion
web site). We focus here on the case with the two top genes and
n = 20. Figure 1b displays plots of the empirical deviation
distribution, for these three experiments. It can be seen that
the results obtained with the patient data confirm the general
conclusions obtained with the synthetic data.

5 CONCLUSION
By considering the empirical deviation distributions computed
in a large number of simulations using synthetic and real
patient data, we have shown that all cross-validated estim-
ators display undesirable features, such as high variance and
large outliers. These undesirable features tend to worsen as
the complexity of the classification rule increases. The large
outliers produced by cross-validation estimators, especially
the loo estimator, mean that severely inaccurate conclusions
can be reached for a given data set. Even though cv5 and cv10
have been recommended in the literature as improvements
over loo (Hastie et al., 2001), in terms of decreased variance,
whereas cv10r has been recommended as the overall estim-
ator of choice (Kohavi, 1995), we have not been able to verify
a substantial difference in performance among these estimat-
ors. Indeed, the best overall cross-validation estimator appears
to be cv10r, but not by much. Moreover, improvement with
cv10r comes at a steep computational price. We have found
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that the bootstrap estimators, in particular the 0.632 estim-
ator, display the best overall performance; but again, a major
issue with bootstrap estimators is their high computational
cost. Resubstitution, on the other hand, tends to be low-
biased, in some cases severely. It is, however, inexpensive,
and generally displays lower variability than cross-validation.
Any proposed error estimation method must take these points
into consideration to be applicable to small-sample microarray
classification.
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