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|s Default Event Risk
Priced in Corporate Bonds?

Abstract

We identify and estimate the sources of risk that cause corporate bonds to earn an
excess return over default-free bonds. In particular, we estimate the risk premium
associated with a default event. Default is modelled using a jump process with
stochastic intensity. For alarge set of firms, we model the default intensity of each
firm asafunction of common and firm-specific factors. Inthe model, corporate bond
excess returns can be due to risk premiaon factors driving the intensities and due to
a risk premium on the default jump risk. The model is estimated using data on
corporate bond prices for 104 US firms and historical default rate data. We find
significant risk premia on the factors that drive intensities. However, these risk
premia cannot fully explain the size of corporate bond excess returns. Next, we
estimate the size of the default jump risk premium, correcting for possible tax and
liquidity effects. The estimates show that thisevent risk premiumisasignificant and
economically important determinant of excess corporate bond returns,

JEL Codes: E43; G12; G13.
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1 Introduction

Given the extensive literature on risk premiain equity markets, relatively little is known about
expected returns and risk premiain the corporate bond market. Recent empirical evidence by
Eltonet al. (2001) suggeststhat corporate bonds earn an expected excessreturn over default-free
government bonds, even after correcting for the likelihood of default and tax differences. As
shown by Elton et al. (2001), part of this expected excess return is due to the fact that changes
in credit spreads (if no default occurs) are systematic, implying that the risk of these changes
should be priced. Thecurrent empirical literature has, however, neglected the possibility that the
risk associated with the default event itself is (also) priced. Typically, adefault event causes a
jump in bond prices and this jump risk may have arisk premium. Jarrow, Lando, and Yu (JLY,
2001) and Y u (2001) discuss the possible existence of a default jump risk premium, but do not
estimate the size of this premium.

In this paper, we distinguish the risk of credit spread changes, if no default occurs, and the
risk of the default event itself. We use credit spread data of many different firms and historical
default rates to estimate the size of the default jump risk premium, along with the risk prices of
credit spread changes. We show that, in order to fully explain the size of expected excess
corporate bond returns, an economically and statistically significant default jJump risk premium
is necessary, on top of the risk premiathat are due to the risk of credit spread changes.

By estimating the default jump risk premium, this paper essentially tests the assumptions
underlying the conditional diversification hypothesis of JLY (2001). These authors prove that,
if default jumps are conditionally independent across firms and if the economy contains an
infinite number of bonds, default jump risk cannot be priced. Intuitively, in this case the default
jump risk can be fully diversified. Our resultsindicate that default jumps are not conditionally
independent across firms and/or that not enough corporate bonds are traded to fully diversify
default jump risk. A particularly appealing explanation for the existence of a default jump risk
premium is that investors take into account the possibility of a multiple defaults scenario (a
‘contagious defaults scenario).

Themodel that we useis specified according to the Duffie and Singleton (1999) framework.

In these intensity-based models, firms can default at each instant with some probability. In case
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of adefault event, there is a downward jump in the bond price that equals aloss rate times the
bond price just before default. The product of the risk-neutral default intensity and the loss rate
equals the instantaneous credit spread. Like Duffee (1999) and Elton et a. (2001), we assume
a constant loss rate and allow the default intensity to vary stochastically over time. We model
each firm’ sdefault intensity asafunction of alow number of latent common factors and alatent
firm-specific factor. Thisextendsthe analysis of Duffee (1999), who estimates a separate model
for each firm. Asin Duffee (1999), all factors follow sguare-root diffusion processes. We use
a latent factor model, since Collin-Dufresne et al. (2001) show that observable financial and
economic variables cannot explain the correlation of credit spread changes acrossfirms. In line
with empirical evidence provided by Longstaff and Schwartz (1995) and Duffee (1998), the
model also allows for correlation between credit spreads and default-free interest rates, which
are modelled by a two-factor affine model used by Duffie, Pedersen, and Singleton (2001).
Finally, we model the relation between risk-neutral and actual default intensities. The ratio of
the risk-neutral default intensity and the actual intensity defines the jump risk premium, which
we assume to be constant over time.

In total, the model can generate expected excess corporate bond returns in four ways. First,
through the dependence of credit spreads (or, equivalently, default intensities) on default-free
term structure factors. Second, because the risk of common or systematic changes in credit
Spreads acrossfirmsis priced. Third, viaarisk premium on firm-specific credit spread changes,
and, fourth, dueto arisk premium on the default jump.! Empirically, wefind that all theseterms
contributeto the expected excess corporate bond return, except for therisk of firm-specific credit
spread changes.

We use adata set of weekly US corporate bond pricesfor 592 bonds of 104 firms, from 1991
to 2000. All bonds in the data set are rated investment-grade. The estimation methodology
consists of four steps. First, using data on Treasury bond yields, we estimate the two-factor
model for thedefault-freeterm structure using Quasi Maximum Likelihood based onthe Kalman
filter. Second, we estimate the common factor processes that influence corporate bond spreads

of al firms, again using Quasi Maximum Likelihood based on the Kalman filter. Third, the

yu (2001) also provides a decomposition of corporate bond returns, but does not estimate the size of the
components.
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residual bond pricing errors are used to estimate the firm-specific factor for each firm. In the
final step, we use data on historical default rates to estimate the default jump risk premium.

The empirical results are as follows. We estimate a model with two common factors and a
firm-specific factor for each firm. The common factors are statistically significant and reduce
the corporate bond pricing errors. These factors have economically and statistically significant
risk prices, while the risk associated with the firm-specific factors of our model is not priced.
Thus, our results indicate that the market-wide spread risk, represented by movements in the
common factors, ispriced in the corporate bond prices, whereasthe firm-specific risk isnot. We
also find a negative relation between credit spreads and the default-free term structure.

Next we show that, if we would not include adefault jump risk premium in this model, the
model largely overestimates observed default rates, and, therefore, underestimates expected
excess corporate bond returns. Subsequently, we estimate the size of the default jump risk
premium using historical default rate data, and find an economically and statistically large value
for this parameter. For example, the default jump risk premium accounts for about 68% of the
total expected excess return on a 10-year BBB rated corporate bond. If we correct for tax and
liquidity differences between corporate and government bonds, the estimatefor therisk premium
remains economically important and, in most cases, statistically significant.

Our results on the default risk premium are somewhat different from the results on the test
of ‘conditional diversification’ inJLY (2001), who usethe estimates of the Duffee (1999) model.
The main reason for these differences is that JLY (2001) do not use historically observed
cumulative default rates to perform their test, but the cumulative default rates implied by a
Markov model for rating migrations. The observed cumulative default rates are, however, much
lower than these model-implied default rates. Using cumulative default probabilities that are
based on the Markov migration model therefore leads to downward biased estimates of the
default jump risk premium.

We end the paper with an application of our model to the pricing of a n'™to-default swap.
This application highlights the importance of a multiple defaults scenario. Incorporating such
ascenario leads to alarge change in the price for a credit default swap, relative to amode with
independent default events. Finally, we note that another practical application of our model is
that it allows financial institutions to extract actual default probabilities from corporate bond

prices, which is useful for risk management purposes.
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Theremainder of the paper isorganized asfollows. Section 2 introduces the model. Section
3 describes the corporate bond data set. In Section 4, the estimation methodology for the factor
model isoutlined, and the estimation resultsfor the factor model are presented. In Section 5, we
discuss the estimation of the default jump risk premium and present the results, as well as
corrections for tax and liquidity effects. In Section 6 we apply our model to price basket credit
default swaps. Section 7 concludes.

2 A Model for Defaultable Bond Prices

2.1 Modedl Setup

Thefirst part of the model describes default-free interest rates. We assume that US Treasury
bonds cannot default. This part of the model isidentical to the affine model for the default-free
term structure of Duffie, Pedersen, and Singleton (DPS, 1999). The model impliesthefollowing
process for the instantaneous default-free short rate r, under the ‘true’ or ‘actual’ probability

measure P

Grr GFV
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D

dW,
dW, ,

dt+\/Vt

Thismodel allowsfor correlation between the factorsr, and v,. Dai and Singleton (2000) argue
that this is important to obtain an accurate fit of US government bond data. W, , and W, are
independent Brownian motions under the true probability measure P.

We model the risk premiain the government bond market in the same way as DPS: the
Brownian motions Wl,t and VVZ,t under arisk-neutral probability measure Q arerelated to the P-
Brownian motionsthrough dW,, = dw,, + A Vdt and dW, = dW, + A, /vdt. Thisway,
the model is still affine under a risk-neutral probability measure Q. This model leads to an

exponential-affine pricing formulafor bonds that are not subject to default risk
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~log(P(tT)/(T-t) = A(T-t) + D(LT-t)r, + D (LT-v, @)

where P(t,T) isthetimet price of a default-free discount bond maturing at T. The functions
A(),D,(..), and D,[(.,.) satisfy differentia equations that can easily be solved numerically
(Duffie and Kan (1996)). The first argument of the functions D (.,.) and D,(.,.) is a scale
parameter that allows for scaling the short rate r, with a multiplicative constant. This notation
will be useful later. For default-free bonds this scale parameter simply equals one.

AsinDuffieand Singleton (1999), Madan and Unal (1998), and Jarrow and Turnbull (1995),
default is modelled as an unpredictable jump of a conditional Poisson process. The stochastic
intensity of thisjump process at timet under the true probability measure is denoted by h; f , for
firmj, j=1,..,N, and, consequently, the actua default probability inthetimeinterval (t,t +dt) is
equal to hjfdt (for an infinitesimal time change dt). For now, we do not specify whether the
default jJumpsof different firmsareindependent or not (conditional on the default intensity). We
return to thisissue later.

In case of adefault event at timet, there is a downward jump in the bond price equal to L,
timesthe market price of the bond just before the default event. Duffie and Singleton (1999) call
thisthe Recovery of Market Value (RMV) assumption. In line with Duffee (1999) and Elton et
al. (2001), we assume thisloss rate to be constant. We use the same value of 56% for thisloss
rate as Duffee (1999). Below, we will see that, from corporate bond price data only, it is not
possible to separately identify this loss rate and the default intensity.

Assuming the absence of arbitrage opportunities guarantees the existence of an equivalent
martingale measure Q. As noted by JLY (2001), the intensity under this measure, which we
denote hjf, is related to the P-intensity through the risk premium parameter . on the default

jump

h{ = uh} ©)

If the risk associated with default eventsis priced, the parameter p will exceed 1. Although this
risk premium parameter can be time-varying, we assume it to be constant for simplicity.

Inthissetup, Duffieand Singleton (1999) show that, conditional upon no default beforetime
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t, thetimet price V(t, T) of adefaultable zero-coupon bond, issued by firmj and maturing at time
T, isgiven by

.
Vit = E[exp(- [ (r,+h3L)ds)] (@

where EtQ denotesthe Q-expectation conditional upon theinformation set at timet. Formula(4)
shows that, given an appropriate model for the default-free rate r,, it suffices to model the
instantaneous spread, defined as S hjSL , to price defaultable bonds. Given our assumption
that the loss rate L is constant, modelling the credit spreads is equivalent to modelling default
intensities, and we use these two terms interchangeably in this paper.

Given the existing evidence that changes in credit spreads across firms contain systematic
components (see Collin-Dufresne, Goldstein, and Martin (2001) and Elton et a. (2001)), we
model the risk-neutral default intensities as a function of common and firm-specific latent
factors. We use alatent factor model since Collin-Dufresne, Goldstein, and Martin (2001) show
that financial and economic variables cannot explain the correlation structure of credit spreads
across firms. In our model, the risk-neutral default intensity of firm j, j=1,..,N, isafunction of
K common factors F;,, i=1,..,K, and a firm-specific factor G,,, plus two terms that allow for

correlation between spreads and default-free rates

K
_RQ L
St = Nl =0+ Zl:YijFi,t + Gy o+ B+ By )
i=

where the K common factors F, , i=1,..,K, follow independent square-root processes under the

true probability measure P
FraF F F .
dFi,t =15 (6 ‘Fi,t)dt + O \/FTth\/i,t, i=1,..K (6)

and where the N firm-specific factors G,;, j=1...,N, aso follow independent square-root
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processes under P
dG,; = KjG(ejG_Gj,t)dt + GjG\/qujf, j=1,...N @)

Here, the x-parameters are mean-reversion parameters, the 6-parameters represent the
unconditional factor means, and the s-parameters can be interpreted as volatility parameters.?
All Brownian motions are assumed to be independent from each other. The model implies that
credit spreads of firm j areinfluenced by the common factors through the factor loadingsy; . To
alow for correlation between spreads and default-free rates the instantaneous spread is
influenced by the default-free factors through the parameters Br’j and BVJ. Finally, the credit
spreads of each firm are also determined by a firm-specific (or, idiosyncratic) factor. Asin the
default-free model, we assume the market price of factor risk to be proportional to the factor
level; for example, for thecommonfactorswehave d\7\/|f = dV\/if + (o) \/FTt dt, where VVIT
is aBrownian motion under Q, so that the market price of factor risk isequal to (i /o7) |/F;,.
For the firm-specific factors, a completely similar assumption for the risk adjustment is made.

Equations (4)-(7) imply that the corporate bond price V|(t,T) is given by the well-known
exponential-affine function of all factorsin the model (Duffie and Kan (1996)). Thus, the (T-t)-

maturity zero-coupon credit spread Sj(t,T) isan affine function of al factors

ST = ~log(V,(tT)/(T-t) + log(P(t,T))/(T-t) =
K
A(T-1) + 2; B,(T-HF, + C(T-HG, + (8)
(D(1+B,, T-) -D,(L, T-)r, + (D (1+B;, T-t) -D, (L, T-t) +D, (B, T-)V,

rj’ IN
wherethefunctionsA(.), B;;(.), C,(.), D,(.,.), D,(.,.), and D,(.,.) depend on the model parameters
(see, for example, Pearson and Sun (1994) for explicit expressions for these loading functions

in square-root models). Thefunction D (B, ., T-t) appearsin (8) dueto the separate dependence

v,j’

Notall parametersin the processin equation (6) areidentified. In Appendix A we show that theidentification
problem can be solved by normalizing the means of the factors 0, , i=1,..,K.
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of the instantaneous spread on the volatility of the short rate v, viathe parameter f, ;.

In practice, coupon-paying bonds are traded instead of zero-coupon bonds. The prices of
these coupon bonds are simply the sum of the prices of the coupon payments and the notional
payment. Finally, note that, if the number of common factors K is equal to zero, we obtain the

purely firm-specific model that is similar to Duffee (1999).
2.2 Expected Bond Returns and Conditional Diversification

We start with default-free bond returns. Applying Ito’s lemmato the bond price expression in
(2) it follows that

p dP(t,T), _ BT
E [ P(t,T)] = rdt + D(1,T-t)dt 9)

with

A
A

Vv

BGI’I’ BGI’V
01

r

(10)

D@, T) = -(T-[D,(B, T-t) D(B,T-1)]

Vi

For corporate bond returns, the expression is slightly more complicated, because one has to
incorporate the influence of adefault event on the expected return. Using resultsin Yu (2001),
Appendix B derives the following expression for the instantaneous expected return on a

corporate discount bond, in excess over a government bond with the same maturity

K
[ - .2; (T-1) Bi,j(T—t)xiFFLt - (T—t)Cj(T—t)ijGLt N w

(D(L+B,;,t, ) -D(LLT) - (T-OD(B,; . T-HAY, + (M-1) hyL]dt

Equation (11) illustrates that, in total, the model can generate expected excess corporate bond



returnsin four ways. First, because the risk of common or systematic changesin credit spreads
(or, equivalently, default intensity changes) across firmsis priced. Second, viaarisk premium
on firm-specific credit spread changes. Third, through the dependence of credit spread changes
on default-free term structure variables r, and v,. The fourth component isthe risk premium on
the default jJump. Expected bond returns are positively related to the default jJump risk premium
. If the parameter 1 deviates from 1, default jump risk priced.

At thisstageit is appropriate to discuss the * asymptotic equivalence’ resultsof JLY (2001).
They prove that, if one assumes that (i) default events are modelled by a conditional Poisson
process, (ii) the default intensities across firms depend on a set of state variables, (iii) default
processes are independent, conditional on the path of default intensities, (iv) there are a
countably infinite number of firmsin the economy, then the default intensities under the true
probability measure P and the equival ent martingal e measure Q are approximately equal, so that
thereisno risk premium on thedefault jumps (L= 1). LY refer tothisasacase of ‘diversifiable
default risk’. Intuitively, given the conditional independence assumption, default jumps can be
(approximately) diversified away and are, therefore, not priced.

By estimating the default jump risk premium, we can test the assumptions underlying the
conditional diversification hypothesis. Inparticular, JLY mention two reasonswhy default jump
risk could be priced. First, theremay bea(small) possibility that acontagious default event takes
place, inwhich somefirmssimultaneously default. Inthiscase, theasymptotic equivalenceresult
does not hold. Second, it may be that in practice not enough bonds are traded to justify the
assumption of an infinite number of bonds. As noted by JLY, in afinite economy there can be
perturbations to default risk premia, even if the default jumps are conditionally independent.

Itisimportant to notethat both explanationsfor the existence of adefault jump risk premium
can be in line with our model for default events. This is because we do not have to specify
whether the default eventsare conditionally independent or not in order to price corporate bonds.
In our model, default jumps can be independent, conditional upon the intensity process. As an
alternative, the model can also alow for contagious default, if, for example, the common
intensity factors F; , each drive a Poisson jump that triggers default of several firms. In Section
6, we precisely describe how such a contagious default scenario can be incorporated in our

model, and we assess the implications for credit derivative pricing.



3 Description of Data Set

3.1 Data

Data on US-dollar corporate bond prices are taken from the Bloomberg Corporate Bonds
Database (BCBD), that contains mid-quotesfor corporate bond prices. Besidesthese mid-quotes,
the dataset contains for each bond the maturity date, the coupon size and coupon frequency, the
(S&P) rating, the firm’ sindustry sector, and the amount issued. Although the dataare available
on adaily basis, we use weekly observations (i.e., the observation on each Friday) to reduce the
influence of possible measurement errors and stale prices. We collect data from February 22,
1991 until February 18, 2000.

To facilitate the comparison, we restrict ourselvesto the set of 161 firmsthat isanalyzed by
Duffee (1999). Unfortunately, due to missing observations the BCBD does not contain
(sufficient) datafor al 161 firms. We only include afirm in our analysisif there are data on at
least two corporate bonds for at |east 100 weeks, which leaves uswith 104 of the 161 firms. We
only use bonds with constant, semiannua coupon payments, that do not contain any put or call
options, or sinking fund provisions. As in Duffee (1999), observations on bond prices with
remaining maturity lessthan one year are dropped. Also, for agiven firm, weonly include bonds
that have maturities that are more than 6 months apart. If the maturity difference of two bonds
is smaller than 6 months, we keep the most recently issued bond®. More than 80% of the
remaining bondsis senior unsecured. We only include other bonds, such as subordinated bonds,
if this bond has the same rating as the senior unsecured bonds. At the end of the sample period,
al 104 firms are rated investment-grade: 2 AAA-rated firms, 13 AA-rated firms, 51 A-rated
firms, and 31 BBB-rated firms. In the remainder of the paper, we will severa timesrefer to the
rating of afirm. Since our model does not explicitly account for rating migrations, we always
use the rating at the end of the data period.

Table 1, that issimilar to Table 1 of Duffee (1999), contains information on the bond data.
For the median firm, on average 3 different bonds are used to estimate the model, and at 378 of

*This elimination of near-maturity bonds is dightly different from Duffee (1999). His elimination scheme
implies that bonds with maturities of 3.9 and 4.1 years would both be included.
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the 470 weeksin the data at | east two bond prices are observed for this median firm. Also, there
is considerable variation in the bond maturities.

Besides corporate bond price data, we also use Bloomberg data on the 6-month US Treasury
bill, and the most recently issued US Treasury bonds, for the maturities 2, 3, 5, 7, 10, and 30
years. These bonds are typically more liquid than the off-the-run Treasury bonds, see Duffie
(1996). In Section 5, we discuss the issue of liquidity differences between corporate and

government bonds.

3.2 Analysis of Coupon Spreads

To further analyze the corporate bond price data, we provide summary statistics on the coupon
spreads of the corporate bonds. We define the coupon spread asthe difference between theyiel d-
to-maturity on agiven corporate coupon-paying bond, and theyield-to-maturity of adefault-free
bond (i.e., government bond) with the same coupon and maturity. The latter yield-to-maturity
Is not directly available in our data for all maturities and coupon sizes. We use the estimation
results (discussed in Section 4) for the two-factor affine model in equation (1) to calculate the
necessary yield-to-maturities of default-free coupon bonds and the coupon spreads.

There are some bond price observations in the data with coupon spreads that are very likely
incorrect. Therefore, we eliminate observations for which the coupon spread is above 400 basis
points or below -50 basis points, as well as observations that are related to a coupon spread
movement of more than 100 basis pointsin oneweek. Also, we delete the ‘middle’ observation
for observations for which the coupon spread moves more than 50 basis pointsin oneweek, and
again more than 50 basis points in the opposite direction in the next week. This way, we
eliminate 616 of the 140,389 bond price observations.

In Figure 1, we plot the average term structure of the coupon spreads, per rating category”.
The figure shows that, on average, high-rated bonds have alow and slowly increasing spread

term structure, whereas the lower-rated bonds have higher and more steeply increasing spread

“Of course, the coupon spreads of two bonds with different coupon sizes, that are otherwise identical, can be
different. By averaging spreads of bondswithin arating category and maturity class, this effect is averaged out to
alarge extent.
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term structures. In Figure 2, we plot the time-series behaviour of the coupon spreads, averaged
within each rating category. The graph shows that from 1991 to 1998 especially spreads of
lower-rated firmshave declined, thereby decreasing the difference between spreadsof firmswith
different ratings. Due to the Russia/LTCM crisis in the fall of 1998, spreads increased
dramatically, and have remained high since. Figure 2 al so showsthat the difference between the
spread term structures of the different rating categories hasincreased again since the crisis, and
that thereisconsiderabl e correl ation between the spreads of thedifferent rating categories, which

motivates our common factor model.

4 Estimation of Factor Model for Risk-Neutral I ntensities

Our model setup is such that we can estimate it in two parts. First, in this section, we describe
the estimation methodology and results for the model for the risk-neutral intensity hj?. Given
these estimation results, we describe the estimation of the default jump risk premium [ in
Section 5.

4.1 Estimation M ethodology

Similar to Chen and Scott (1995), De Jong (2000), Duan and Simonato (1999), and Duffee
(1999), we use Quasi Maximum Likelihood (QML) based on the Kalman Filter to estimate our
model for therisk-neutral intensity in equations (4)-(7). Asin Duffee (1999) we directly usethe
yield-to-maturities of coupon-paying Treasury and corporate bonds to estimate the parameters.
This avoids using an ad-hoc smoothing method to cal culate zero-coupon interest rates.

In principle, ajoint estimation of all parameters in the model is most efficient. However,
since the number of parametersislarge, we choose to perform estimation in three steps. First,
we estimate the two-factor affine model in equation (1) for the default-free term structure using
the Treasury bill rate and the Treasury bond yields. We use Quasi Maximum Likelihood (QML)
based on the Kalman Filter to estimate the parameters. It is assumed that each interest rate is

observed with ani.i.d. measurement error, that isuncorrel ated with measurement errors of other
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Interest rates. Besides parameter estimates, the Kalman Filter estimation al so givesestimatesfor
the factor values (r,, v,) at all dates’. We refer to the Appendix C for further details on Kalman
Filter QML estimation.

Thisestimation method is Quasi Maximum Likelihood because the conditional distribution
of (r,, v;) conditional upon (r.,, V,,) isnot normal, but the conditional means and variances are
known explicitly (after transforming these state variables, see Appendix C). Moreover, the
conditional variancein thisdistribution depends on the unknown values(r, 4, V;.;), which makes
the QML estimator based on the Kalman Filter strictly speaking inconsistent. Simulation
experiments by Duan and Simonato (1999) and De Jong (2000) show that theinduced biasesare
very small. Consistent parameter estimates can be obtained by using the Efficient Method of
Moments (EMM, Gallant and Tauchen (1996)), combined with the semi-nonparametric (SNP)
method of Gallant and Tauchen (1992). Dai and Singleton (2000) use this method to estimate
affine term structure models. Duffee and Stanton (2000) compare EMM/SNP estimation of
affine term structure models with QML estimation using the Kalman filter. They document
considerable small-sample biases for the EMM/SNP method, and conclude that ‘ for reasonable
sample sizes, the results strongly support the choice of the Kalman filter’.

The second step of our estimation procedure involves the estimation of the parameters that
determine the processes of the common factors F;; and the relation with default-free interest
rates, which is determined by Br’j and Bv,j' Given the parameter estimates for the default-free
term structure model, we use again QML based on the Kalman Filter, which also gives us
estimates for the factor values F;,. In Appendix C we explain how we deal with missing
observations. For this estimation, we assume that bond yields of all firms are measured with
error, and that the yield measurement errors are al independent from each other and i.i.d.
distributed with the same variance. The constant terms o in equation (5) are also estimated in
this step.

To reduce the number of parametersto be estimated in the second step, we restrict the firm-

specific parameters o, B, ;, B, vy -V 10 be constant across firms that have the same credit

®Inthis paper, we always use so-called unsmoothed estimates for the factor values at timet, which meansthat
only information up to time t is used to estimate the factor values.
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rating.® This restriction significantly reduces the number of parameters.” Our model does not
contain rating migrations: if the rating of a firm changes, the factor loading of firm does not
change. For each firm we usetherating at the end of the sample period to determine which factor
loading appliesto thisfirm for the entire sampleperiod. We assumethat thisrating isgood proxy
for the creditworthiness of thefirm throughout the sample. Asshown below, weindeed find that
the factor loadings based on the end-of-sample ratings are systematically different, which is
evidence that our classification indeed picks up differencesin creditworthiness.

Thethird step isthe estimation of the parameters of the firm-specific factors G, j=1,..,104.
Given the parameter estimates obtained in the first two steps, we estimate the parametersin the
firm-specific factor process for each firm j separately, using again QML based on the Kalman
Filter. Again, we assume for each firm that yields are measured with error, where the
measurement errors have constant variance and are independent across yields and over time.

Finally, we repesat the second step and third step of this estimation procedure, where in the
second step we now replace thei.i.d. measurement error assumption by the structureimplied by
the estimated firm-specific factor processes and the measurement error structure that was
assumed in this third step. This way, we explicitly incorporate the presence of firm-specific
factors when estimating the common factor processes. We have analyzed whether applying
another iteration leads to important changes in the parameter estimates, but thisis not the case.

If the common factor values were known and exogenous, we could first regress the spreads
on the common factors, and in a second step use the Kalman filter on the regression residuals
to estimate the firm-specific factors. In our case, the common factors are estimated from spread
dataof all 104 firms, so that the common factor isapproximately exogenousto agiven firm. Our
multi-step estimation strategy can thusbe motivated by thefact that theinfluence of asinglefirm
on the common factor is negligible.

For comparison, we also estimate the model proposed by Duffee (1999), that only contains
firm-specific factors. In this case, step two is skipped in the estimation procedure and the

parameters o, Br’j ,and vaj are estimated along with the parameters of the firm-specific factor.

®Since there are only two AAA rated firms, we treat these two firms as AA rated firms.

"We have also estimated these firm-specific parameters without this restriction. The results for the common
factors and the price of the default jump risk are similar to the results presented in this paper.
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In each estimation step we cal cul ate standard errors and t-ratios for the parameter estimates
(correcting for heteroskedasticity using White (1982)), assuming that the parameters that are
estimated in previous steps are estimated without error. In principle, it is possible to calculate
the standard errors taking into account the previous steps, for instance, by means of
bootstrapping, but thisis excessively time-consuming.

For al square-root processes in the model, we estimate the parameters given the Feller
condition on the parameters. For example, for the common factors, we impose the restriction
2k 07> (cN)? i-1,...K.

4.2 Estimation Results

In Tables 2 and 3, we give summary statistics on the estimation results for the default-free part
of our model.2 Table 2 shows, amongst others, that the estimates for the interest rate risk
premium parameter is negative, which implies that government bonds earn a positive excess
return over the risk-free short rate. Table 3 shows areasonable fit on the Treasury yields. Since
all corporate bondsthat are analyzed have maturitieslarger than 1 year, the pricing errorsfor the
6-month T-bill are not a great concern.

Beforeestimating themodel with common factors, wereplicatetheanalysisof Duffee (1999)
by estimating amodel with firm-specific factors only. This model is obtained by setting K, the
number of common factors, equal to zero in equation (5). The estimation results are given in
Table 4. We report quantiles of the distribution of parameter estimates across firms. These
guantiles give an indication of the accuracy that would result if parameters were assumed to be
constant across firms. The differences with Duffee (1999) are due to asmaller set of firms, and
a different data period and data frequency. Qualitatively, however, the estimates are quite
similar. In particular, as in Duffee (1999), we find a positive estimate for the mean-reversion
parameter (under the real probability measure) KjH , Whereasthe estimate for the mean-reversion

parameter under the risk-neutral measure k' + ;" is negative for most firms. Thisimplies that,

8Asin DPS, to simplify estimation, we first set the mean of the short rate 6, equa to the mean of the 6-month
T-hill rate (which equals 5.20%), and estimate the other parameters. Next, we calculate the average of the fitted
instantaneous short rate, which equals 4.79%. In a second step, we set the mean of the short rate 6, equal to this
average, and re-estimate the other parameters. The average fitted instantaneous short rate hardly changes.
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as spreads increase, the spread term structure is more steeply increasing, which is afeature that
is present in the data. We also find that the market prices of spread risk XJH are negative for
amost al firms. Finaly, we find that the average of the cross-firm correlations of weekly
changesin the firm-specific factorsis 0.318, which shows the positive relation between spread
movements across firms.

Next, we estimate model s with common factors. Using a“ Likelihood Ratio’ test® we end up
with amodel with two common factors. The estimates, reported in Table 5, show that the market
prices of risk of both factors are negative and jointly statistically significant, indicating that
corporate bond investors demand an excess return over the default-free bond returns, to be
compensated for the risk associated with common spread movements.

For the first factor, the estimates for the factor loadings y,; are positive for all three rating
categories (AAA/AA, A, and BBB). Thus, thisfactor causes movementsin credit spreadsin the
same direction for al firms. This first factor has very slow mean-reversion under the real
probability measure, and istrending under therisk-neutral measure. Thisimpliesthat theloading
function B,(T-t) in equation (8) is increasing with maturity (T-t). Other results, which are not
presented here, show that this first common factor has the highest values during and after the
RussialLTCM crisis, to account for the higher and steeper spread term structures during this
period.

For the second factor, the estimates for the factor loadingsy,; are again positive for all three
rating categories. Thisfactor also represents movementsin credit spreads of amost al firmsin
the samedirection. Thefactor has somewhat stronger mean-reversion under the true probability
measure than the first factor, and is still mean-reverting under the risk-neutral measure.
Therefore, the loading function B,;(T-t) is decreasing in maturity, so that the second factor
mostly influences short-maturity spreads.

For both factors, lower-rated firms are more sensitive to the common factors than high-rated
firms. The explanation for thisresult is twofold. First, spread term structures are more steeply
increasing for lower ratings, and, second, spreadsaremorevolatilefor lower-rated firms. Indeed,

ahigher value for y;; both implies steeper spread term structures (especially for the first factor)

°For this Likelihood Ratio test, we neglect the non-normality of the factor changes and use a normal
approximation for these changes.
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and more volatile spreads. Thefirst effect is shown in Figure 3, where we plot the average term
structures of zero-spreads, as implied by the two-factor model.

In line with results by Longstaff and Schwartz (1995), and Duffee (1998, 1999), thereisa
negative correl ation between spreadsand default-freeratesfor firmsin all threerating categories.
However, the explained variation is small, and the estimates are mostly insignificant. For
example, an increase in the default-free short rate of 100 basis points implies on average a
decrease in the instantaneous spread of 4.5 basis points for a BBB rated firm, ceteris paribus.

Other results, which are not presented here, show that changes in the common intensity
factorsarenegatively related to equity returns, and positively to changesin equity volatility. This
is in line with results by Longstaff and Schwartz (1995), Kwan (1996), Duffee (1999), and
Collin-Dufresne, Goldstein, and Martin (2001).

In Table 6 we present the estimation results for the parameters in the firm-specific factor
processes. Most strikingly, the market price of the risk associated with movementsin the firm-
specific factorsis close to zero for the median firm. Thisisin contrast with the results for the
model without common factorsin Table 4, where we found large market prices of risk for the
firm-specific factors. Thus, after correcting for market-wide spread risk by including two
common factors, the remaining firm-specific movementsin spreads are hardly priced. Thisisin
line with most equity pricing models, where idiosyncratic or firm-specific movementsin stock
prices are not priced, and only the covariances of the stock return with the common factors
determine expected returns.

To verify that the firm-specific factors are really firm-specific, we calculate the cross-firm
correlations of weekly changes in these firm-specific factors. The average of these cross-firm
correlations is 0.087, which is much lower than 0.318, the average cross-firm correlation that

was found for the model without common factors.

4.3 Corporate Bond Pricing Errors

Next, we analyze how well the common factor modd fits the observed coupon bond prices, by
comparing the observed yield-to-maturity of the coupon bondswith the model-implied yield-to-
maturity. We distinguish three models: (i) amodel with only firm-specific factors, (ii) amodel
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with two common factors only and no firm-specific factors, and (iii) the model with both two
common factorsand firm-specific factors. Moddl (ii) isincluded to show therelativeimportance
of the common and firm-specific factors.

In Table 7 we present results on the fit. All three models give a reasonable fit on the bond
yields for most firms. The two-factor model with firm-specific factors gives a mean absolute
yield error of 9.11 basis points for the median firm, which isin the same order of magnitude as
the fit on the Treasury bonds. Thismodel has the best fit, which makes sense, since this model
nests the two other models. To compare the pricing results with Duffee (1999), we also report
the root mean squared yield errors (RMSE). These numbers are dlightly larger than in Duffee
(1999): he reports a median RM SE of 9.83 basis points, while we find for our dataset amedian
RM SE equal to 13.49 basis pointsfor the purely firm-specific model, and 12.89 basis pointsfor
the common and firm-specific factor model. One explanation for thisdifference could bethefact
that our data period includes the Russia/lLTCM crisis, as it turns out that the yield errors are
largest in this period for al models. Table 7 also shows that the model with only two common
factors (and no firm-specific factors) already gives areasonable fit of the coupon bond yields,

although this model has much less parameters than the purely firm-specific model.

5 Estimation of the Default Jump Risk Premium

5.1 Estimation M ethodology

Giventhat we have estimated the processfor therisk-neutral default intensity, wedescribeinthis
section how we estimate the risk premium of the default jJump p. The estimation procedure is
based on the following result for the actual probability pj,t(n, W) that afirm defaults within the

next n years, conditional upon that no default has occurred yet

t+n t+np Q
i) = 1 - Efea(- [hyds)] = 1 - B fexp(- [~ =ds) (12)
t

t
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Given the affine process for hjf, this probability is an explicit function of the risk premium .
A higher value for p leads to lower model-implied default probabilities under the actual
probability measure. Theexpectationin (12) can explicitly becal cul ated becausethe processfor hjf
is affine. Notice that, because we assumed constant parameters for firms that have the same
rating at the end of the sample, the model-implied default probabilities are the same for these
firms. We therefore denote the default probability of a, say, A-rated firm by p, (n,1).
Theprobabilitiesin (12) depend on the current factor values. To obtain the average over time
of the model-implied cumulative default probabilities, we calcul ate (12) using the factor values
at each week in the sample and take the time series average.® We denote the resulting
probabilities pRating(n, W) . These cumulative default probabilities can be easily transformed into
yearly conditional default probabilities. The latter probability is defined as the probability of

default event in the next year, conditional upon having survived for n years, and equals

1- pRating(n+l’ U)
1- pRati ng(n' u)

ORating(M/H) = 1 - (13)
This model-implied conditional default probability is a decreasing function of p. For example,
if the risk-neutral default intensity is constant at hR(gting, it is easy to see that
OrargMH) = 1~ XP(Neging/ 1)

By confronting (13) with actual default rates, i1 can be estimated. Both Moody’s and
Standard & Poor’ s provide average cumulative default rates per rating category. These default
rates are averages of cumulative default rates of cohorts of firms that are formed each year.
Giventhat our dataon credit spreads start in 1991 and end in 2000, onewould ideally use default
rates on the cohort that startsin 1991 up to the cohort starting in 2000. However, since defaults
do not occur frequently, one needs a relatively long period to reliably estimate default
probabilities. For example, inthe 1991-2000 period, default ratesarelow relativeto the seventies
and eighties. Using the 1991-2000 period would lead to very high estimatesfor therisk premium
u. Moreover, if one would use default rate data for the 1991-2000 period, cumulative default

Oas opposed to using thistime series average, we could have used the unconditional expectation of (12) for
estimation of . Since the average fitted factor values are mostly lower than their unconditional mean, this would
most likely lead to higher estimates for .
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rates for more than a 10-year period cannot be used, while the long-maturity bonds provide
information on these long-term default rates. Therefore, we use alonger data period to obtain
historical default rates. Of course, this has the disadvantage that the credit spread data and the
default rate data are not entirely based on the same sample period. From an econometric
viewpoint the use of two partly overlapping data periods is not a problem, since our estimation
is based on unconditional moment conditions (see below) and the assumption of stationarity.
For the estimation of p we both use S& P and Moody' s data. The S& P default rate data are
based on cohorts starting in 1981 up to 2000.** For comparison, we also perform an estimation
based on Moody’ s data, which are based on the 1970-2000 period.*? We use cumul ative default
rates from 1 year up to 15 years. We do not use longer horizonsfor two reasons. First, Standard
& Poor’ sdoes not provide default rate datafor longer horizons, and, second, Table 1 showsthat
for the median firm the maximum maturity of the fitted bondsis 15.0 years. For both data sets
we convert the cumulative default ratesinto yearly conditional default rates qF'fai‘,-tﬁg(n) . Next, we
estimate g by minimizing the sum of squared differences between the model-implied and

observed conditional default probabilities

14
min Y Y Oraing™H) - Graing(M)’ (14)
Rating=AA,A,B n=0
over W. In Appendix D we describe the procedure for calculation of the standard error of the

estimate for .
5.2 Estimation Results

InFigures4a-c weillustrate what theinfluence of therisk premium p ison default probabilities.
These figures plot yearly conditional default probabilities for different rating categories. In all
graphs, the upper line ('Q-Prob’) depicts the risk-neutral default probabilities under the

risk-neutral probability measure. These are calculated in the same way asin equations (12) and

MSee Standard & Poor’s special report (2001).

25eeM oody’ s special comment (2001). Here we assume that the Moody’ s and S& P ratings are the same.
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(13), taking 1 equal to one and using the risk-neutral measure Q instead of the actual probability
measure Pfor cal cul ating the expectation. Theline'P-prob, mu=1' showswhat themodel implies
for actual default probabilities, assuming that there is no risk-premium on the default jump
(u=1). The difference between these actual default probabilities and the risk-neutral default
probabilities is completely caused by the risk premia on the factors that drive the default
intensities. This is because the presence of risk premia on these factors implies that the
expectation of the path of the default intensity under Q differs from the expectation under P.

Figures 4a-c also contain the empirical yearly conditional default rates based on S& P data
from 1981-2000. Clearly, these default rates are well below the default probabilitiesimplied by
amodel with no risk premium on the default jump. In other words, allowing for risk premiaon
theintensity factorsonly isnot enough to match the default probabilitiesthat are observed in the
data: it leadsto overestimation of default probabilities.

Next, we estimate the risk premium on the default jump p using equation (14). Table 8
showsthat this gives an estimate of 5.83 in case of the S& P dataand 5.55 based on the Moody's
data. Both estimates are statistically significantly different from 1. In Figures 4a-c it is shown
that including arisk premium on the default jJump gives a much better description of observed
default rates (as shown by the lines 'P-prob: mu*").

The size of the estimate for p is also economically significant. In effect, investors multiply
the actual default probability with afactor of amost 6 when pricing corporate bonds (using the
risk-neutral probability measure). Theimportanceof therisk premium pisalso highlighted when
looking at the decomposition of excess corporate bond returns proposed in equation (11), as
shown in Figure 5a. This figure shows that, for BBB bonds, the default jump risk premium
causes an excess return of 0.62% per year. For a 10-year bond, this is about 68% of the total
excess corporate bond return. Of the other components of the corporate bond excess return, the
risk premia on the common factor risk and the relation with default-free rates are most
influential. Since credit spreads are negatively related to default-freerates, they provideapartia
hedge against interest rate risk, which lowers expected corporate bond returns. As noted in

Section 4, the risk premium associated with firm-specific credit spread movements is small.
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Similar results are obtained for the other rating categories.™

JLY (2001) usethe estimates of Duffee (1999) model to compare the model-implied default
probabilities, with pu=1, with default probabilitiesthat areimplied by aMarkov migration model
with aone-year Moody’ smigration probability matrix. It turnsout that the historically estimated
cumulative default rates, as used in this paper, are much lower than the cumulative default rates
implied by thisMarkov model for rating migrations. Thisisevidence against the assumption that
rating migrations are independent over time, asis assumed in the Markov migration model. It
alsoimpliesthat using the Markov migration model leadsto adownward biasin the estimatefor
H. Furthermore, JLY (2001) find that the shape of the conditional default probabilities, as
implied by the intensity model, is much flatter than the shape of the conditional default
probabilities implied by the Markov migration model. Figures 4a-c show that, if one uses the
cumulative default ratesthat are directly observed in the data, these shape differences disappear

to alarge extent.

5.3 Tax and Liquidity Effects

As documented by Elton et al. (2001), there are tax differences between corporate and
government bonds: coupons on corporate bonds are subject to state taxes, while government
bond coupons are not. This may partially explain the size of credit spreads and corporate bond
returns. In Appendix E we show how this tax effect can be incorporated in the intensity-based
pricing model. Elton et al. (2001) estimate the effective tax rate to be 4.875%. Using this tax
rate, we re-estimate the intensity-based pricing model and the default jump risk premium for the
tax-corrected bond prices. In Table 8 we report the resulting estimates for the risk premium L.
As expected, including the tax effect leadsto alower estimate for |, since part of the observed
sizeof credit spreadsisnow dueto atax effect instead of arisk-neutral default intensity. A lower
risk-neutral default intensity impliesthat alower valuefor u is necessary to match the observed

default probabilities. Thisisillustrated in Figures4a-c, wherewedepict the tax-corrected default

Ve have also estimated the default jump risk premium using Duffee’'s model with no common factors to
model intensities. In this case, the estimatefor the default jump risk premiumisof similar sizeasreportedin Table
8. The advantage of our common factor model over Duffee’ smodel isthat it provides adecomposition of thetotal
risk premium on the risk of intensity changes into common and firm-specific risk.
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probabilities if there is no default jJump risk premium (‘ P-prob: mu=1, tax correction’). Still,
evenif wecorrect for taxes, ignoring arisk premium on the default jump leadsto overestimation
of default probabilities. Thus, in case of atax correction the estimates for p are still well above
1, asshownin Table 8.

Next, we allow for the presence of aliquidity component in credit spreads. Chakravarty and
Sarkar (1999) show that bid-ask spreads of US corporate bonds are typically larger than of
government bonds. Part of the spread between corporate and government bond prices may
therefore bealiquidity premium. Following Duffieand Singleton (1999), to account for liquidity
differencesaliquidity spread v can beincluded to obtain aliquidity-adjusted instantaneous credit
Spread Sy =V + hjSL. For simplicity we assume this spread v to be constant over time and
acrossfirmsand re-estimate the model. Because the liquidity spread is constant, we do not have
re-estimatethe entire corporate bond pricing model, sincethemodel for hff L containsaconstant
term that can be adjusted for the presence of v. We then estimate v a ong with the risk premium
U, by minimizing (14) over both v and .

Table 8 givesthe resulting parameter estimates. If no tax correction is applied, the estimate
for the liquidity spread equals 32 basis points (S& P data) or 41 basis points (Moody’ s data). If
we correct for atax effect, these estimates go down to 17 or 18 basis points, respectively. In all
cases, the estimate for the risk premium [ is larger than 1. This estimate remains statistically
significantly different from 1 in case of the S& P data, but not for the Moody’ s data.

In Figure 6b, we again provide a decomposition of excess corporate bond returns for BBB
rated firms, now including the tax correction and the estimated liquidity spread. The three most
important components of the corporate bond excess return are the tax effect, therisk premiaon
commonintensity factors, and therisk premium on the default jJump. Similar resultsare obtained
for firms with other ratings.

JLY (2001) correct for the presence of taxes and liquidity differences by calculating credit
spreads against the AAA yield curve. By assuming a liquidity spread that is constant across
firms, we obtain asimilar effect, since in this case the risk premium p is essentially estimated

from the differences across firms with different ratings.
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6 Pricing a Basket Credit Derivative

An interesting application of our multi-firm model is to look at the pricing of basket credit
derivatives. For these basket credit derivatives, whose payoffs depend on default events of
several firms, ajoint model for default events of several firmsisnecessary. Weillustrate this by
pricing a particular basket credit derivative: the n™-to-default swap.

Themost common examplesof then™-to-default swap arethefirst-to-default swap (n=1) and
the second-to-default swap (n=2). In case of a first-to-default swap, the buyer of the swap
periodically pays a fixed amount to the seller, up to a maturity date. In return, the swap-seller
pays an amount to the buyer the first time that a bond in a given portfolio of bonds of different
issuers defaults, if this default occurs before the maturity date. The size of this payment is
typically the loss in market value on the defaulting bond. In case of further defaults no other
payments are made. In case of the second-to-default swap, only the loss on the second bond that
goesinto default iscompensated; the buyer isnot compensated for thefirst defaulting bond. The
n"-to-default swap is defined in asimilar way. These instruments can be used by institutions to
hedge the default risk of a portfolio of corporate bonds.

Clearly, the price of the n™-to-default swap depends on thejoint distribution of default events
of the different firms in the portfolio. For example, the price of the first-to-default swap is
sensitive to the (risk-neutral) probability that the minimum of the default times of the different
firmsis smaller than the maturity date. In this case, a positive correlation between the default
times of different firms gives alower price for the first-to-default swap than zero or negative
correlation between these default times.

In Section 2 we noted that in the intensity-model of equations (4)-(7) it is not necessary to
specify whether the default jumps are independent or not. In the previous section, we have
provided evidence that thereis arisk premium on the jump risk associated with a default event.
Asindicated in Section 2, one explanation for thisrisk premium isthe existence of acontagious
default scenario. Therefore, we consider in this section two model sthat have the same processes
for the default intensities, but have adifferent specification of the dependence of default jumps.

In the first model default jumps are assumed to be conditionally independent. In this case,

al unconditional correlation between the default times of different firms is generated by
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correlation between the intensity processes of the different firms. In the second model, we
assume that the common intensity factors each drive a Poisson jump that triggers default of
several firmswith some probability, depending on the firm’ sfactor loading. More precisely, we
define amodified intensity factor Ifi,t = (Yan +7¥a* Yogs) Fip» Where v 00 refersto the factor
loading of firmj. The sensitivity of firmj to thismodified factor equal's Ygq0y/ (Vaa * YA * Vegg)
which is by construction between 0 and 1. We assume that the intensity factor F;, drives a
Poisson jump process. If there is a jump in this common process, firm j will default with
probability YRating(j)/(YAA +Y, +¥geg) - Next tothiscontagiousdefault event, firmscan al so default
due to ajump in the process driven by the firm-specific default intensity G, .** Naturally, these
default jumps are assumed to be independent across firms. The total default intensity for firm
] isthen given by equation (5). For simplicity, we neglect the correlation between the default
intensity and default-free interest rates in both models (i.e., we set B = By = 0).

We focus on pricing a n-to-default swap with 3 years maturity. The bond portfolio is an
equally weighted portfolio of 15-year maturity coupon bonds. The portfolio includes bonds of
30 different firms, with 10 firms per rating category (AA, A, BBB). The coupon of each bond
is chosen such that the bond trades at par at the initial date. At the time of the n™ default event,
the payoff isequal to theloss in market value on the defaulting bond, in line with the Recovery
of Market Value assumption. As before, we use a constant 1oss rate of 56%.

We use simulation to price the instrument. The factor processes under the risk-neutral
measure Q in equations (5)-(7) are discretized using the Eul er discretization, from which we can
simulate movementsin instantaneous interest rates and intensities over time. At each time-step,
we simulate a Poisson jump for each firm (and the common Poisson jumps), using asimulation
methodol ogy outlined by Duffieand Singleton (1998). We cal cul ate the discounted payoff of the
n"-to-default swap in each simulation step. The resulting price could thereafter be converted to
aseries of periodic payments.

In Figure 6, the resulting prices are plotted, for n=1,..,20. The independent-default model
gives the highest prices for first-, second-, and third-to-default swaps, whereas the contagious
default model gives the highest prices for the other n-to-default swaps. By construction, the

contagious default model generates higher correlation between default times of different firms

“The constant o is assumed to be part of the firm-specific intensity.
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than the independent default model. Therefore, for the latter model the probability that alarge
number of firms defaults before maturity issmaller, leading to lower pricesfor the n'™-to-default
swap if nislarge. In contrast, if nissmall, higher correlation between default times lowersthe
price of the default swap, which explains why the contagious default model gives the lowest
pricesfor small n.

Summarizing, Figure 6 shows that prices of n"-to-default swaps are very sensitive to
assumptions on the dependence of default jumps. Although we have provided some evidencein
this paper that a contagious default scenario is of importance in pricing corporate bonds, more
work is needed to determine what degree of default dependence gives arealistic description of
reality. Clearly, thisisimportant for pricing basket credit derivatives.

7 Concluding Remarks

In this paper, we have looked at different sources of risk in the corporate bond market. Themain
contribution of this paper is that we estimate the size of the risk premium associated with the
jumpin pricesin case of adefault event. Thisrisk premium turnsout to explain asignificant part
of corporate bond returns, even when tax and liquidity effectsareincluded. Thisisevidencethat
default jJump risk can not be fully diversified. There are, at least, two explanations for this
imperfect diversification. The first is that not enough bonds are traded to obtain full
diversification of independent default jumps. Second, it may be that default jumps are not
(conditionally) independent. This could be the caseif there is a possibility of multiple defaults
at the same point in time (‘ contagious default scenario’).

There are several extensions to the analysisin this paper. First, whilein this paper we have
focussed on estimating the size of the default jump risk premium, it would be interesting to see
whether utility-based model swith standard preferences can explainthe size of thisrisk premium
(see Karoui and Martellini (2001)). Another extension would be to include high-yield bondsin
the analysis. Finally, Duffie, Pedersen, and Singleton (2000) and Keswani (1999) study the
pricing of defaultable sovereign debt with reduced-form default models. The model inthis paper

can be used to analyze the joint behaviour of spreads of sovereign debt of many countries.
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Appendix A: Parameter |dentification

From Duffee (1999) and DPS (2000) it followsthat all parametersrel ated to the default-free and
firm-specific factors can be identified. In this appendix, we anayze which parameters in the
common factor processes can be identified. In equation (5) it is shown that the contribution of
the common factor i to the instantaneous spread of firmj isgiven by F_i,j,t = %;;Fi,- Theprocess

of F_LLt under the risk-neutral measure Q is given by

dF,, = (K 0 - (] +ADF, )t + Jy of fF, "

it

it i=1,.. K (A.D

The processunder thetrue probability measureis, heuristically speaking, obtained by removing xf
from equation (A.1) and repl acing the Q-Brownian motion VVIT with aP-Brownian motion V\/i,f .
Besides the constant o, the identifiable parameters are the parametersin the processes under P
and Q, which arethusgiven by thefour reduced-form parameters (y, i KiF OiF , KiF , KiF + kiF, Yij oiF ).
Thesefour reduced-form parametersareafunction of fivestructural parameters. For another firm
ktheidentifiableparametersare (v, 6;, &, 1§ +A[, /¥;.0; ). Itthenfollowsthat, besides x|
and xf , itisnot possibleto recover the remaining structural parameters from the reduced form
parameter estimates, and that normalizing OiF, i=1,..,K, solvesthisidentification problem (other

normalizations are also possible). We normalize eiF to 50 basis points.

Appendix B: Expected Corporate Bond Returns

In this appendix, we derive the expression for the instantaneous expected excess return on a
corporate bond. The derivation is based on Yu (2001).

First, we neglect for amoment the possibility of adefault event. In this case, we can apply
Ito’s lemma (without ajump correction) to equation (4), using the fact that the model impliesa
standard exponential-affine pricing relation for corporate bonds. This gives for the expected

return in case of no default
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with D(B;,t, T) defined in equation (10).

Of course, equetion (B.1) neglectsthelossin caseof default events. Inasmall timeinterva (t,t+At)
the default probability under the true probability measure P approximately equals h; ,fAt andthe
loss in case of default equals L - \% (t-,T). Then, the expected return over the next time interval

approximately equals (normalized by the time interval)

(1-h;AYE] Ino default] + (h; At)(-L)
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This expression becomes exact if we let At - 0, which gives us the instantaneous expected

return
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r

The excess return over a default-free bond (with the same maturity) is obtained by subtracting
the expected return in (9) from the expression in (B.3). Using that s, = hj?L and the risk

premium assumption in (3), we obtain equation (11).

Appendix C: Kalman Filter Setup

In thisappendix, we briefly describe the general setup for the extended Kalman filter estimation
of affine bond pricing models. This setup applies both to the estimation of the default-freeterm
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structure model and to the estimation of the common factor intensity model. We therefore use
ageneral notation that is unrelated to the notation in the main text. Let F, be a K-dimensional

vector that satisfies the following process under the actual probability measure
dF, = A(® - F)dt + Z(o+BF)g dW, (C.1)

Here A,Z, and B are K by K matrices, 6 and a are K-dimensional vectors, and W, is a K-
dimensional vector of independent Brownian motions. The term (o, +B/Ft)é’2 is defined as a
diagonal matrix with as diagona elements the square-root of the elements of the vector
(@ +BF).

Without loss of generality we can assumethe matrix A to bediagonal, A = diag(ic,...,x,) -
In other words, one can transform each affine model into a model with diagonal A, by rotating
the factors. This appliesin particular to the default-free term structure model in equation (1).

De Jong (2000) derivesthe conditional expectationsand (co)variancesfor thefactors, which

we repeat for convenience

-x:h
E[F  .nF] = 6, + e "(F,-6)

Qij(Ft) = COV[Fi,uh’ Fj,t+h|Ft] - (C.2)
~(x;+1;)h K -Kk.h —(x; +x;)h
l-e ™7 e “-e
——(a;+ bij(e) + by (Fy =6y
K+ I N L

where [Zdiag(o + B/X) Z*Jij =t bij/x. This gives us the following transition equation for the

state-space model

Ft+h =0 + eiAh(Ft_e) * Niape Vt(nt+h) = Q(Ft) (C3)

The second part of a state-space model is the measurement equation. Similar to Duffee

(1999), we haveyields on coupon-paying bonds as observations, both in case of the default-free
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mode! and in case of the intensity model. Let Y, denote a N-dimensional vector with the
observedyieldsat timet. In case of the default-free model, thisvector containsall Treasury bond
yields, whilefor theintensity model thisvector containsall observed corporate bond yields. The

measurement equation for Y, isthen given by

Yo = AF) * e Ve = H, (C4

Here z(F,.,) is afunction that relates the yields to the factors and ¢, is a zero-expectation

measurement error that is uncorrelated with F, . Thefunction z(F,.,) would be affineif zero-

t+h"
coupon yields are used. Since we use coupon-yields, this function is nonlinear. Asin Duffee
(1999), in order to linearize the model, we use a Taylor approximation of this function around
the one-period forecast of F, , .

In case of the default-free model, we assume that the covariance matrix of the measurement
error ¢, isadiagonal matrix that is constant over time, H, = diag(cfyl,...,ci,\l) .Asexplained in
the main text, we estimate the common factor model for the intensity process twice. In thefirst
estimation, we assume H, = o-l,. After this first estimation the firm-specific factors are
estimated. Thisestimation of thefirm-specific factor processesisbased theresiduals ¢, fromthe
common factor model. For each firm, weformul ate astate-space model for theseresidualsinthe
same way as outlined above. Given the estimation results for the firm-specific factors, we re-
estimate the common factor model, now using a block-diagonal structure for H,, where each
block relatesto all corporate bond yields of asingle firm. Measurement errors of yields across
firms are assumed to be uncorrelated. For the covariance matrix of the measurement errors of
the yields of a single firm we use the conditional covariance matrix of yield errors V (e, )
implied by the estimates for the firm-specific factor process of this firm.

An important issue when estimating the common factors in the intensity model is the
presence of missing observations. At eachweek, not al corporatebondyieldsare observed. Still,
we always observe some corporate yields in the data each week. Therefore, to construct the
likelihood contribution for each week, we use al available observations for that week. For the
estimation of the firm-specific factorsthe treatment of missing observationsisdifferent because
in this case there are weeks with no observations at all for asinglefirm. Therefore, asin Duffee

(1999), we let the length of the time interval h vary over timein this case.
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Inall cases, we assumethat all factorsfollow stationary processes under the true probability
measure, so that we can use the unconditional expectation and (co)variances of the factorsto
initiate the Kalman filter. We refer to De Jong (2000) for all equations in the Kalman filter

recursion.

Appendix D: Calculation of Standard Error of Default

Jump Risk Premium

To obtain a standard error on the estimate for 1, we ignore, as before, estimation error for the
parameters estimated in al previous steps. We thus treat the model-implied probability

Orating(N:H) @ @ deterministic function. Next, we calculate the variances of the observed

conditional default rates q%?itﬁg(n), by assuming for simplicity that in each year defaults are

independently generated from a binomial distribution with probability q%i-tﬁg(n). S&P and
Moody’ sreport the number of firms per cohort (and per rating category), and we sum these over
al cohorts that are relevant for the particular default probability. For example, for the default

probability in the first year, q%?itﬁg(O), we take the sum over all cohorts, while for the 14-year

conditional default probability q%ﬁﬁg(l@ , we only sum over the cohorts starting in 1981 up to
1986 in case of the S& P data, and over the cohorts starting in 1971 up to 1986 in case of the
Moody’s data. Together with the assumption of the binomial distribution and the associated
observed default rate, the variance of this default probability estimate can be determined as
quﬁth(n) 1 - qu?nZ(n)) I Negings Where N, is the total number of firms in all yearly
cohorts of agiven rating category.

A more difficult issueisthe correlation between the observed default rates. Clearly, thereis
alargeoverlap for the conditional default rates qF'fai‘,-tﬁg(n) acrosstheconditioning period n, within
the same rating category. For example, alarge fraction of the firmsin the AA-cohort that starts
in, say, 1982, will aso be present in the AA-cohort that startsin 1983. To be conservative, we
assume perfect correl ation between the estimated default rates for different n within each rating
category. We assume zero correlation between the estimated default rates across rating

categories. Given these assumptions, we can calculatethefull covariance matrix Wof the default
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rates qF'fai‘,-tﬁg(n) acrossrating categories and conditioning periodsn. Since our estimation method

isthefirst step of the Generalized M ethod of Moments (Hansen (1982)), the asymptotic variance
of the estimator for p isgiven by

oq(k)’ 9a(K)y-1 9a(k)’ \,, 9a() (W)’ 3a(K)y 1,
( o au) o W o ( o 8u) e (D-1)

where Wisthe estimated covariance matrix of the (S& P or Moody’ s) default rates and the vector
A1) i efined as (Guu(O1).--., Ga(14,12), Ap(O,1),--+, U (14,1), OO0, G (1410)) .

Appendix E: Tax Correction on Corporate Bond Prices

Asindicated by Elton et al. (2001), coupon payments on corporate bonds are subject to state
taxes, whereas government bond coupons are not. In this appendix, we work out the correction
for thistax effect in the intensity-based framework. As before, we assume recovery of market
value at the default event date.

Denote t, the state tax rate and t, the federal tax rate. As shown by Elton et al. (2001), the
effective tax rate is t(1-t,), which we denote 1. This tax rate changes the corporate bond price
intwo ways. First, it changes the net coupon payment in case no default occurs. If we denote the
coupon size C, the net coupon payment is (1-7)C. Second, there isatax recovery on the default
loss if the firm defaults, which changes the loss rate to (1-r)L. We assume that this |oss rate
applies to the net coupon payments. This leads to the following valuation equation for a
corporate bond that has n coupon payments and associated payment dates T,,..., T,

n T
V(tTn) = (1-nCY. EtQ[exp(—f(rs+hj§(1—r)L)ds)] ¥
L (1)
EClexp(- [ (g +hS(1-7)L)ds)]
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Table 1. Summary Statistics Corporate Bond Data.

Summary statistics on weekly observations for corporate bond prices from February 22, 1991 until February
18, 2000, for 592 bonds of 104 firms. Therow ‘Weeks of data’ containsthe number of weeksfor which at |east
two bond prices are observed for a given firm. ‘Mean number of fitted bonds' contains the mean number of
bonds fitted per week, conditional upon two bond prices observed at this week.

Across 104 firms

Firm-level statistic Minimum Median Maximum
Weeks of data 100 378 470
Mean number of fitted bonds per week 2.0 3.0 8.0
Mean years to maturity of fitted bonds 2.6 7.7 22.9
Minimum years to maturity of fitted bonds 1.0 1.0 11.8
M aximum years to maturity of fitted bonds 4.7 15.0 50.0
Mean coupon of fitted bonds 5.8 7.6 10.1

Table 2. Kalman Filter Estimates of Two-Factor Affine Model for Default-Free
Rates.

Using QML based on the Kalman Filter, the two-factor affine model in equation (1) is estimated using weekly
data on the 6-month T-bill rate and Treasury bond yields with maturities of 2, 3, 5, 10 and 30 years. It is

assumed that all interest rates are observed with i.i.d. measurement errors independent across instruments.
Standard errors are corrected for heteroskedasticity using White (1982).

Parameter Estimate Standard Error

Ky 0.0330 0.0444
Kyr -0.0002 0.0011
K, 0.4018 0.0712
0, 19.149 20.461
6, 0.0479 -

Oyr 0.0013 0.0010
o 0.0020 0.0012
A, -0.0298 0.0799

A -0.1163 0.0432




Table 3. Fit of Two-Factor Affine Model on Treasury Instruments.

Thetablereportsthefit of thetwo-factor affine model, estimated using QML based on the Kalman filter, onthe
6-month T-hill rate and Treasury bond yields (the yield-to-maturities of the coupon-paying bonds). Data are
weekly from February 1991 until February 2000.

Bond Maturity Mean Error Mean Absolute Error Root Mean Square Error
6 months -4.54 bp 17.45 bp 21.13 bp
2 years -3.07 bp 5.54 bp 7.18 bp
3 years -1.03 bp 7.51 bp 9.15bp
5years -3.45 bp 6.20 bp 7.77 bp
10 years 2.14bp 5.47 bp 6.72 bp
30 years 2.18 bp 10.46 bp 13.54 bp

Table 4. Parameter Estimates Firm-Specific Models.

The table reports parameter estimates for the model with firm specific factors only, that is given in equations
(4)-(7) with K equal to zero. Estimates are obtained using QML based on the extended Kalman Filter (see
Appendix C).

First Quartile Firm Median Firm Third Quartile Firm

Estimate o, 3.34bp 5.43 bp 23.94 bp
Estimate «,° 0.009 0.036 0.103
Estimate A,° -0.185 -0.106 -0.065
Estimate 6,° 0.022 0.030 0.044

Estimate 6° 42.89 bp 58.59 bp 73.42 bp

Estimate B, ° -0.121 -0.0929 -0.0537

Estimate B, 2.53e-5 -3.8%e-5 -4.32e-5

Average Fitted 37.68 bp 52.30 bp 65.09 bp

I nstantaneous Spread




Table5. Kalman Filter QML Estimatesfor Two Common Credit Factors.

Using QML based on the Ka man Filter, the model with two common factorsin equations (4)-(7) is estimated.
Appendix C contains details on the Kalman filter estimation. Standard errors are calculated using the White
(1982) heteroskedasticity-consi stent covariance matrix. The parameter 6,7 is normalized to 50 basis pointsfor

both factors.

Factor i K" AF of
Factor 1 0.030 (0.082) -0.072 (0.024) 0.016 (0.007)
Factor 2 0.490 (0.165) -0.163 (0.116) 0.046 (0.011)
AAA/AA Rating A Rating BBB Rating

a 15.18 bp (11.15 bp) 22.86 bp (13.54 bp) 22.43 bp (11.68 bp)
Y1 Rating 1.675 (0.487) 1.971(0.333) 3.196 (0.565)
Y2 Rating 0.219 (0.073) 0.400 (0.052) 0.553 (0.094)
Br rating -0.047 (0.003) -0.046 (0.004) -0.045 (0.004)
By reting 4.54e-5 (2.33e-5) -5.28e-5 (2.83e-5) -6.37e-5 (5.94e-5)
Average Fitted 38.95 bp 58.28 bp 74.87 bp
I nstantaneous Spread

Table 6. Firm-Specific Factor Parameter Estimates for Common Factor Model.

The table reports quartiles of parameter estimates for the firm specific factors in the model with two common
factorsin equations (4)-(7). Estimates are obtained using QML based on the Kalman Filter (see Appendix C).

First Quartile Median Third Quartile
Estimate «,° 0.004 0.017 0.073
Estimate A,° -0.063 -0.008 0.032
Estimate 6,° 0.007 0.013 0.021
Estimate 6° 16.01 bp 36.72 bp 83.12 bp




Table7.Yield Errorsfor Corporate Bonds.

For each bond in the dataset, the yield error is defined as the difference between the model-implied yield-to-
maturity and the observed yield-to-maturity. For three models results are given: the model with firm-specific
factors only, the model with two common credit factors only, and the model with both two common credit
factors and firm-specific factors. For each firm, the average of the absolute value of theseyield errors and the
root mean squared yield error (RMSE) is calculated. The table contains summary statistics on these average
absolute yield errors and the RMSE for al firms.

Avg. Absolute Yield Error per Firm: Across 104 firms

First Quartile Median Third Quartile
Firm-Specific Factors Only 6.68 bp 9.73 bp 13.45bp
Common Factors Only 10.43 bp 14.63 bp 17.90 bp
Common and Firm-Specific Factors 5.97 bp 9.11 bp 13.14 bp

Root Mean Squared Yield Error per Firm: Across 104 firms

First Quartile Median Third Quartile
Firm-Specific Factors Only 9.43bp 13.49 bp 17.89 bp
Common Factors Only 12.34 bp 16.76 bp 18.55 bp
Common and Firm-Specific Factors 9.11 bp 12.89 bp 17.18bp

Table 8. Estimates of Default Event Risk Premium.

Thetable contains estimates and standard errors for the default event risk premium 1, obtained using S& P data
(upper panel) and Moody’ s data (lower panel). Estimation is performed as described in Section 5.1. The table
also gives results for tax-corrected bond prices and estimates of the liquidity spread v (see Section 5.3). The
calculation of standard errorsis described in Appendix D.

S& P Data: 1981-2000

Tax Correction Liquidity Correction Risk premium pt Liquidity spread v
No No 5.83(0.79) -
No Yes 3.02 (0.82) 32.48 bp (9.12 bp)
Yes No 3.57 (0.56) -
Yes Yes 2.94(0.93) 16.82 bp (11.01 bp)

Moody’s Data: 1970-2000

Tax Correction Liquidity Correction Risk premium p Liquidity spread v
No No 5.55 (0.71) -
No Yes 1.86 (0.77) 41.45 bp (8.28 bp)
Yes No 2.98 (0.50) -

Yes Yes 1.81 (0.90) 18.28 bp (8.84 bp)




Figure 1. Average Term Structures of Coupon-Spreads . Coupon spreads of 592 bonds of 104 firms
are averaged over time, and within each rating category and maturity bucket. The graphs depicts these
averages Average Term Structure of Coupon-Spreads per Rating
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Figure 2. Time Series of Coupon spreads. At each week, coupon spreads of 592 bonds of 104 firms
are averaged within each rating category. The graph depicts the resulting time series.
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Figure 3. Model-Implied Term Structures of Zero-Coupon Spreads. At the average firm parameter
estimates within each rating category and the average of the estimated factor values, the term structures
of zero-coupon spreads implied by the common factor model are graphed.
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Figures 4a-c. Conditional Default Probabilities. Each figure contains yearly conditional default
probabilities, for AA rated firms (Figure 4a), for A rated firms (Figure 4b), and for BBB rated firms
(Figure4c). Theline' S& P Data givesthe historically estimated default probabilities, obtained from S& P
data. The other lines dl are modd-implied default probabilities:

. ‘Q-prob’ refers to the risk-neutral probabilities.

. ‘P-prob: mu=1' refersto the actua probabilitiesin case p=1.

. ‘P-prob: mu=1, tax correction’ refers to the actual probabilities in case p=1, with tax-corrected
bond prices.

. ‘P-prob: mu*' refers to the actual probabilities at the estimated vaue for p (5.83).

. ‘P-prob: mu*', tax correction’ refersto the actual probabilities at the estimated valuefor pu (3.57),

with tax-corrected bond prices.

The yearly conditiona default probability gives the probability of default in the next year, given that no
default has occurred before.

AA conditional default probabilities
1.8 T T

1.6 |-

1.4

1.2 |

P-prob: mu=1

0.8 |-

% Probability

0.6 -

P-prob: mu=1, tax correction

0.4 |-

02 P-prob: mu* =

P-prob: mu*, tak correction
- _—— S&P Data
0 1 1
0 5 10 15
Years




Figure 4b
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Figures 5a-b. Corporate Bond Expected Excess Returns. For the median BBB rated firm, both
figures provide the annuaized unconditional expected return on a zero-coupon corporate bond, for
different maturities, in excess of the returnon a government bond with the same maturity. The expected
return is decomposed four risk premia, as discussed in Section 2.2. InFigure 6b, tax and liquidity effects
are included (see Section 5.3).
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Figure 6. Prices of nth-to-default Swaps. The graph depicts prices of n"-to-default swaps for
n=1,...,20. The swap has amaturity of 3 years, and is based on an equally weighted portfolio of bonds of
30 firms (10 AA rated, 10 A rated, and 10 BBB rated) with 15 years maturity. Two models are used to
caculate prices. a model with conditionally independent defaults, and a model with dependent defaults
(see Section 6). Prices are given as a percentage of the notional amount of a single bond.
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