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Abstract

Dehydroepiandrosterone (DHEA) is not a hormone but it
is a very important prohormone secreted in large amounts
by the adrenals in humans and other primates, but not in
lower species. It is secreted in larger quantities than cortisol
and is present in the blood at concentrations only second to
cholesterol. All the enzymes required to transform DHEA
into androgens and/or estrogens are expressed in a cell-
specific manner in a large series of peripheral target tissues,
thus permitting all androgen-sensitive and estrogen-
sensitive tissues to make locally and control the intracel-
lular levels of sex steroids according to local needs. This
new field of endocrinology has been called intracrinology.
In women, after menopause, all estrogens and almost all
androgens are made locally in peripheral tissues from
DHEA which indirectly exerts effects, among others, on
bone formation, adiposity, muscle, insulin and glucose
metabolism, skin, libido and well-being. In men, where
the secretion of androgens by the testicles continues for
life, the contribution of DHEA to androgens has been best

evaluated in the prostate where about 50% of androgens
are made locally from DHEA. Such knowledge has led to
the development of combined androgen blockade (CAB),
a treatment which adds a pure anti-androgen to medical
(GnRH agonist) or surgical castration in order to block
the access of the androgens made locally to the androgen
receptor. In fact, CAB has been the first treatment
demonstrated to prolong life in advanced prostate cancer
while recent data indicate that it can permit long-term
control and probably cure in at least 90% of cases of
localized prostate cancer. The new field of intracrinology
or local formation of sex steroids from DHEA in target
tissues has permitted major advances in the treatment of
the two most frequent cancers, namely breast and prostate
cancer, while its potential use as a physiological HRT
could well provide a physiological balance of androgens
and estrogens, thus offering exciting possibilities for
women’s health at menopause.
Journal of Endocrinology (2005) 187, 169–196

Introduction

Humans, along with the other primates, are unique among
animal species in having adrenals that secrete large amounts
of the inactive precursor steroids dehydroepiandrosterone
(DHEA) and especially DHEA-sulfate (DHEA-S), which
are converted into potent androgens and/or estrogens in
peripheral tissues (Labrie 1991, Labrie et al. 1995a, 1996b,
1997d, 2000b, 2001, Luu-The 2001) (Fig. 1). In fact,
plasma DHEA-S levels in adult men and women are
100–500 times higher than those of testosterone and
1000–10 000 times higher than those of estradiol, thus
providing a large reservoir of substrate for conversion into
androgens and/or estrogens in the peripheral intracrine
tissues which naturally possess the enzymatic machinery
necessary to transform DHEA into active sex steroids.

Adrenal secretion of DHEA and DHEA-S increases
during adrenarche in children at the age of 6–8 years.
Maximal values of circulating DHEA-S are reached be-
tween the ages of 20 and 30 years. Thereafter, serum
DHEA and DHEA-S levels decrease markedly (Fig. 2)
(Migeon et al. 1957, Vermeulen et al. 1982, Orentreich
et al. 1984, Bélanger et al. 1994, Labrie et al. 1997e). In
fact, at 70 years of age, serum DHEA-S levels are
decreased to approximately 20% of their peak values,
while they can decrease by 95% by the age of 85–90 years
(Migeon et al. 1957).

The marked reduction in the formation of DHEA-S by
the adrenals during aging (Migeon et al. 1957, Vermeulen
& Verdonck 1976, Vermeulen et al. 1982, Orentreich
et al. 1984, Bélanger et al. 1994, Labrie et al. 1997c) results
in a dramatic fall in the formation of androgens and
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estrogens in peripheral target tissues, a situation that has
been proposed to be associated with age-related diseases
such as insulin resistance (Coleman et al. 1982, Schriock
et al. 1988) and obesity (Nestler et al. 1988, MacEwen &
Kurzman 1991, Tchernof et al. 1995). On the other hand,
much attention has been given to the benefits of DHEA
administered to postmenopausal women, especially on the
bone, skin, vaginum and well-being after oral (Morales
et al. 1994, Baulieu et al. 2000) and percutaneous
(Diamond et al. 1996, Labrie et al. 1997b) administration.

It is thus remarkable that man, in addition to possessing
very sophisticated endocrine and paracrine systems, has
largely invested in sex steroid formation in peripheral
tissues (Labrie et al. 1985, 1988, 1997a, Labrie 1991). In

fact, while the ovaries and testes are the exclusive sources
of androgens and estrogens in lower mammals, the situ-
ation is very different in man and higher primates, where
active sex steroids are in large part or wholly synthethized
locally in peripheral tissues, thus providing target tissues
with the appropriate controls which adjust the formation
and metabolism of sex steroids to local requirements.

Transformation of the adrenal precursor steroids
DHEA-S and DHEA into androgens and/or estrogens
in peripheral target tissues depends upon the level of
expression of the various steroidogenic and metabolizing
enzymes in each cell of these tissues. This sector of
endocrinology that focuses on the intracellular hor-
mone formation and action has been called intracrinology

Figure 1 (A) Schematic representation of the role of ovarian and adrenal sources of sex steroids in premenopausal women. After
menopause, the secretion of estradiol by the ovaries ceases and then almost 100% of sex steroids are made locally in peripheral target
intracrine tissues. (B) Schematic representation of the role of testicular and adrenal sources of androgens in 60-year-old men. ACTH,
adrenocorticotropin; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; E2, 17�-estradiol; LH, luteinizing hormone; LHRH,
LH-releasing hormone; CRH, corticotropin-releasing hormone.
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(Labrie et al. 1988, Labrie 1991) (Fig. 3). This situation of
a high secretion rate of adrenal precursor sex steroids in
men and women is thus completely different from all
animal models used in the laboratory, namely rats, mice,
guinea pigs and all others (except monkeys), where the
secretion of sex steroids takes place exclusively in the
gonads (Labrie et al. 1985, 1988, 1997a, Bélanger et al.
1989). One explanation for the delayed progress in the
field of formation of sex steroids in peripheral target tissues
or intracrinology is the fact that the adrenals of the animal
models usually used do not secrete significant amounts of

adrenal precursor sex steroids, thus focusing all attention
on the testes and ovaries as the exclusive sources of
androgens and estrogens. The term intracrinology was thus
coined (Labrie et al. 1988) to describe the synthesis of
active steroids in peripheral target tissues where the action
is exerted in the same cells where synthesis takes place
without release of the active steroids in the extracellular
space and general circulation (Labrie 1991).

Although orchiectomy, estrogens or gonadotropin-
releasing hormone (GnRH) agonists or antagonists
(through blockade of secretion of bioactive LH) cause a
90–95% reduction in the concentration of circulating
testosterone (Labrie et al. 1980, 1985, Waxman et al. 1983,
Moghissi et al. 1984) (Fig. 4A), a much smaller effect
is seen on the only parameter that directly reflects
intra-tissular androgenic action, i.e. the intra-prostatic
concentration of the potent androgen DHT. In fact,
intra-prostatic DHT levels are reduced by only 50–70%
following medical or surgical castration (Labrie et al. 1985,
Bélanger et al. 1986) (Fig. 4A). Moreover, as illustrated
in Fig. 4B, the plasma concentrations of the two main
metabolites of androgens, namely ADT-G and 3�-diol-G,
remain at 28% and 37% of control, respectively, after
castration in adult men (Bélanger et al. 1986), thus
reflecting the high levels of adrenal precursors converted
into DHT in the prostate. In agreement with the above-
mentioned clinical findings, we have observed that plasma
concentrations of DHEA and 4-dione comparable with
those found in adult men exert potent stimulatory effects
on androgen-dependent growth and gene expression in
the rat ventral prostate (Labrie et al. 1988, 1989).

In women, the role of the adrenal precursors DHEA-S,
DHEA and 4-dione in the peripheral formation of estro-
gens is even more important than the situation in men for
androgens. In fact, in men, androgen secretion by the
testes continues at a high level through life while, in
women, estrogen secretion by the ovaries completely
ceases at menopause, thus leaving the adrenals as the only
source of sex steroids. In fact, the best estimate is that the
intracrine formation of estrogens in peripheral tissues in
women accounts for 75% of all estrogens before meno-
pause, and close to 100% after menopause (Adams 1985,
Labrie et al. 2003a). In addition to E2, another important
but still largely unrecognized estrogen is androst-5-ene-
3�,17�-diol (5-diol). This steroid of adrenal origin has in
fact been shown to exert direct estrogenic effects in both
normal and malignant estrogen-sensitive tissues at concen-
trations found in the circulation of normal adult women
(Adams 1985, Poulin & Labrie 1986, Simard et al. 1988).

Discovery of the castration effect of GmRH agonists
(Labrie et al. 1980) has rendered possible the 100%
effective, yet reversible, abrogation of testicular and ovar-
ian function, a uniquely well-tolerated approach that has
now been available for 25 years for the therapy of
androgen- and estrogen-sensitive diseases, especially pros-
tate, breast and uterine cancer. These cancers account for

Figure 2 Effect of age (20–30 to 70–80 years old) on serum
concentration of (A) DHEA, (B) DHEA-S, (C) DHEA-fatty acid
esters (DHEA-FA) and (D) androst-5-ene-3�,17�-diol (5-diol) in
women (Labrie et al. 1997c: reproduced with permission from
Journal of Clinical Endocrinology and Metabolism).
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37·0% of all new cancers estimated to be diagnosed in
2005 in the USA (Jemal et al. 2005). However, the impact
of the precursors of adrenal origin that continue to be
secreted and transformed into androgens and/or estrogens
in peripheral tissues, including the prostate, after medical
or surgical castration, needs to be controlled in order to
achieve the most efficient endocrine therapy needed to
treat these cancers (Labrie 2002). Definitive proof of the
importance of the androgens made in the human prostate
(intracrinology) is illustrated by the fact that the first
demonstration of a prolongation of life in prostate cancer
in randomized studies was obtained when the effect of
an LHRH agonist (medical castration) associated with a
pure anti-androgen (in order to simultaneously block the
androgens of adrenal origin) was found to be superior to
the effect of an LHRH agonist alone (Labrie et al. 1982,
Crawford et al. 1989, Bennett et al. 1999, Prostate Cancer
Triallists’ Collaborative Group 2000). Most importantly,
the same treatment applied at the localized stage of the
disease has led to a probable cure of the disease in more
than 90% of patients (Labrie et al. 2002).

Since ovarian estrogen secretion ceases at menopause,
the major role of peripheral estrogen formation in post-

menopausal women is clearly demonstrated, as mentioned
above, by the observation of the major benefits of aro-
matase inhibitors in advanced breast cancer in postmeno-
pausal women (Nabholtz et al. 2000, Goss et al. 2003,
Mouridsen et al. 2003) as well as by the findings of a 76%
decrease in breast cancer incidence in postmenopausal
osteoporotic women who received the selective estrogen
receptor modulator (SERM) raloxifene for 3 years
(Cummings et al. 1999).

It should also be noted that the importance of the
intracrine formation of androgens and estrogens extends to
non-malignant diseases such as acne, seborrhea, hirsutism
and androgenic alopecia as well as to osteoporosis and
vaginal atrophy (Cusan et al. 1994, Labrie et al. 1997b).
Another example of the relevance of intracrinology in
non-malignant diseases is endometriosis (Bulun et al.
2000). In this regard, it has recently been demonstrated
that aromatase is expressed aberrantly in endometriosis,
while this activity is not detectable in the normal endo-
metrium. Furthermore, another abnormality in this disease
is the deficient expression of type 2 17�-HSD, thus
impairing the inactivation of E2 into E1. Consequently,
the increased formation of E2 by aromatase coupled with

Figure 3 Human steroidogenic and steroid-inactivating enzymes in peripheral intracrine tissues. 4-DIONE, androstenedione; A-DIONE,
5-alpha-androstane-3,17-dione; ADT, androsterone; epi-ADT, epiandrosterone; E1, estrone; E1-S, estrone sulfate; 5-DIOL-FA,
androst-5-ene-3alpha,17beta-diol fatty acid; 5-DIOL-S, androst-5-ene-3alpha,17beta-diol sulphate; HSD, hydroxysteroid dehydrogenase;
TESTO, testosterone; RoDH-1, Ro dehydrogenase 1; ER, estrogen receptor; AR, androgen receptor; UGT2B28, uridine glucuronosyl
transferase 2B28; Sult2B1, sulfotransferase 2B1; UGT1A1, uridine glucuronosyl transferase 1A1.

F LABRIE and others · DHEA, an important prohormone of sex steroids172

www.endocrinology-journals.orgJournal of Endocrinology (2005) 187, 169–196

Downloaded from Bioscientifica.com at 08/22/2022 07:05:59PM
via free access

http://www.endocrinology-journals.org


the decreased inactivation of E2 by type 2 17�-HSD
leads to increased stimulation of the endometrium and
endometriosis.

It is increasingly apparent that mammary cells possess
complex regulatory mechanisms that allow for the strict
control of the intracellular levels of both stimulatory and
inhibitory sex steroids. For instance, our data show that
DHT favors the degradation of E2 into E1, thus suggesting
that the potent anti-proliferative activity of DHT in
E2-stimulated ZR-75–1 human breast cancer cells is, at
least partially, exerted on 17�-HSD activity (Adams 1985,
Poulin et al. 1988, 1989, Couture et al. 1993). Conversely,
we have found that estrogens cause a marked increase in
the production of the glucuronidated androgen metabolites
3�-diol-G, 3�-diol-G and ADT-G in MCF-7 cells, thus
decreasing the inhibitory androgenic activity (Roy et al.
1992). In fact, since glucuronidation is the predominant
route of androgen inactivation, androgen-inactivating
enzymes constitute an important site of regulation of breast
cancer growth.

The skin is also an important target of intracrine sex
steroid action. In fact, it is well recognized that the skin
synthesizes androgens from inactive steroid precursors and
that acne, seborrhea, hirsutism and androgenic alopecia are
associated with excess androgens (Mauvais-Jarvis et al.

1969, Milne 1969, Wilson & Walker 1969, Bingham &
Shaw 1973, Liang et al. 1983, Labrie 1991, Dumont et al.
1992b, Cusan et al. 1994). In fact, increased local bio-
synthesis of the potent androgen DHT from the weaker
androgen testosterone by 5�-reductase has been suggested
to be one of the mechanisms involved (Kuttenn et al.
1979). Although a series of studies have addressed the role
of sex steroids in the control of hair growth and sebaceous
gland physiology, the importance of skin as a site of
regulated steroid biosynthesis and metabolism has received
little attention. The presence of 3�-HSD in rat skin has
been reported (Flamigni et al. 1970, Muir et al. 1970) and
local rat skin steroidogenesis has also been suggested to
modulate sebaceous gland activity (Ebling et al. 1971).
These early pioneering studies can now be carried further
using the molecular biology tools that have become
available (Zhao et al. 1990, 1991). Since human skin is
composed of various cell populations showing sensitivity
to androgens, especially the epidermis, hair follicles, seba-
ceous glands, sweat glands and dermis, antibodies devel-
oped against fragments of type 1 5�-reductase have been
used to localize the enzyme by immunohistochemistry
(Luu-The et al. 1994). We have also found that 5�-
reductase is expressed in sweat and sebaceous glands, as
well as in the epidermal cell layers, thus providing the

Figure 4 (A) Effect of castration on the serum levels of testosterone (T), on one hand, and on the
concentration of the active androgen DHT remaining in prostatic cancer tissue after castration, on the
other hand. Note the relatively small effect (approximately 60%) of castration on intra-prostatic DHT
concentration as compared with the 90% fall in serum testosterone. LHRH-A, LHRH agonist. (B) Plasma
concentrations of androstane-3�,17�-diol glucuronide (3�-Diol-G) and androsterone glucuronide (ADT-G) in
20 intact (yellow bars) and 18 castrated (gold bars) men with prostate cancer. Patients were of similar age.
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molecular basis for the important role of androgens in
human skin and its appendages.

Intracrinology and its steroidogenic and
steroid-inactivating enzymes

Steroidogenic enzymes

As mentioned above, transformation of the adrenal pre-
cursor steroids DHEA and DHEA-S into androgens
and/or estrogens in peripheral target tissues depends upon
the level of expression of the various steroidogenic and
metabolizing enzymes in each cell of these tissues. Knowl-
edge in this area has recently made major progress with the
elucidation of the structure of most of the tissue-specific
genes that encode the steroidogenic enzymes responsible
for the transformation of DHEA and DHEA-S into
androgens and/or estrogens in peripheral intracrine tissues
(Labrie et al. 1988, 1992b, 1995b, 1997a, Peltoketo et al.
1988, Luu-The et al. 1989a, 1995b, Andersson & Russel
1990, Lachance et al. 1990, 1991, Labrie 1991, 2000b,
Rhéaume et al. 1991, Pelletier et al. 1992, Milewich et al.
1993, Martel et al. 1994, Adamski et al. 1995) (Fig. 3).

Human 3�-HSD isoenzymes and their genes Despite
its essential role in the biosynthesis of all classes of
hormonal steroids, the structure of the 3�-hydroxysteroid
dehydrogenase/�5-�4 -isomerase gene family, hereafter
called 3�-HSD, was only elucidated in 1989 (Luu-The
et al. 1989a, Lachance et al. 1990, 1991, Rhéaume et al.
1991). The membrane-bound enzyme 3�-HSD catalyzes
an essential step in the transformation of all 5-pregnen-
3�-ol and 5-androsten-3�-ol steroids into the correspond-
ing �4–3-keto-steroids, namely progesterone, as well as
the precursors of all androgens, estrogens, glucocorticoids
and mineralocorticoids.

In contrast with the results obtained using microsomes
and purified enzymes which show that 3�-HSD catalyzes
the interconversion of 3�-hydroxy- and 3-keto-5�-
androstane steroids (Luu-The et al. 1991), when intact
transfected cells in culture are used without the addition of
cofactors, an experimental procedure which better mimics
the physiological conditions, 3�-HSD catalyzes almost
exclusively the oxidation of 3�-hydroxy- into 3-keto-5�-
androstane steroids (Huang & Luu-The 2001b) while the
reverse reductive reaction is catalyzed by another enzyme,
namely, 3(���)-HSE (Huang & Luu-The 2000, 2001b)
and type 7 17�-HSD (Liu et al. 2005).

Not only is 3�-HSD found in the classical steroidogenic
tissues (placenta, adrenal cortex, ovary and testis), but also
in several peripheral tissues, including the skin, adipose
tissue, breast, lung, endometrium, prostate, liver, kidney,
epididymis and brain (Labrie et al. 1992a, Pelletier et al.
1992, Milewich et al. 1993, Martel et al. 1994), thus
catalyzing the first step in the intracrine transformation of
DHEA into 4-dione, the precursor of both androgens and

estrogens.The existence of multiple members of the 3�-
HSD gene family offers the unique possibility of tissue-
and/or cell-specific expression of this enzymatic activity.

Following purification of 3�-HSD from human pla-
centa and development of antibodies against the enzyme
in rabbits (Luu-The et al. 1990b), we have isolated and
characterized a first 3�-HSD cDNA type (Luu-The et al.
1989a) and its corresponding gene (Lachance et al. 1990).
The second 3�-HSD cDNA type, which corresponds to
the almost exclusive mRNA species expressed in the
adrenals and gonads, was chronologically designated
human type 2 3�-HSD (Rhéaume et al. 1991). The
structure of the corresponding human type 2 3�-HSD
gene has also been elucidated (Lachance et al. 1991). The
human 3�-HSD genes corresponding to human cDNAs
types 1 and 2 contain four exons and three introns within
a total length of 7·7–7·8 kbp. These genes were assigned
by in situ hybridization to the p13·1 region of chromosome
1 and are closely linked to D1S514 located at 1–2 cM of
the centromeric marker D1Z5 (Morissette et al. 1995).

We have observed that mutations in the type 2 3�-HSD
gene are responsible for classic 3�-HSD deficiency, a form
of congenital adrenal hyperplasia that impairs sterodo-
genesis in both the adrenals and gonads (Rhéaume et al.
1992, Simard et al. 1993, 1995). However, the absence of
mutations in the type 1 gene provided the long-awaited
molecular explanation for the persistence of peripheral
steroidogenesis in these type 2 3�-HSD-deficient patients,
thus demonstrating the importance of peripheral sex
steroid formation or intracrinology.

Human 17�-HSDs The 17�-HSDs are responsible for
the formation and inactivation of all active androgens and
estrogens (Fig. 3). As discussed above for 3�-HSD, until
relatively recently 17�-HSDs as well as almost all other
dehydrogenases were considered to be reversible enzymes
that catalyze the interconversion of substrates and prod-
ucts, mainly because the enzymatic activity was usually
characterized using tissue homogenates, subfractions or
purified proteins with added oxidized (NAD+, NADP+)
or reduced (NADH, NADPH) cofactors. These exogen-
ous cofactors drive the reaction in the oxidative or reduc-
tive direction depending upon their oxidized or reduced
state respectively. However, using a more physiologically
relevant method of enzymatic activity analysis, namely
intact transfected cells in culture without the addition of
exogenous cofactors, the transfected enzyme catalyzes the
reaction in a unidirectional manner (Luu-The et al. 1995a,
2001, Dufort et al. 1999, Huang & Luu-The 2000, 2001b).
These findings agree with the isolation of multiple types
of 17�-HSDs where six catalyze the reductive reaction
(types 1, 3, 5, 7, 12 and 13) and four catalyze the oxidative
reaction (types 2, 4, 6 and 8).

The readers are referred to original manuscripts and
reviews for information on type 1 (Peltoketo et al. 1988,
1992, Luu-The et al. 1989b, 1990a, Dumont et al. 1992a,
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Lin et al. 1992, Zhu et al. 1993, Breton et al. 1994, Ghosh
et al. 1995), type 2 (Luu-The et al. 1989b, Wu et al. 1993,
Andersson et al. 1995), type 3 (Geissler et al. 1994), type 4
(Leenders et al. 1994, Adamski et al. 1995, de Launoit &
Adamski 1999), type 6 (Biswas & Russell 1997), type 7
(Duan et al. 1996, Nokelainen et al. 1998, Krazeisen et al.
1999) and type 8 (Aziz et al. 1993, Kikuti et al. 1997,
Luu-The 2001) 17�-HSDs. The roles of types 9, 10 and
11 17�-HSDs in the human remain to be determined
while human types 12 and 13 17�-HSDs are at a final
stage of characterization (Liu et al. 2005). We will limit our
review to type 5 17�-HSD, an enzyme which plays an
important role in the peripheral formation of androgens in
both men and women.

Type 5 17�-HSD Although type 3 17�-HSD synthesizes
testosterone from 4-dione in the Leydig cells of the testes,
thus providing approximately 50% of the total amount of
androgens in men, the same enzymatic reaction is cata-
lyzed in the peripheral target tissues in both men and
women as well as in the ovary by a different enzyme,
namely type 5 17�-HSD (Dufort et al. 1999). This
enzyme is highly homologous with types 1 and 3 3�-HSDs
as well as 20�-HSD (Dufort et al. 1999) and thus belongs
to the aldo-keto reductase family.

In the postmenopausal ovary, hypertrophied stromal
cells are localized mainly at the periphery and hilus
(Russell & Bannatyne 1989). These stromal cells contain
both 3�-HSD and type 5 17�-HSD, thus permitting the
transformation of DHEA into 4-dione and then into
testosterone. The amount of stromal hyperplasia in post-
menopausal ovaries is correlated with the ovarian vein
levels of 4-dione and testosterone (Sluijmer et al. 1998).
These hyperplastic stromal cells are thus responsible for
the synthesis of 4-dione and testosterone in the postmeno-
pausal ovary.

Type 5 17�-HSD is not only expressed in the ovary but
it is also present in a large series of peripheral tissues
including the mammary gland. The epithelium lining the
acini and ducts of the mammary gland is composed of two
layers, an inner epithelial layer and an outer discontinuous
layer of myoepithelial cells. By immunocytochemistry,
3�-HSD is seen in the epithelial cells of acini and ducts as
well as in stromal fibroblasts (Fig. 5A). Immunostaining
is also observed in the walls of blood vessels, including
the endothelial cells. In the positive cells, the labeling is
mainly cytoplasmic. No significant labeling could be
detected in the myeopithelial cells. As shown in Fig. 5B,
immunostaining for type 5 17�-HSD gives results almost
superimposable onto those obtained for 3�-HSD, the
cytoplasmic labeling being observed in both epithelial and
stromal cells as well as in blood vessel walls (Pelletier et al.
1999). Studies performed at the electron microscopic level
revealed that, in sections stained for 3�-HSD or type 5
17�-HSD, labeling was not associated with any specific
membrane-bound organelles in the different reactive cell

types (Pelletier et al. 2001). The type 5 17�-HSD struc-
ture has an eight-stranded �/�-barrel in its center, a
typical folding motif in a large family of enzymes, with
each inner �-strand connected to an outer �-helix. In
addition, two �-strands (B1 and B2) form a �-hairpin turn
preceding �1 of the barrel, blocking the N terminus of the
�-barrel; one �-helix (H1) interrupts between �7 and �8
and another one (H2) follows �8 at the C terminus. Four
large loops, namely loop-A (residues 24–33), loop-B
(residues 117–143), loop-C (residues 217–238) and
loop-D (residues 301–323), help to form the substrate and
cofactor-binding sites at the C-terminal end of the �/�-
barrel (Fig. 6). In addition, the refined models from the
two ternary complexes have a root mean squared deviation
of 0·61 Å for 311 C� atoms from the enzyme protein
and a maximum deviation of 3·1 Å at C� of Gly315 (Qiu
et al. 2004).

Human 5�-reductase isoenzymes The enzyme 5�-
reductase catalyzes the 5�-reduction of 4-dione, testoster-
one and other 4-ene-3-keto-steroids to the corresponding
5�-dihydro-3-keto-steroids. The best known role of this
enzyme is the transformation of testosterone into DHT,
the most potent androgen, which is responsible for the
differentiation of the male external genitalia and prostate
as well as virilization at puberty. The major impact of
5�-reductase in men, however, is its role in prostate
cancer and benign prostatic hyperplasia. Two types of
human steroid 5�-reductases, chronologically identified as
type 1 and type 2, were isolated from human prostatic
cDNA libraries (Andersson & Russel 1990, Andersson
et al. 1991). The structure of the human type 1 5�-
reductase gene was first elucidated by Jenkins et al. (1991).
This gene is not responsible for 5�-reductase deficiency,
and is relatively insensitive to the inhibitor finasteride
(Andersson et al. 1991). Type 2 5�-reductase, on the other
hand, is the isozyme responsible for male pseudohermaph-
roditism from 5�-reductase deficiency and is sensitive to
finasteride (Andersson et al. 1991, Wilson et al. 1993).

Considering the crucial role of type 2 5�-reductase, we
have elucidated the structure of its corresponding gene
(Labrie et al. 1992b). The type 2 5�-reductase gene
contains five exons and four introns and shows splicing
sites identical to those of the type 1 gene. Its coding region
shares 57% homology with that of the type 1 5�-reductase
gene. Type 1 5�-reductase is the predominant form
expressed in human skin (Luu-The et al. 1994).

Steroid-inactivating enzymes

There is also good evidence that the DHT formed in
peripheral tissues is essentially metabolized locally before
its appearance in the circulation (Horton & Lobo 1986,
Horton 1992). Phase I DHT catabolites include
androstanedione, ADT, epiandrosterone, 3�-diol and
androstane-3�,17�-diol, which are formed by the action
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of a series of 3�/�-HSDs and 17�-HSD isoforms (Fig. 3)
(Labrie et al. 2000a, Andersson 2001, Dufort et al. 2001,
Luu-The 2001). However, most if not all of the androgen-
target tissues express HSD isoforms that are capable of back
converting the phase I metabolites into DHT, thus sug-
gesting that a fine regulation of these enzymes is extremely
important for controlling the concentration of DHT in
androgen-target tissues.

The serum levels of the conjugates are increased after
oral or topical administration of DHEA or 4-dione in the

presence of no change or minimal change in the blood
levels of non-conjugated androgen metabolites (Labrie
et al. 1997a). These observations further support the
concept that 5�-reduced androgen glucuronides found in
the circulation are produced in situ in peripheral tissues
after conversion of the adrenals and/or gonadal steroid
precursors into DHT first and, subsequently, into phase I
DHT metabolites without release of these intermediate
steroid precursors and metabolites into the circulation
(Horton & Lobo 1986, Labrie 1991, Horton 1992, Labrie
et al. 2003a). Consequently, the glucuronidation of phase
I metabolites by UDP-glucuronosyltransferase (UGT) en-
zymes in androgen-sensitive tissues should be considered
as the end of the androgenic signal. In the circulation,
two major phase II DHT metabolites, namely ADT-G
and 3�-diol-G, have been identified, but low amounts
of DHT-G and 3�-diol-G were also detected (Labrie
et al. 1997a).

UGT2B enzymes in the human prostate

Conjugation of compounds, including steroids, by glu-
curonidation is a pathway that has been found in all
vertebrates studied to date. More than 45 different UGT
cDNA clones have been isolated from seven mammalian
species, including 18 human UGT clones (Mackenzie
et al. 1997, Levesque et al. 2001).

In the human prostate, the alveoli are composed of two
cell types. The basal cells are small cells lining the
periphery of the alveoli, whereas the luminal cells are large
columnar cells in contact with the alveolar lumen. The
two cell types play distinct roles in androgen formation and
action (Fig. 7). The expression of type 1 3�-HSD, type 5
17�-HSD and types 1 and 2 5�-reductase is detected in
the basal cells, whereas, in the luminal cells, where the
androgen receptor is exclusively observed, mostly 5�-
reductase activity is found (Pelletier et al. 1998, 2001).
After castration, DHT concentrations in the prostate are

Figure 5 Human mammary gland immunostained for (A) 3�-HSD and (B) type 5 17�-HSD. Staining can be observed in the secretory
epithelial cells of acini (A). Stromal cells (arrows) and capillaries (arrow heads) are also labeled. Magnification �350.

Figure 6 Representation of type 5 17�-HSD/testosterone/NADP
structure. The testosterone molecule is displayed in yellow and the
NADP molecule in red. Two �-strands (B1 and B2, colored in
deep blue) form a �-hairpin turn at the N terminus of the �-barrel.
Two additional �-helixes (H1 and H2) are colored in yellow and
brown. Four large loops, namely loop-A (L–A, blue), loop-B (L–B,
green), loop-C (L–C, light green) and loop-D (L–D, red), form the
substrate and cofactor-binding sites at the C-terminal end of the
�/�-barrel. The figure was generated with program PyMOL (Qiu
et al. 2004).
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reduced by 50–60%, thus indicating that testosterone
precursors, such as DHEA, are responsible for an import-
ant proportion of DHT in the prostate (Dufort et al. 1999).
It is reasonable to suggest that DHT is formed locally in
luminal cells from testosterone, which is provided by
the circulation and/or metabolism of circulating adrenal
steroid precursors (DHEA and 4-dione) in basal cells.
Enzymes of the phase I DHT catabolism are also present in
basal cells, but they are not detected in luminal cells,
which occupy the largest proportion of the human prostate
(Huang & Luu-The 2000, 2001a, Dufort et al. 2001). This
absence of phase I catabolic enzymes in luminal cells favors
large concentrations of DHT. Indeed, DHT concen-
trations in the prostate exceed by almost tenfold those of
testosterone and phase I DHT metabolites (Bélanger et al.
1989, 1990). The two-cell mechanism provides the basis
for the specific control of testosterone and DHT levels in
the prostatic tissue.

In agreement with the presence of conjugating activity
in this tissue, large concentrations of 3�-diol-G and
ADT-G were also reported (Pelletier et al. 2001). Finally,
the expression of UGT2B15 and UGT2B17 was subse-
quently established in the prostate (Turgeon et al. 2001).
The UGT2B17 protein is detected in basal cells, whereas
UGT2B15 is only observed in luminal cells (Barbier et al.
2000). It is probable that 3�-diol and ADT formed in basal
cells are easily converted to glucuronides by UGT2B17,
whereas the action of UGT2B15 would be limited to
DHT in the luminal cells. Taking into account the low
levels of UGT2B15 protein found in the prostate, this
situation favors high concentrations of DHT in this tissue,
in agreement with previous biochemical observations on
the intra-prostatic levels of DHT (Fig. 4). In addition,
because the affinity of DHT for the androgen receptor is
approximately 1000-fold higher than that for UGT2B15, it
is believed that UGT2B15 might conjugate only a fraction
of the accumulated DHT formed in the luminal cells.

Role of DHEA in women

There is no medical problem related to women’s health
with a higher negative impact on morbidity (and fre-
quently mortality) than menopause, a condition closely
associated with declining sex steroid availability. The most
widely recognized fact concerning menopause is that there
is a progressive decrease and finally a rapid arrest of
estrogen secretion by the ovaries. The cessation of ovarian
estrogen secretion is illustrated by the marked decline in
circulating E2 levels. This easily measurable change in
circulating E2 levels coupled with the demonstrated ben-
eficial effects of exogeneous estrogens on menopausal
symptoms (Grady et al. 1992, Greendale & Judd 1993,
Lomax & Schonbaum 1993, Archer et al. 1999) and bone
resorption (Weiss et al. 1980, Christiansen et al. 1982,
Genant et al. 1990, Harris et al. 1991, Grady et al. 1992,

Field et al. 1993, Lindsay 1993, Archer et al. 1999,
Women’s Health Initiative 2002) has focused most of the
efforts of HRT on various forms of estrogens as well as on
combinations of estrogen and progestin in order to avoid
the risk of endometrial cancer induced by estrogens
administered alone.

The almost exclusive focus on the role of ovarian
estrogens in women’s reproductive physiology has re-
moved attention from the dramatic 70% fall in circulating
DHEA which already occurs between the ages of 20 to 30
and 40 to 50 years (Migeon et al. 1957, Vermeulen &
Verdonck 1976, Vermeulen et al. 1982, Orentreich et al.
1984, Bélanger et al. 1994, Labrie et al. 1997d) (Fig. 2). In
fact, since DHEA is transformed to both androgens and
estrogens in peripheral tissues, such a fall in serum DHEA
and DHEA-S explains why women at menopause are not
only lacking estrogens but are also likely to have been
deprived of androgens for a few years, as illustrated by the
50–60% decrease in serum ADT-G (Labrie et al. 1997c)
(Fig. 2).

In a recent study nine androgens and their precursors
and metabolites were measured by gas chromatography-
mass spectrometry and liquid chromatography-tandem
mass spectrometry in serum samples from 377 healthy
postmenopausal women aged 55–65 years and 47 normally
cycling 30- to 35-year-old premenopausal women. A
decrease of 60% was then observed in the sum of ADT-G
and 3�-diol-G while serum DHEA was decreased by 54%
in postmenopausal compared with premenopausal women
(F Labrie and A Bélanger, unpublished data). Such find-
ings based upon mass spectrometry data provide strong
support and confirm our previous observations (Labrie
et al. 1997c). Serum testosterone, on the other hand,
did not decrease significantly from 0·18�0·07 in pre-
menopausal to 0·14�0·07 ng/ml in postmenopausal
women.

Since the serum levels of ADT-G and 3�-diol-G in
women are 70% of those found in men of the same age
while serum testosterone in women compared with men
is only about 3% (0·15 ng/ml in women versus 4·5 ng/ml
in men), it is clear that serum testosterone is not a valid
marker of androgenicity in women. This situation is
somewhat analogous to the situation in castrated men
where castration causes a 90–95% reduction in the con-
centration of serum testosterone while the intra-prostatic
concentration of DHT as well as of serum ADT-G and
3�-diol-G are only reduced by 50–70% (Fig. 4) (Labrie
et al. 1985, Bélanger et al. 1986).

Completion of the identification and characterization of
all the human UDP-glucuronosyl transferases has made
possible the use of the glucuronide derivatives of andro-
gens as markers of androgenic activity. In fact, UGT2B7,
UGT2B15 and UGT2B17 are the three enzymes respon-
sible for the glucuronidation of all androgens and their
metabolites in the human (Bélanger et al. 2003). The
relatively simple inactivation mechanisms of androgens
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(Fig. 3) permits measurement of the sum of the metabolites
of all androgens in the circulation, thus offering a precise
assessment of the total androgenic activity in both women
and men.

While the only means of determining androgenic
activity in specific tissues is the direct measurement of the
intra-tissular concentration of the active androgens, such
measurements are not possible in the human except under
exceptional circumstances such as in samples of cancer
tissue obtained at surgery (Poortman et al. 1983, Labrie
et al. 1985, Bélanger et al. 1989). However, while not
permitting the assessment of androgenic activity in specific
tissues, measurement by validated mass spectrometry tech-
niques of the glucuronide derivatives of ADT and 3�-diol
permits an accurate assessment of total androgenic activity
in the whole organism. In fact, since inactivation of the
active androgens into ADT and 3�-diol and their subse-
quent glucuronidation into ADT-G and 3�-diol-G is the
obligatory route of elimination of androgens (Coffman
et al. 1990, Beaulieu et al. 1996, 1997, Carrier et al. 2000,
Turgeon et al. 2000) (Fig. 8), this approach appears to be
the best means of evaluating total androgenic activity in
individual subjects and patients. The clinician can then
reliably correlate these values of androgenic activity with
the other clinical findings.

As mentioned above, the level of transformation of the
adrenal precursor steroid DHEA into androgens and/or
estrogens in peripheral target tissues depends upon the
level of expression of the various steroidogenic enzymes in
each cell of each of these tissues (Labrie 1991, Labrie et al.
2003a). This situation of a high secretion rate of adrenal
precursor sex steroids by the adrenals in men and women
is thus completely different from all animal models used in
the laboratory, namely rats, mice, guinea pigs and all others
(except monkeys), where the secretion of sex steroids takes
place exclusively in the gonads and the adrenals do not
secrete significant amounts of DHEA (Bélanger et al. 1989).

The classical concept of androgen and estrogen secretion
in women assumed that all sex steroids had to be trans-
ported by the general circulation following secretion by
the ovaries before reaching the target tissues. According to
this classical concept, it was erroneously believed that the
active steroids could be measured directly in the circula-
tion, thus providing a potentially valid measure of the
general exposure of the whole body to sex steroids. In fact,
this concept is valid only for animal species lower than
primates but it does not apply to the human, especially in
postmenopausal women where all estrogens and almost all
androgens are made locally from DHEA in the peripheral
tissues which possess the enzymes required to synthesize

Figure 7 Distribution of the steroidogenic and steroid-metabolizing enzymes in the human prostate.
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active sex steroids. Such a local biosynthesis and action of
androgens in target tissues eliminates the exposure of other
tissues to androgens and thus minimizes the risks of
undesirable masculinizing or other androgen-related side-
effects. The same applies to estrogens, although we feel
that a reliable parameter of total estrogen secretion (com-
parable with the glucuronides identified for androgens) has
yet to be determined.

Today’s knowledge of androgen physiology provides an
explanation for the inconclusive studies on the role of
androgens in women under various clinical conditions
(Leiblum et al. 1983, Garland et al. 1992, Lipworth et al.
1996, Laughlin & Barrett-Connor 2000, Couzinet et al.
2001, Davis & Tran 2001, Labrie et al. 2003a, Miller et al.
2004, Tchernof & Labrie 2004).

We feel that the increased understanding of androgen
and estrogen formation and action in peripheral target
tissues called intracrinology (Labrie 1991, Luu-The et al.
1995b, Labrie et al. 1997a,b,c,d), as well as our recent

observations indicating the predominant role of androgens
over that of estrogens in the prevention of bone loss after
ovariectomy in the rat (Martel et al. 1998) and the
observation of a similar situation in postmenopausal
women (Labrie et al. 1997b), have paved the way for a
timely and potentially highly significant progress in the
field of sex steroid replacement therapy and aging. Such
a possibility is well supported by our observations and
those of others of a series of beneficial effects of DHEA in
postmenopausal women (Morales et al. 1994, Diamond
et al. 1996, Labrie et al. 1997b, Arlt et al. 1999, Baulieu
et al. 2000).

Role of DHEA in bone physiology

A predominant role of androgens in bone physiology is
well documented (Chesnut et al. 1983, Need et al. 1987,
Savvas et al. 1988, Davis et al. 1995, Raisz et al. 1996,
Labrie et al. 1997b, Martel et al. 1998, Baulieu et al. 2000,

Figure 8 Schematic representation of the very important contribution of the precursor DHEA of adrenal origin to total androgenic activity
in postmenopausal women with a parallel minor contribution of testosterone (TESTO) of ovarian and adrenal origins. By intracrine
mechanisms, DHEA is transformed into testosterone and DHT in peripheral tissues and then into the inactive metabolites ADT and 3�-diol
before transformation into the water soluble glucuronide derivatives ADT-G, 3�-diol-3 G and 3�-diol-17 G by the UGTs 2B7, 2B15 and
2B17. These water-soluble metabolites are then released into the general circulation where they can be measured. A very small
proportion of the testosterone and DHT made intracellularly by the steroidogenic enzymes of the intracrine pathway diffuse into the
circulation. The height of the colored boxes is proportional to the concentration of each steroid.
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Miller et al. 2002). In fact, both testosterone and DHT
increased the transcription of �(I) procollagen mRNA in
osteoblast-like osteosarcoma cells (Benz et al. 1991).
Treatment with DHT has also been shown to stimulate
endochondral bone development in the orchiectomized rat
(Kapur & Reddi 1989). Bone mineral density measured in
the lumbar spine, femoral trochanter and total body was
increased more by estrogen plus testosterone implants than
by E2 alone over a 24-month treatment period in post-
menopausal women (Davis et al. 1995).

Moreover, in established osteoporosis, anabolic steroids
have been reported to help prevent bone loss (Hennernan
& Wallach 1957). Similarly, subcutaneous E2 and testos-
terone implants have been found to be more efficient than
oral estrogen in preventing osteoporosis in postmenopausal
women (Savvas et al. 1988). Although the difference
observed in that study has been attributed to the different
routes of administration of the estrogen, the cause of the
difference could well be the action of testosterone. As an
index of increased bone formation, an increase in serum
osteocalcin, a marker of bone formation, has been found in
postmenopausal women receiving methyltestosterone plus
estrogen, compared with estrogen alone (Raisz et al. 1996).
Moreover, androgen therapy, as observed with nan-
drolone decanoate, has been found to increase vertebral
bone mineral density in postmenopausal women (Need
et al. 1989). Although androgens are gaining increasing
support due to their unique actions in postmenopausal
women, virilizing effects are observed with the use of
testosterone (Burger et al. 1984, Studd et al. 1987).

In order to avoid the limitations of standard estrogen
therapy (ERT) or hormone replacement therapy (HRT),
we have studied the effect of DHEA administration to 60-
to 70-year-old women for 12 months on bone mineral
density, parameters of bone formation and turnover, serum
lipids, glucose and insulin, adipose tissue mass, muscular
mass, energy and well-being as well as on vaginal and
endometrial histology (Diamond et al. 1996, Labrie et al.
1997b). DHEA was administered percutaneously to avoid
first passage of the steroid precursor through the liver.

We have thus evaluated the effect of chronic replace-
ment therapy with a 10% DHEA cream applied once daily
for 12 months in 60- to 70-year-old women (n=15).
Anthropometric measurements showed no change in body
weight but a 9·8% decrease in subcutaneous skin fold
thickness at 12 months (P<0·05) (Diamond et al. 1996).
Bone mass density was increased by 2·3% at the hip, 3·75%
at the hip Ward’s triangle and 2·2% at the lumbar spine
level (all P<0·05) (Labrie et al. 1997b). These changes in
bone mineral density were accompanied by significant
decreases at 12 months of 38% and 22% in urinary
hydroxyproline and in plasma bone alkaline phosphatase
respectively (all P<0·05). An increase of 135% over
control (P<0·05) in plasma osteocalcin was concomitantly
observed, thus suggesting a stimulatory effect of DHEA on
bone formation.

DHEA, abdominal obesity and the metabolic syndrome

Abdominal obesity is associated with an increased risk of
insulin resistance, type 2 diabetes and atherosclerosis, an
association called the metabolic syndrome (Shimokata et al.
1989, Cefalu et al. 1995, Ferrannini et al. 1997, Kopelman
2000). Among other factors, hormonal changes, especially
the declining secretion of DHEA and DHEA-S by the
adrenals is thought to be a factor involved (Tchernof et al.
1996). In rat and mouse models, DHEA administration
reduces visceral fat accumulation in diet-induced obesity
(Yen et al. 1977, Cleary & Zisk 1986, Mohan et al. 1990,
Hansen et al. 1997). A beneficial effect of DHEA has also
been observed on the decrease in insulin resistance that
occurs with age (Han et al. 1998).

In a study performed in postmenopausal women who
received a DHEA cream for 12 months, we found that
insulin resistance was decreased while subcutaneous fat at
the level of the thigh was also decreased (Diamond et al.
1996). Moreover, the daily administration of 50 mg
DHEA for 6 months in 65- to 78-year-old men and
women decreased abdominal visceral fat by 10·2% in
women and 7·4% in men (Villareal & Holloszy 2004). In
the same study, abdominal subcutaneous fat was decreased
by 6% in both women and men. Moreover, the respon-
siveness of serum insulin to the glucose tolerance test was
decreased by 13% with no change in the glucose response,
thus leading to a 34% improvement in the insulin sensi-
tivity index following DHEA administration. No change
in serum prostate-specific antigen (PSA) was observed in
men receiving DHEA. An improvement in DHEA action
has also been found in middle-aged men suffering from
hypercholesterolemia (Kawano et al. 2003).

In a previous study performed by the same group,
DHEA administration for 6 months decreased total body
fat mass by 1·4 kg while fat-free mass was increased by
0·9 kg (Villareal et al. 2000). No change of body compos-
ition was found in studies where DHEA was administered
for only 3 months (Flynn et al. 1999, Jedrzejuk et al. 2003)
or 4 months (Arlt et al. 2001).

Effect of androgens on libido, hot flushes and quality of life

Community-based studies suggest self-reported sexual
dysfunctions in women that ranges from 8 to 50%
(Laumann et al. 1999). It is believed that low serum free
testosterone is the diagnostic marker of ‘female androgen
insufficiency’ (Bachmann et al. 2002) as indicated in some
studies (Sherwin & Gelfand 1987, Davis et al. 1995,
Shifren et al. 2000, Goldstat et al. 2003) and by expert
opinions (Cameron & Braunstein 2004). In fact, the
incidence of low libido and sexual dysfunction increases
with age in women from the third decade (Laumann
et al. 1999) as well as after ovariectomy (Nathorst-Boos
& von Schoultz 1992). While phychosocial and health
factors are involved in low arousal and low sexual desire
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(Dennerstein et al. 1997), it is believed that low androgens
play an independent role (Bachmann et al. 2002, Miller
et al. 2004).

In fact, androgens are known to play a role in women’s
arousability and pleasure as well as intensity and ease of
orgasm. Androgens are also involved in the neurovascular
smooth muscle response of swelling and increased lubri-
cation (Basson 2004). It should be remembered that
DHEA is transformed into both androgens and estrogens
in the vagina (Sourla et al. 1998; Berger et al. 2005).
Estrogens, on the other hand, affect the vulval and vaginal
congestive responses. Since estrogens also affect mood,
they have an influence on sexual interest (Basson 2004).

In a community-based cross-sectional study of 1021 18-
to 75-year-old women, no clinically significant correlation
was observed between a low score of any domain of the
profile of female sexual function and low serum levels of
free testosterone or 4-dione. However, an association was
found between low DHEA-S and low sexual responsive-
ness in women aged �45 years. There was also a
significant correlation between low serum DHEA-S and
low arousal, pleasure and orgasm. For women aged 18–44
years, a low domain score for sexual desire, sexual arousal
and sexual responsiveness was associated with a serum
DHEA-S below the 10th centile (Davis 2005).

Loss of libido and/or sexual satisfaction are common in
early postmenopause. The addition of androgens to HRT
is known to have beneficial effects on these problems
(Greenblatt et al. 1950, Grody et al. 1953, Leiblum et al.
1983, Sherwin & Gelfand 1987, Sherwin 1988). Shifren
et al. (2000) have found that transdermal testosterone
administered by patch improved sexual frequency, pleas-
ure and mood in surgically menopausal women. The effect
was seen at a daily 300 µg dose of testosterone, a dose that
led to serum testosterone levels in the upper limit of
normal. Testosterone treatment has also been studied in
non-androgen-deficient women complaining of decreased
libido (Goldstat et al. 2003). Such treatment with testos-
terone improved libido and sexual function as well as
quality of life compared with placebo. Similarly, in meno-
pausal women with normal levels of androgens, the
addition of methyltestosterone to estrogen increased sexual
desire and frequency as compared with estrogen alone
(Lobo et al. 2003). Similar results have been observed with
testosterone implants (Davis et al. 1995). Among women
with dysfunction of sexual interest and desire, androgen
therapy has been suggested for those having free serum
testosterone levels within the lower quantile of the refer-
ence range (Bachmann et al. 2002). In fact, there is
increased use of testosterone to treat hypoactive sexual
desire disorder (HSDD) (Sherwin & Gelfand 1987, Davis
et al. 1995, Shifren et al. 2000, Goldstat et al. 2003). A
series of randomized clinical trials demonstrate that testos-
terone is effective in women with HSDD.

In addition, the detailed benefits of androgens added to
ERT or HRT have been described on general well-being,

energy, mood and general quality of life (Sherwin &
Gelfand 1985, Sherwin 1988). Improvements in the
major psychologic and psychomatic symptoms, namely
irritability, nervousness, memory and insomnia have
been observed following addition of androgens to ERT
(Notelovitz et al. 1991). It should also be mentioned that
androgenic compounds have been found to be beneficial
for the treatment of the mastalgia frequently caused by
HRT (Pye et al. 1985). In fact, ERT may result in severe
breast pain which may lead to discontinuation of therapy.

The androgenic effect of DHEA should also be useful in
reducing hot flushes. In fact, androgen therapy is successful
in reducing hot flushes in hypogonadal men (De Fazio
et al. 1984). Moreover, the addition of androgens has been
found to be effective in relieving hot flushes in women
who had unsatisfactory results with estrogen alone
(Sherwin & Gelfand 1984). Hot flushes are one of the
main reasons women initially seek HRT therapy, and
estrogen is very effective at alleviating this symptom.
Other studies have also shown a beneficial effect of DHEA
on hot flushes (Baulieu 1999, Stomati et al. 2000).

A clear example of the nature of androgen deficiency of
adrenal origin is provided by cases of adrenal insufficiency.
Arlt et al. (1999) have studied the effect of 50 mg DHEA
daily and placebo for 4 months in a population of women
suffering from adrenal insufficiency. Treatment with
DHEA raised serum testosterone in the low normal range.
Such treatment increased the frequency of sexual
thoughts, interest and satisfaction. Well-being, depression
and anxiety were also improved. In a study where DHEA
was administered at a high 300 mg daily dose, a greater
subjective mental (P<0·016) and physical (P<0·030)
stimulation was observed in response to an erotic video
(Hackbert & Heiman 2002). In a study performed in
women receiving 50 mg DHEA daily, improved libido
was observed in women aged 70 years or more but not in
those aged 60–70 years (Baulieu 1999).

Additional potential benefits of DHEA

The 70–95% reduction in the formation of DHEA and
DHEA-S by the adrenals during aging results in a dramatic
reduction in the formation of androgens and estrogens in
peripheral target tissues, which could well be involved in
the pathogenesis of age-related diseases such as insulin
resistance (Coleman et al. 1982, Schriock et al. 1988) and
obesity (Nestler et al. 1988, MacEwen & Kurzman 1991,
Tchernof et al. 1995). Low circulating levels of DHEA-S
and DHEA have also been found in patients with breast
cancer (Zumoff et al. 1981) and DHEA has been found to
exert anti-oncogenic activity in a series of animal models
(Schwartz et al. 1986, Gordon et al. 1987, Li et al. 1993).
DHEA has also been shown to have immunomodulatory
effects in vitro (Suzuki et al. 1991) and in vivo in fungal and
viral diseases (Rasmussen et al. 1992), including HIV
(Henderson et al. 1992). On the other hand, a stimulatory

DHEA, an important prohormone of sex steroids · F LABRIE and others 181

www.endocrinology-journals.org Journal of Endocrinology (2005) 187, 169–196

Downloaded from Bioscientifica.com at 08/22/2022 07:05:59PM
via free access

http://www.endocrinology-journals.org


effect of DHEA on the immune system has been described
in postmenopausal women (Casson et al. 1993).

DHEA has been shown to have important effects on the
skin of aged individuals, the most salient of which is an
increase in sebum production (Labrie et al. 1997b). The
index of sebum secretion was 79% increased after 12
months of DHEA therapy with a return to pretreatment
values 3 months after cessation of treatment. This has been
shown in a number of studies performed in women,
particularly those >70 years old who are physiologically
hyposeborrheic and thus found an improvement in their
skin with DHEA administration. The DHEA-induced
increase in sebum production observed in our study is
probably due to the fact that the sebaceous glands contain
all the steroidogenic enzymes necessary to catalyze the
transformation of DHEA into the androgen DHT, and
that this androgen is the main stimulator of sebaceous
gland activity (Labrie et al. 2000a, 2003a).

Apart from sebum production, other beneficial effects of
DHEA on the skin have been noticed. To date, evaluation
of the dermatological aspects of DHEA administration
have only been performed in some detail in one study, the
DHEA study in which male and female subjects between
the ages of 60 and 79 years were orally administered 50 mg
DHEA, once daily for 1 year. In that study, Baulieu et al.
(2000) evaluated skin hydration, skin pigmentation and
skin thickness. Skin surface hydratation significantly in-
creased for the whole DHEA-treated population examined
after 12 months of treatment. Skin surface hydratation is
considered a real benefit for the skin, especially in aged
individuals since in these subjects the dryness makes the
skin rough. DHEA also significantly decreased facial skin
pigmentation (yellowness) for the whole population. This
decrease was more pronounced in women >70 years who
are more concerned by age-related pigment changes. The
two other components of skin colour remained stable
during the duration of the study (i.e. lightness and
redness).

Measurements of mid-thigh fat and muscle areas by
computed tomography have shown a 3·8% decrease
(P<0·05) in femoral fat and a 3·5% increase (P<0·05) in
femoral muscular area at 12 months (Diamond et al. 1996).
There was no significant change in abdominal fat
measurements. These changes in body fat and muscular
surface areas were associated with a 12% decrease
(P<0·05) of fasting plasma glucose and a 17% decrease
(P<0·05) in fasting plasma insulin levels. Treatment with
DHEA had no undesirable effect on the lipid or lipopro-
tein profile. In fact, there was an overall trend for a 3–10%
decrease in total cholesterol and its lipoprotein fractions.
Plasma triglycerides were not affected.

DHEA administration stimulated vaginal epithelium
maturation in eight out of ten women who had a
maturation value of zero at the onset of therapy while a
stimulation was also seen in the three women who had an
intermediate vaginal maturation before therapy. Most

importantly, the estrogenic stimulatory effect observed in
the vagina was not found in the endometrium which
remained completely atrophic in all women after 12
months of DHEA treatment (Labrie et al. 1997b).

The present data suggest that the beneficial effects of
DHEA therapy in postmenopausal women are exerted
through the transformation of the steroid precursor into
androgens and/or estrogens in specific intracrine target
tissues, thus limiting the possibility of side-effects. As an
example, the absence of stimulation of the endometrium
by DHEA (Labrie et al. 1997c, Baulieu et al. 2000) should
eliminate the need for progestin replacement therapy,
thus avoiding the fear of progestin-induced breast cancer
in postmenopausal women (Women’s Health Initiative
2002). The observed stimulatory effect of DHEA on bone
mineral density and the increase in serum osteocalcin, a
marker of bone formation, are of particular interest for the
prevention and treatment of osteoporosis and indicate a
unique activity of DHEA on bone physiology, namely a
stimulation of bone formation, while ERT and HRT can
only reduce the rate of bone loss. In the light of the
Women’s Health Initiative study, the indication and
benefits of HRT should be evaluated with care and
adapted to the clinical situation of each woman.

The effects of DHEA are a combination of estrogen-like and
androgenic effects

Androgen therapy, as observed with nandrolone dec-
anoate, has been found to increase vertebral bone mineral
density as well as cortical bone mineral content in post-
menopausal women (Need et al. 1989). Androgenic side-
effects, however, were recorded in 50% of patients. Such
data are of interest since while almost all present therapies
are limited to a reduction of bone loss, an increase in bone
mass was found with the use of the anabolic steroid
nandrolone. A similar stimulation of bone formation by
androgens has been suggested in a hypogonadal male
(Baran et al. 1978). A stimulation of bone formation in
postmenopausal women treated with DHEA for 12
months is reported by Labrie et al. (1997b).

Most importantly, it has been observed that androgens
exert a direct anti-proliferative activity on the growth of
ZR-75–1 human breast cancer cells in vitro and that such
an inhibitory effect of androgens is additive to that of an
anti-estrogen (Poulin & Labrie 1986, Poulin et al. 1988).
Similar inhibitory effects have been observed in vivo on
ZR-75–1 xenographs in nude mice (Dauvois et al. 1991).
Androgens have also been shown to inhibit the growth
of 7,12-dimethylbenz(a)anthracene-induced mammary
carcinoma in the rat, this inhibition being reversed by the
simultaneous administration of the pure anti-androgen
flutamide (Dauvois et al. 1989). Taken together, these data
indicate the involvement of the androgen receptor in the
inhibitory action of DHEA on breast cancer.
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Since the endometrium remained atrophic after 12
months of treatment of postmenopausal women with
DHEA (Labrie et al. 1997b), the proposed novel approach
with DHEA (Fig. 9) should eliminate the need to use a
progestin to protect against endometrial proliferation, thus
avoiding the recently demonstrated stimulatory effect of
progestins on breast cancer (Bergkvist et al. 1989, Clarke &
Sutherland 1990, Musgrove et al. 1991, Horwitz 1992,
Colditz et al. 1995, Magnusson et al. 1999, Persson 1999,
Ross et al. 2000, Women’s Health Initiative 2002).

The potential approach of HRT with DHEA is based
upon the recent progress achieved in our understanding of
sex steroid physiology in women and the recognition that
women, at menopause, are not only deprived of estrogen
due to the arrest of estrogen secretion by the ovaries, but
have already been submitted for a few years to a decreasing
exposure to androgens. In fact, normal women produce an
amount of androgens equivalent to two-thirds of the
androgens secreted in men (Labrie et al. 1997a). The pool
of androgens in women decreases progressively from the
age of 30 years in parallel with the decrease in the serum
concentration of DHEA and DHEA-S (Labrie et al.
1997c). Consequently, it appears logical to use both
androgenic and estrogenic replacement therapy at peri-

and postmenopause, thus maintaining a physiological bal-
ance between these two classes of sex steroids in each cell
and tissue, a goal which can only be met by the local
formation of androgens and estrogens in peripheral tissues
from a steroid precursor such as DHEA (Fig. 9). In Fig. 9,
comparison is made with the positive and negative effects
of DHEA versus classical ERT.

It should also be mentioned that our data obtained in the
rat clearly demonstrated that DHEA can provide beneficial
effects which are lacking with the use of a SERM alone
(Labrie et al. 2003b). In fact, while a SERM has effects
limited to inhibition of bone resorption, the addition of
DHEA stimulates bone formation (an effect not found
with a SERM or an estrogen) and further reduces bone
resorption above the effect achieved with a SERM alone.
In addition to an increase in bone formation, DHEA has
also been shown in postmenopausal women to stimulate
vaginal maturation and decrease skin dryness.

Role of DHEA in men

Prostate cancer is the most frequently diagnosed cancer
and the second cause of cancer death in men in North
America (Jemal et al. 2005). In fact, one in eight men will

Figure 9 Comparison of the effects of standard ERT (estrogen) and DHEA on parameters of menopause.
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be diagnosed with prostate cancer during his lifetime. At
the present rate, of the male population living in the USA,
prostate cancer will kill more than 3 million men. Prostate
cancer is thus a major medicosocial problem comparable
with that of breast cancer in women. In fact, it was
predicted that 30 350 men will die from prostate cancer in
the USA in 2005.

The serious and frequently lethal cardio- and cerebro-
vascular complications of estrogens (VACURG 1967,
Robinson & Thomas 1971, Peeling 1989), on one hand,
and the psychological (Lunglmayr et al. 1988, Cassileth
et al. 1989) as well as the physical limitations of orchi-
ectomy, on the other hand, have generally delayed endo-
crine treatment until late stages of the disease when pain
and debility had developed. Typically, at such a late stage,
the large and disseminated tumors show poor and short-
lived responses, thus limiting the success of endocrine
therapy. In fact, similar to treatments for all other types of
cancers, androgen blockade loses its effectiveness with
increasing size of the tumors (Chen et al. 1996).

As indicated by a high proportion of positive responses
achieved after only partial blockade of androgens by
orchiectomy (Nesbit & Baum 1950, Staubitz et al. 1954,
VACURG 1967, Mettlin et al. 1982, Murphy et al. 1983),
prostate cancer is the most sensitive of all hormone-
sensitive cancers to endocrine therapy. This uniquely high
sensitivity of prostate cancer to androgens should be
exploited optimally in order to best succeed in the fight
against this disease.

In the course of our attempts to find an explanation for
the lack of a stimulatory effect of chronic administration
of GnRH agonists on gonadal functions, we made the
unexpected observation that treatment of adult male rats
for a few days led to variable degrees of inhibition of serum
testosterone levels accompanied by a relatively small but
usually significant inhibition of ventral prostate, seminal
vesicle and testis weight (Auclair et al. 1977a,b). It should
be mentioned that when we were treating rats with a
GnRH agonist some 28 years ago we were expecting to
observe larger seminal vesicles and a prostate of increased
volume. Most unexpectedly, the opposite observation was
made: the prostate, the seminal vesicles and the testicles
became smaller instead of larger after a few days of
treatment with a GnRH superagonist.

While experiments performed in the rat were simply
suggestive of an inhibitory effect of GnRH agonists on
testicular functions, we discovered in 1979 at our Clinic at
the Laval University Medical Center that medical castra-
tion is achieved in men following chronic administration of
GnRH agonists (Labrie et al. 1980).

Soon after our observation (Labrie et al. 1980) that
administration of the GnRH agonist buserelin led to an
almost complete inhibition of serum testosterone and
DHT levels within 2 weeks following administration by
the intranasal route, a less than optimal route of admin-
istration (Labrie et al. 1980), a detailed comparison of the

effect of various doses of the same GnRH agonist was
performed after administration by the intranasal and sub-
cutaneous routes (Faure et al. 1982). It is well recognized
that medical castration with a GnRH agonist is equivalent
to orchiectomy for prostate cancer therapy (Prostate Can-
cer Triallists’ Collaborative Group 2000). In a comparison
of 11 trials in which a GnRH agonist was used and in 17
trials in which orchiectomy was used, no difference was
seen in the response or survival rate (Prostate Cancer
Triallists’ Collaborative Group 2000).

Two equally important sources of androgens are present in men

An important advance in our understanding of the biology
and endocrinology of prostate cancer and its major impact
on cancer treatment is the observation that humans and
some other primates are unique among animal species in
having adrenals that secrete large amounts of the inactive
precursor steroids DHEA, its sulfate DHEA-S and some
4-dione, which are converted into potent androgens in a
large series of peripheral tissues, including the prostate
(Fig. 1B).

As indicated above, the local synthesis of active steroids
in peripheral target tissues has been named intracrinology
(Labrie et al. 1988, 2003a, Labrie 1991). The active
androgens made locally in the prostate exert their action by
interacting with the androgen receptor in the same cells
where their synthesis takes place without being released in
significant amounts in the extracellular environment or the
general circulation. Contrary to the previous belief that the
testes are responsible for 90–95% of total androgen prod-
uction in men (as could be inferred from the 90–95%
decrease in serum testosterone observed after castration),
it is now well demonstrated that the prostatic tissue
efficiently transforms the inactive steroid precursors
DHEA-S, DHEA and 4-dione into the active androgens
testosterone and DHT locally in peripheral tissues, includ-
ing the prostate, without significant release of the active
androgens in the circulation. In fact, the prostate makes its
own androgens at a level comparable with the androgens of
testicular origin (Fig. 1B).

Combined androgen blockade (CAB) in advanced disease

The first treatment shown to prolong life in prostate
cancer was the combination of a GnRH agonist to block
androgen secretion by the testes in association with an
effective dose of a pure anti-androgen such as flutamide,
nilutamide or bicalutamide (Labrie et al. 1982, 1985).
These anti-androgens (sometimes called non-steroidal
anti-androgens) block the action of the androgens pro-
duced locally in the prostate by interfering at the level of
the androgen receptor.

An interesting observation is that the first demonstration
of the benefits of CAB on survival (Labrie et al. 1982,
1985) has been achieved in the most difficult group of
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patients to treat, namely those suffering from metastatic or
advanced disease. These data have been obtained with
flutamide and nilutamide. Although, in principle, the
clinical results should be similar for bicalutamide, the two
anti-androgens flutamide and nilutamide are those first
demonstrated in prospective and randomized studies to
prolong life, to increase the number of complete and
partial responses, to delay progression and to provide better
pain control (thus improving quality of life) in metastatic
prostate cancer when added to surgical or medical castra-
tion compared with castration alone (Crawford et al. 1989,
Denis et al. 1993, 1998, Janknegt et al. 1993, Caubet et al.
1997, Dijkman et al. 1997, Bennett et al. 1999, Prostate
Cancer Triallists’ Collaborative Group 2000, Debruyne
et al. 2001, Klotz 2001, 2003, Schmitt et al. 2001, Aprikian
et al. 2003). In the first large scale randomized study,
patients who were treated with flutamide and the GnRH
agonist lupron lived, on average, 7·3 months longer than
those who received lupron plus placebo (Crawford et al.
1989).

Analysis of all the studies performed with flutamide and
nilutamide associated with medical or surgical castration
compared with castration plus placebo shows that overall
survival (deaths from all causes) is increased by an average
of 3–6 months following the addition of a pure anti-

androgen (Crawford et al. 1989, Denis et al. 1993, 1998,
Janknegt et al. 1993, Caubet et al. 1997, Dijkman et al.
1997, Bennett et al. 1999, Prostate Cancer Triallists’
Collaborative Group 2000, Schmitt et al. 2001) (Fig. 10).
Since about 50% of patients in that age group (65 to 80
years old) die from causes other than prostate cancer, this
3–6 month difference in overall survival corresponds to
an average of 6–12 months of life gained when cancer-
specific survival is calculated. These additional months, or
sometimes years, of life are obtained by simply adding a
pure anti-androgen (flutamide, nilutamide or bicalutamide
at a proper dose) to castration. Considering that such
statistically significant benefits on survival are obtained,
even at the very advanced stage of metastatic disease, these
data demonstrate, as mentioned earlier, the particularly
high level of sensitivity of prostate cancer to androgen
deprivation.

As illustrated in Fig. 10, all the meta-analyses of all the
data have shown significant (2P<0·05) or highly signifi-
cant (2P<0·01) advantages of CAB versus castration alone
in advanced prostate cancer (Caubet et al. 1997, Bennett
et al. 1999, Prostate Cancer Triallists’ Collaborative Group
2000, Debruyne et al. 2001, Klotz 2001, Schmitt et al.
2001). However, when the studies providing the most
rigorous data are analyzed (Caubet et al. 1997), a 20%

Figure 10 Summary of meta-analyses comparing CAB (combination of medical or surgical castration) associated with a pure
anti-androgen or non-steroidal anti-androgen (NSAA), namely flutamide or nilutamide versus medical or surgical castration alone. Adapted
from Klotz et al. (2001). Caubet=Caubet et al. (1997); Debruyne=Debruyne et al. (2001); Bennett=Bennett et al. (1999).
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advantage in overall survival is observed. Moreover, these
differences are not those obtained strictly when comparing
CAB versus castration but they rather compare immediate
versus deferred CAB since most patients received an
anti-androgen at the time of progression with castration
alone.

It is of interest to mention the first results of a Japanese
study (Akaza et al. 2004) showing improved PSA normali-
zation (79·4% versus 38·6%) at 12 weeks and time to
treatment failure (96·1 versus 67·7 weeks) in advanced
prostate cancer patients who received the combination of
a GnRH agonist and 80 mg/day bicalutamide versus the
GnRH agonist and placebo. The risk of progression during
follow-up was thus reduced by 54% in the CAB group
compared with chemotherapy. This study, however, is not
sufficiently mature to calculate the effect on survival but
the early effects observed are in line with previous studies.

Concerning the costs of treatment, as recently published
by Aprikian et al. (2003), the cost per month of prolonged
survival in prostate cancer achieved with the simple
addition of a non-steroidal anti-androgen to castration
(GnRH agonist or orchiectomy) is 50% of that of vino-
relbine for lung cancer, 10% of the cost of renotecan for
colon cancer and 10% of the cost of trastuzumab for breast
cancer. Moreover, the non-steroidal anti-androgens have
minimal toxicity while vinorelbine and irinotecan are
associated with severe grade 3 and 4 clinical toxicities and
trastuzumab has cardiac side-effects when associated with
anthracyclines. As Klotz (2003) said, ‘We should embrace
the modest survival benefit of CAB in advanced prostate
cancer and offer it to the appropriate patients.’

In addition to the prolongation of survival, all the studies
have shown that the decrease in bone pain is more rapid
and more complete and that progression of the cancer is
delayed, thus improving quality of life, when CAB is used
compared with monotherapy. Moreover, CAB is the only
treatment shown to prolong life in advanced disease.
There is thus no other choice if one wants to prolong life.
It should also be realized that there is no treatment of
similarly advanced cancers that provides 3–6 months of
prolongation of life or 6–12 months of additional cancer-
specific survival with such a good quality of life. To the
living population of males in the USA, where 3 million are
expected to die from prostate cancer, 6 additional months
of life correspond to the addition of 1·5 million years of life,
while 12 additional months correspond to 3·0 million years
of life.

High probability of cure of localized prostate cancer by
treatment with CAB

Despite the important advance observed with mono-
therapy (GnRH agonists) in localized prostate cancer,
namely at least a one-third reduction in deaths from
prostate cancer (Peto & Dalesio 2003), can we achieve
better results?

Based upon the observation that 50% of androgens are
left in the prostate after castration alone (Figs 1B and 4),
it is reasonable to suggest that superior results can be
achieved with the combination of a GnRH agonist and a
pure anti-androgen. There are already data indicating that
patients with minimal metastatic disease derive greater
benefits than those with extensive metastatic disease
(Crawford et al. 1989, Denis et al. 1998, Soloway 1998).

Using CAB in localized and locally advanced disease,
the evidence obtained even indicates that long-term
control or cure of the disease can be obtained in at least
90% of patients (Labrie et al. 2002). In fact, while almost
all studies performed so far in localized prostate cancer
have used monotherapy (medical or surgical castration)
(Bolla et al. 1997, Pilepich et al. 1997, Granfors et al. 1998,
Messing et al. 1999, Hanks et al. 2000, D’Amico et al.
2004), there are strong scientific reasons to believe that
even much better results can be expected with CAB
(Labrie et al. 1985, Caubet et al. 1997, Bennett et al. 1999,
Labrie 2000a,b, Prostate Cancer Triallists’ Collaborative
Group 2000).

Since we have already obtained evidence for the high
efficacy of long-term and continuous CAB in localized
prostate cancer (Labrie et al. 1999a), it was felt important
to examine the long-term outcome of these patients as
assessed by biochemical failure (PSA progression) follow-
ing cessation of continuous CAB previously administered
for periods up to 11·3 years. The effect of CAB on
long-term control or possible cure of prostate cancer was
thus evaluated by the absence of biochemical failure or the
absence of a PSA rise for at least 5 years following cessation
of continuous treatment. A total of 57 patients with initial
localized or locally advanced disease thus received CAB
for periods ranging from 1 to 11 years. CAB was then
discontinued and the patients followed for a minimum of
5 years. Among the 20 patients with stage T2–T3 cancer
initially who stopped treatment after continuous CAB for
more than 6·5 years, only two PSA rises occurred for a
non-failure rate of 90% (Fig. 11). For the 11 patients who
had received CAB for 3·5–6·5 years, the non-failure rate
was only 36%. It is of major interest that serum PSA
increased within 1 year after cessation of CAB in all 11
patients with stage B2/T2 cancer initially treated with
CAB for only 1 year, thus showing that active cancer
remained present after short-term androgen blockade
limited to 1 year despite undetectable PSA levels. Most
importantly, in all patients who had biochemical failure
after stopping CAB, serum PSA rapidly decreased again to
undetectable levels soon after CAB was restarted and PSA
remained at such low levels afterward. Of these 57
patients, only one patient had died of prostate cancer at the
last follow-up (Labrie et al. 2002).

These are remarkable results observed in patients with
localized prostate cancer. Treatment, however, must be
continuous, without interruption and should last for many
years. It is important to mention that the major survival
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benefits observed following androgen blockade, even in
localized or locally advanced disease, are always associated
with long-term (many years of non-interrupted) treatment
(Bolla et al. 1997, Labrie et al. 1999b, 2002, Messing et al.
1999). In fact, an important observation is that when PSA
increases following cessation of treatment, administration
of CAB was successful in all cases in decreasing PSA to
undetectable levels again, thus showing that, even after a
long duration of treatment, resistance to CAB had not
developed. In fact, resistance to CAB is the common
finding in prostate cancer metastasized to the bone while
it does not occur for the cancer localized in the prostate or
in the prostatic area.

The present results obtained in prostate cancer patients
diagnosed with localized disease and treated continuously
for many years with CAB are not too different from the
results that we have recently obtained with human breast
tumor xenografts in nude mice where complete estrogen
blockade achieved with a highly potent anti-estrogen led
to the disappearance or cure of the tumors in 61% of cases
within a few months (Roy et al. 2003). In fact, in both
breast and prostate cancer, when the estrogens in breast
cancer and the androgens in prostate cancer are blocked
efficiently, cure of the disease can be achieved with
hormonal therapy.

As mentioned above, however, the success of therapy
requires long-term and continuous treatment before com-
plete apoptosis or total cell death is achieved. Such results

clearly indicate that intermittent androgen blockade
should remain experimental and should not be used
outside clinical trials. Breast and prostate cancers have
many characteristics in common and much can be learned
from looking at the results obtained in each of them. In
fact, when we consider the biology of these two cancers,
there are many common features, especially the high level
of sensitivity to hormones.

Most importantly, the present data indicate that possible
cure of the disease can be obtained in most patients with
localized prostate cancer treated continuously with CAB
for more than 8 years, thus raising hopes for the successful
treatment of patients who fail after surgery, radiotherapy or
brachytherapy where no or minimally effective alternative
therapeutic approach exists.

Major impact of blockade of androgens derived from DHEA in
prostate cancer

The life-saving benefits of androgen blockade in prostate
cancer have been largely underestimated. When compared
with other cancer therapies, the results obtained are quite
remarkable. In agreement with the data summarized
above, a recent analysis of all clinical trial data attributes
part of the improving outlook in the field of prostate
cancer to early detection and prompt radical prostatec-
tomy, but mostly gives the credit to follow-up hormone
therapy. ‘Hormonal treatment as a whole works ridicu-
lously well’ (Peto & Dalesio 2003), as reported by Arnst
(2003). In fact, while death rates decreased by 1·1% per
year from 1993 to 2001 for all cancers combined, prostate
cancer showed a larger decrease at 3·6% (Mehring 2004).
Although improvements in surgery and radiotherapy are
likely to play a role, a study by Frank R Lichtenberg using
National Cancer Institute data obtained from 2·1 million
cancer patients has concluded that cancer-fighting drugs
improved survival rates, especially for cancer of the pros-
tate, where drug innovations have been the greatest
(Mehring 2004).

It is important to note that androgen blockade is not
only cytostatic, as was previously believed. In fact, andro-
gen blockade is also cytotoxic or tumoricidal in localized
disease. Moreover, it is important to remember that
resistance to androgen blockade does not occur or is
extremely rare in localized disease under treatment with
CAB. Clearly, resistance to androgen blockade is a phe-
nomenon typical of metastatic disease in the bones where
the environment is very different and where the growth
factors present in large amounts stimulate cancer growth,
even in the absence of androgens. This knowledge about
the absence of development of resistance to CAB in
localized prostate cancer is extremely important. In fact, it
is often erroneously believed that early androgen blockade
should not be administered because resistance to treatment
will develop and one might as well wait to use androgen
blockade at a later stage of the disease. In fact, deferring

Figure 11 Effect of treatment duration of localized prostate cancer
with continuous CAB on the probability of long-term control or
cure of the disease as determined by no recurrence of a rise in
PSA for at least 5 years after CAB cessation. The point at 4·75
years of treatment (33%) refers to three patients treated with CAB
for 3·5–5·0 years and followed-up for at least 5 years, the point at
5·75 years refers to eight patients treated continuously with CAB
for 5·0–6·5 years before cessation of treatment, the point at 8·25
years refers to eight patients treated continuously for 6·5–9·0 years
and the point at 11 years refers to 12 patients treated for 10–11·7
years with continuous CAB before stopping treatment. All patients
were followed-up for at least 5 years after continuous CAB or until
a rise in PSA. Only one patient died of prostate cancer and
18 have died of other causes (Labrie et al. 2002).
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treatment implies that very often it will then be too late
because, following migration of the cancer to the bones,
resistance to treatment will occur automatically. It should
be realized that when prostate cancer is first detected, even
by screening, the cancer is not small since its diameter is of
the order of 1 cm or more. This is the most appropriate
time to treat with the very strong hope of a cure. The
results summarized above indicate that androgen blockade,
more specifically CAB, is probably the most efficient
treatment of localized prostate cancer but the start of
treatment should not be delayed.

It is important to remember that by avoiding the
psychological limitations of surgical castration and the
serious side-effects of high doses of estrogens, GnRH
agonists are playing a leader role in the very efficient
fight against prostate cancer. With the presently available
techniques, screening can diagnose prostate cancer at a
clinically localized stage in 99% of cases (Labrie et al.
1996a, 2002). Such an early diagnosis permits immediate
treatment with a curative intent, CAB being a truly
efficient alternative. Most importantly, CAB must be used
immediately in patients who fail radical prostatectomy,
radiotherapy or brachytherapy. Using this strategy, based
upon today’s available diagnostic and therapeutic ap-
proaches, death from prostate cancer can already be an
exception (Labrie 2002).
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