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Abstract 

Low test-taking effort as a validity threat is common when examinees perceive an assessment 
context to have minimal personal value. Prior research has shown that in such contexts 
subgroups may differ in their effort, which raises two concerns when making subgroup mean 
comparisons. First, it is unclear how differential effort could influence evaluations of scale 
property equivalence. Second, if attaining full scalar invariance, the degree to which differential 
effort can bias subgroup mean comparisons is unknown. To address these issues, a simulation 
study was conducted to examine the influence of differential noneffortful responding (NER) on 
evaluations of measurement invariance and latent mean comparisons. Results showed that as 
differential rates of NER grew, increased type I errors of measurement invariance were observed 
only at the metric invariance level, while no negative effects were apparent for configural or 
scalar invariance. When full scalar invariance was correctly attained, differential NER led to bias 
of mean score comparisons as large as 0.18 standard deviations with a differential NER rate of 
7%. These findings suggest that test users should evaluate and document potential differential 
NER prior to both conducting measurement quality analyses and reporting disaggregated 
subgroup mean performance. 

Keywords: test-taking effort, noneffortful responding, measurement invariance, subgroup 
comparisons, validity 
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Is Differential Noneffortful Responding Associated with Type I Error in  

Measurement Invariance Testing? 

 Low test-taking effort as a validity threat is common when examinees perceive an 

assessment context to have minimal personal value (low-stakes testing; Penk & Schipolowski, 

2015). This can occur because examinees do not have (e.g., international comparative education 

studies, such as the Programme for International Student Assessment [PISA]) or are unaware of 

the individual consequences for their test performance (e.g., young children assessed for 

remediation). When an assessment context is perceived to be low-stakes, some examinees have 

been found to engage in noneffortful responding (NER; i.e., providing a random guess without 

consideration for the item content due to low test-taking effort), leading to random score error 

that is generally associated with significant underestimation of examinee ability (e.g., Rios et al., 

2017; Wise & DeMars, 2005). Furthermore, NER has also been found to produce biased 

measurement properties, such as estimates of: (a) item parameters (e.g., Rios & Soland, 2020; 

van Barneveld, 2007); (b) test information (e.g., van Barneveld, 2007); (c) classical test theory 

(CTT) score reliability (e.g., Wise & DeMars, 2009); (d) construct dimensionality (e.g., Kam & 

Meyer, 2015); and (e) linking coefficients (Mittelhaëuser et al., 2015). As a result of these 

findings, the Standards for Educational and Psychological Testing calls for test developers and 

users to document the potential role of low test-taking effort as a source of construct-irrelevant 

variance prior to evaluating measurement quality and making score-based inferences (e.g., 

Standard 13.9; American Educational Research Association et al., 2014). The purpose of this 

paper is to investigate the effect of NER on measurement invariance and mean score 

comparisons when examinee subgroups possess differential test-taking effort. In the sections that 

follow, prior literature documenting subgroup differences in test-taking effort, its documented 

effects on measurement invariance, and the rationale for the current study are discussed.   
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Differential NER and Measurement Invariance 

 A significant number of researchers have documented that testing-taking effort differs 

across subgroups of examinees in low-stakes testing contexts. For instance, differences have 

been illustrated by: (a) gender (DeMars et al., 2013; Schnipke, 1995; Soland, 2018; Wise & 

Cotton, 2009; Wise & DeMars, 2010; Wise et al., 2004); (b) age (DeMars, 2007; Goldhammer et 

al., 2016; Wise & DeMars, 2010); (c) ethnicity (Soland, 2018); (d) language group (Goldhammer 

et al., 2016; Setzer et al., 2013); (e) school-track (Penk et al., 2014); (f) educational attainment 

level (Goldhammer et al., 2016); and (g) nationality (Boe et al., 2002; Borghans & Schils, 2012; 

Debeer et al., 2014; Goldhammer et al., 2016; Rios & Guo, 2020; Zamarro et al., 2019). In these 

applied contexts, subgroup differences in NER have been found to be as high as 23% (Rios & 

Guo, 2020).1 Thus, it is of little surprise that researchers have heeded concern that disparities in 

test-taking effort can lead to inaccurate inferences concerning subgroup comparisons (e.g., 

Soland, 2018).  

However, subgroup comparisons first assume that the statistical property of measurement 

invariance holds for the given measure across subgroups of interest. Measurement invariance is 

met when an examinee’s group membership adds nothing to their observed score on measure X 

above and beyond our knowledge of their standing on the latent variable measured by X 

(Millsap, 2011). Although there are multiple levels of measurement invariance, practitioners 

concerned with making subgroup comparisons are most attentive to attaining full scalar 

invariance (e.g., Fischer & Karl, 2019). This form of invariance stipulates that the same data 

configurations or structures (i.e., the same number of factors and loading pattern) of the 

                                                           
1 This research has primarily relied on the use of response times to identify one type of noneffortful responding 
referred to as rapid guessing (i.e., a respondent provides a response in so little time that they would be able to read 
the item stem and response options; for more detail, the reader is referred to Wise, 2017). 
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purported construct are present, the strength of the relationships between the indicators and latent 

construct(s) are equivalent (i.e., equal factor loadings), and the intercepts are equal across 

subgroups. Meeting these assumptions allows practitioners to make direct subgroup mean 

comparisons, as the measure of interest has been demonstrated to possess equal measurement 

units and the same origin values for all items across subgroups (Dimitrov, 2010).  

 Although establishing full scalar measurement invariance is a critical step to ensuring 

valid subgroup comparisons, there has been minimal research to date on the impact of 

differential NER in establishing this statistical property. One of the only studies to investigate the 

relationship between disparities in subgroup test-taking effort and invariance was conducted by 

DeMars and Wise (2010); however, the focus of their analysis was on item-level invariance or 

differential item functioning (DIF). In simulating a context in which the generating item 

parameters were the same, but differential NER differed across subgroups by upwards of 25%, 

DeMars and Wise assessed whether detectable levels of DIF were present using the Mantel-

Haenszel procedure. Findings from this study illustrated that upwards of 18% of items were 

incorrectly misclassified as possessing DIF across item characteristics. However, a closer 

examination of the item properties showed that misclassification rates as high as 100% were 

observed for very easy (b = -2.5) and discriminating (a = 1-2) items. This was due to 

overestimation of item difficulty for the unmotivated subgroup, as most of these simulees would 

have provided a correct response if full effort was given. Overall, the results of this study 

illustrated that differential NER can lead to inaccurate inferences concerning DIF; however, it is 

yet to be determined how differing effort across subgroups could affect scale-level invariance 

analyses (i.e., simultaneous invariance analyses for all items of a given measure).  

Rationale for Current Study  
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 Better understanding the impact of differential NER on evaluations of full-scalar 

invariance is of critical importance in establishing the robustness of inferences in the presence of 

disparate subgroup test-taking effort, which has been documented across multiple testing 

contexts and populations. This work is inspired by the important policy implications that low-

stakes assessments, such as those used in test-based accountability systems (e.g., state mandated 

end-of-year assessments), can have for monitoring achievement gaps between subpopulations.  

To support these efforts, the objective of this study is to investigate the influence of differential 

NER on evaluations of full scalar invariance and latent mean comparisons. This objective was 

examined via a simulation analysis that represented a context in which an assessment measuring 

a unidimensional construct via keyed multiple-choice items was administered to a population 

that was divided into two subgroups. The generating item parameters were held constant across 

both subgroups reflecting full scalar invariance. However, these subgroups differed in their test-

taking effort, with one subgroup far less motivated (hereon referred to as the focal subgroup) 

than the other (hereon referred to as the reference subgroup). Furthermore, as is common in 

practice, the presence of noneffortful responses (NERs) was ignored (see Wise, 2017). Based on 

this context, the following research questions were addressed: 

1. How does differential NER impact type I error (i.e., incorrectly rejecting the true null 

hypothesis of full scalar invariance) rates of measurement invariance analyses? 

2. When attaining full scalar invariance in the presence of differential NER, what is the 

degree of bias on latent subgroup mean comparisons?  

Findings have the potential to inform testing programs about the importance of considering NER 

prior to conducting measurement quality evaluations and reporting disaggregated subgroup mean 

performance.   
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Method 

Data Generation 

 Data were generated for a unidimensional test consisting of n (either 30 or 60 items) 

multiple-choice items that was administered to two subgroups (focal and reference) comprising a 

total of 5,000 simulees. A total sample size of 5,000 was chosen as it is expected to provide both 

stable parameter estimates and adequate power for model fit statistics (e.g., Kim, 2005; Wolf et 

al., 2013). Effortful item response probabilities were created in both subgroups based on the two-

parameter logistic model. This was done by first sampling item and person generating 

parameters. The former were taken from an operational administration of the NAEP reading 

assessment (for a full list of item parameters, see Appendices A and B of the online 

supplementary file). Generating ability parameters were sampled from a normal distribution 

(more detail is provided in the next section). Both the item and ability generating parameters 

were then entered into the 2PL model to obtain effortful item response probabilities.  

For unmotivated simulees, the next step consisted of replacing effortful probabilities with 

chance probabilities (assuming each item possessed four response options) to reflect progressive 

NER (i.e., decreasing examinee effort as the test proceeds), which has been observed in 

operational testing contexts (e.g., Wise & Kingsbury, 2016). This was done via a three-step 

process. First, the total test length was split into five bins (for the 30 item condition, each bin 

consisted of six items, while for the 60 item condition, 12 items comprised each bin). Second, the 

number of NERs in each bin was specified. These numbers were determined based on the 

condition’s specified within-simulee responding rate. As an example, when this rate was 50%, 

the number of NERs in each of the five bins for the 60 item condition was 0, 3, 6, 9, and 12.2 

                                                           
2 The number of noneffortful responses in each of the five bins for a within-simulee NER rate of 25% was 1, 2, 3, 4, 
and 5, while for 75% it was 6, 6, 9, 12, and 12. It is acknowledged that there is a multitude of ways to disperse 
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Third, once this distribution was determined, NERs were randomly selected in each bin and the 

true item probability was replaced with the chance rate. Both effortful and noneffortful (i.e., 

chance) probabilities obtained were then compared to a random number sampled from a uniform 

distribution ranging from 0 to 1. For each simulee, if the random number was less than the 

probability, the item response was treated as correct. All data generation was conducted in R, 

version 3.5.0 (R Development Core Team, 2018).   

Conditions 

 Below is a description of how NER was manipulated across five factors: (a) test length; 

(b) subgroup sample sizes; (c) group impact; (d) relationship between NER and true ability 

(NER-ability relationship); and (e) differential subgroup NER rate (hereon referred to as NER 

rate). These five variables were fully crossed producing 96 total conditions, with each condition 

replicated 100 times.  

Test Length 

 Given that the number of items loading onto a latent factor can influence goodness of fit 

indices (Cheung & Rensvold, 2002), total test length was manipulated in the current study across 

two levels: 30 and 60 items. These two levels were chosen as they reflect the range of common 

test lengths of low-stakes assessments in which noneffortful responding has been shown to be a 

concern (e.g., DeMars, 2007; Smith et al., 2013). For the 30-item condition, the mean item 

difficulty and discrimination were 1.07 (SD = 0.39; min = 0.4, max = 1.74) and 0.17 (SD = 0.89; 

min = -2.14, max = 1.55), respectively, while the averages were nearly identical for the 60-item 

condition (item discrimination: M = 1.12; SD = 0.41; min = 0.4, max = 1.91; item difficulty: M = 

                                                           
noneffortful responses across the test, however, the approach taken was meant to reflect a progressive decrease in an 
examinee’s test-taking effort. 
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0.14; SD = 1.10; min = -2.14, max = 2.17) based on item parameters obtained from a NAEP 

assessment. 

Subgroup Sample Sizes 

In operational settings, there may be contexts in which there is interest in making 

comparative inferences between subgroups that differ in sample size (e.g., English learners vs. 

native English speakers). When there is such an imbalance, researchers have shown that factorial 

invariance tests can be impacted (Yoon & Lai, 2018). To examine this issue under the current 

study context, subgroup sample sizes were manipulated. Specifically, the first level included 

equal sample sizes across subgroups (each consisted of 2,500 simulees), while the second 

reflected a scenario in which the focal subgroup (n = 3,350) outnumbered the reference (n = 

1,650) by a 2:1 ratio. Across all conditions, the total sample size was constrained to 5,000 (this 

sample size provided stable parameter estimation).   

Group Impact  

Differences in subgroup latent mean ability (group impact) were manipulated for 

motivated simulees in both the reference and focal subgroups, as prior literature has suggested 

that group impact can increase measurement invariance type I errors (Stark et al., 2006). This 

was done for two scenarios. In the first, referred to as the no group impact condition, the true 

latent mean ability was constrained equal for motivated simulees in both the focal and reference 

subgroups by sampling both subgroups’ generating ability parameters from a standard normal 

distribution. In the second scenario, which is referred to as the group impact condition, the latent 

mean ability between motivated simulees from the two subgroups differed by 0.5 SDs (reference: 

N [0, 1]; focal: N [-0.5, 1]). This condition assumed that the focal subgroup was on average of 
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lower ability than the reference subgroup, which is an assumption that has been examined in 

numerous studies (e.g., DeMars, 2010).   

NER-Ability Relationship  

  There is some debate as to whether NER is related to examinees true underlying ability or 

whether such a relationship has a nonnegligible impact on ability parameter estimation accuracy 

(for a discussion, see Wise, 2015). To address this debate, two levels were manipulated in which 

unmotivated simulees were sampled from: (a) across the ability continuum (unrelated); (b) 

predominately below the mean ability (related). For this factor, the sampling procedure across 

unmotivated simulees in both subgroups was constrained equal. Specifically, for level (a), ability 

parameters for unmotivated simulees were sampled from the same distribution as their motivated 

counterparts (reference: N[0, 1]; focal: N[0, 1] or N[-0.5, 1] depending on whether group impact 

was present). As prior literature has demonstrated that in some contexts NER occurs more often 

for low ability examinees when compared to their higher-achieving counterparts (Goldhammer et 

al., 2016; Kuhfeld & Soland, 2020; Rios et al., 2017; Soland & Kuhfeld, 2019), unmotivated 

simulees’ ability parameters for level (b) were sampled to be -0.5 standard deviations (SDs) 

below the mean of the motivated simulees in their respective subgroup. This mean difference 

value was chosen because Rios et al. (2017) found an average prior ability difference of 0.5 SDs 

(favoring motivated examinees) between motivated and unmotivated test takers. Thus, for the 

reference subgroup, unmotivated simulees’ ability parameters were sampled from N(-0.5, 1). 

Depending on the presence of group impact, ability parameters for focal subgroup unmotivated 

simulees were sampled either from N(-0.5, 1) or N(-1, 1) for no impact and impact, respectively, 

when NER and ability were related.   

NER Rate  
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Although the context simulated reflects a situation in which the reference subgroup is 

more motivated than the focal, NERs were generated in both subgroups. This was done to mirror 

the reality that in most low-stakes testing situations, not all examinees will be fully motivated, 

regardless of subgroup membership. To this end, for the reference subgroup, the percentage of 

NERs in the data matrix was constrained to 0.5% across all conditions, reflecting the NER rate 

observed for some of the more motivated subgroups found in DeMars (2007). This percentage 

was produced by constraining the percentage of unmotivated simulees in the reference subgroup 

to 5% and the percentage of NERs for each unmotivated simulee to 10%. In contrast, the 

percentage of NERs in the data matrix varied for the focal subgroup, with percentages of 2.5%, 

5%, 7.5%, 15%, and 22.5%. To produce these NER rates, the percentage of unmotivated 

simulees (either 10% or 30%) and percentage of NERs (25%, 50%, or 75%) for each 

unmotivated simulee was manipulated to within acceptable levels observed in both applied and 

simulated research (DeMars & Wise, 2010; Rios et al., 2017; Wise & DeMars, 2006). 

Comparing these NER rates between subgroups reflects the differential NER percentages 

(ranging from 2 to 22%) observed in operational settings (1-23%; e.g., DeMars, 2007; 

Goldhammer et al., 2016; Rios & Guo, 2020). 

Analyses 

Evaluating Measurement Invariance 

Measurement invariance can be evaluated in both confirmatory factor analytic and item 

response theory frameworks. In this study, measurement invariance was tested in the former 

framework for two reasons. First, a single-factor confirmatory factor analysis is equivalent to a 

unidimensional 2PL item response theory (IRT) model (this was the model used for data 

generation; e.g., Kamata & Bauer, 2008). Second, reviews of psychological literature have 
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shown that the factor analytic approach is most popular among researchers when testing for 

measurement invariance (Putnick & Bornstein, 2017). Therefore, as the methodological 

approaches are identical in the current context, this study adopted the common approach in 

practice.  

Using multiple group confirmatory factor analysis, measurement invariance was 

evaluated by testing (in order) for configural (equality of factor model configurations), metric 

(equality of factor loadings), and scalar invariance (equality of factor loadings and intercepts; 

partial invariance was not assessed) via the lavaan R package (version 0.6-5; Rosseel, 2012). 

Across all tests of measurement invariance, parameterization of the models occurred by setting 

the factor variance to one for both subgroups. Furthermore, the latent means were constrained to 

zero for the reference and focal subgroups at the configural and metric invariance levels, given 

that valid latent mean comparisons cannot be established at these levels (Putnick & Bornstein, 

2016); however, once testing for scalar invariance, the focal subgroup latent factor mean was 

allowed to be freely estimated, which provided an approximation of the difference between latent 

means of the reference and focal subgroups. This parameterization approach was taken instead of 

the common tactic of fixing a referent item’s factor loading and intercept to 1 and 0, respectively, 

as the presence of differential NER could have led to choosing a referent item that was 

noninvariant across groups. The consequence of doing so could lead to other items incorrectly 

appearing metric and/or scalar invariant due to differences in the latent factor scales across 

subgroups (Putnick & Bornstein, 2016). The weighted least squares with mean and variance 

adjustment (WLSMV) estimator was used for each model, as all indicators were dichotomous.3  

                                                           
3 One reviewer suggested employing maximum likelihood estimation with robust standard errors (MLR). Although 
this estimation procedure has been found to perform similarly to the WLMSV estimator under certain conditions 
(Bandalos, 2014), it was not employed in this study due to its current unavailability in the lavaan R package at the 
time of this writing.  
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Type I Error Rates of Measurement Invariance  

 A primary interest of this study was to determine the conditions of NER that would lead 

to model fit deterioration, and ultimately, type I error when assessing both metric and scalar 

invariance tests. For metric invariance tests, this was done by comparing model fit between the 

configural and metric invariance models, while the latter test evaluated fit between the metric 

and scalar invariance models. To investigate fit for these nested models, three indices commonly 

used in research and practice were evaluated: ΔCFI, ΔRMSEA, and ΔSRMR (Cheung & 

Rensvold, 2002; Joo & Kim, 2019; Putnick & Bornstein, 2016). Using the guidelines proposed 

by various researchers (Chen, 2007; Cheung & Rensvold, 2002; Rutkowski & Svetina, 2014), 

the null hypothesis that invariance should not be rejected was based on meeting two of the 

following three criteria: ΔCFI ≤ -0.01,  ΔRMSEA ≤ 0.01, and ΔSRMR ≤ 0.015. Although most 

researchers rely on only meeting a single criterion (Putnick & Bornstein, 2016), multiple criteria 

were employed based on the recommendation that multiple fit indices should be examined prior 

to making conclusions concerning invariance tests (Cheung & Rensvold, 2002). Type I error was 

calculated for each replication when the true null hypothesis of full scalar invariance was 

incorrectly rejected.  

Type I Error and Bias in Latent Mean Subgroup Differences  

The second variable of interest examined estimated differences in latent means between 

subgroups. This was investigated only for replications that correctly failed to reject the null 

hypothesis of full scalar invariance. Replications that did not meet this criterion were dropped 

from the analysis, as it is recommended that direct mean subgroup comparisons should be 

avoided if full scalar invariance cannot be established (Putnick & Bornstein, 2016). For 

replications meeting the criterion, two dependent variables were of interest: (a) type I error; and 
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(b) bias. The former outcome was included to determine whether the estimated focal subgroup 

latent mean difference was statistically different from its true value. This was done by 

calculating a one-sample z-statistic: 

 𝑧𝑧 = 𝑥̅𝑥−𝜇𝜇
𝑠𝑠𝑠𝑠

, (2) 

where 𝑥̅𝑥 and 𝑠𝑠𝑠𝑠 were the estimated latent mean difference and standard error for the data 

possessing NERs, and 𝜇𝜇 was the known latent mean difference. The z-statistic was compared to 

the critical value for a two-tailed test at an alpha level of .05 (1.96) to determine statistical 

significance. This index was averaged across replications to compute a summary value for a 

given condition. Although this test was informative, it did not provide an indication of the 

magnitude and direction of difference between estimated and known latent mean subgroup 

differences. To provide this information bias was calculated: 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �

1
𝑅𝑅
��𝜑𝜑�𝑟𝑟 − 𝜑𝜑𝑟𝑟 ,

𝑅𝑅

𝑟𝑟=1

 
(3) 

where 𝜑𝜑�𝑟𝑟 is the estimated difference in latent means between subgroups for replication r, 𝜑𝜑𝑟𝑟 is 

the known latent mean difference between subgroups, and R is the total number of replications.4 

Given that the latent mean variances were set to one, bias was interpreted in standard deviation 

units.  

Results 

 Results are presented separately for measurement invariance and latent mean difference 

outcomes.   

Type I Error Rates of Measurement Invariance 

                                                           
4 It should be noted that the baseline data captured latent mean differences under completely effortful responding in 
both subgroups, while for the estimated data the latent mean differences were captured based on the inclusion of 
noneffortful responding in both subgroups, including the reference subgroup (0.5%). As such, it is expected that the 
degree of bias is underestimated; however, the degree of underestimation is likely negligible. 
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 Across all conditions, model convergence was met for every replication. As expected, 

when no NER was present in the baseline data, full scalar invariance was attained for all 

replications under impact (across conditions, the grand mean ΔCFI < .0001) and no impact 

(across conditions, the grand mean ΔCFI < .0001). Concerning the effect of NER on 

measurement invariance, approximately 26% of replications incorrectly rejected the true null 

hypothesis of full scalar invariance. A closer examination of factors demonstrated that type I 

errors only occurred when testing for metric invariance. That is, configural invariance was met 

for every replication, while full scalar invariance was attained in all cases in which metric 

invariance was also attained. Given this finding, results are presented below for tests of metric 

invariance only.   

 As shown in Table 1, a logistic regression model demonstrated that increased NER rates 

were significantly associated with a rise in type I errors of metric invariance; however, after 

controlling for test length, this relationship was found to be moderated by both group impact and 

focal subgroup percent. This finding is illustrated in Figure 1, which plots NER (on the x-axis) 

by type I error rates (on the y-axis) separately by group impact and focal subgroup percent 

interactions for test lengths of 30 and 60 items. Across both test lengths, type I errors were not 

observed when NER rates were 2% and 4.5%. Therefore, results are discussed for the remaining 

NER rates in which type I error rates were observed to be as high as 100% under certain 

conditions.  

Across NER percentages of 7%, 14.5%, and 22%, conditions in which samples were 

unbalanced (i.e., focal group simulees comprised 67% of the sample) were found to possess type 

I error rates that were consistently lower than conditions where focal and reference simulees 

were equal. For instance, when averaging across impact conditions for a 60-item test, the mean 
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type I error rate for unbalanced conditions was lower by 19% and 22% for NER rates of 14.5% 

and 22%, respectively. In addition, type I error rates were greater for conditions in which 

subgroup impact was present (i.e., the focal subgroup possessed an average ability that was 0.5 

SDs lower than the reference subgroup). As an example, across focal subgroup percentages and 

test length conditions, average type I error rates ranged from 96%-98% for impact conditions, 

while, they were as low as 40%-60% under no impact. Taken together, Figure 1 clearly shows 

that when examining the interactions between sample balance and group impact for NER rates 

ranging from 7% to 22%, the lowest type I error rates were observed for conditions in which 

there was an unbalanced sample with no impact, while the highest rates occurred for conditions 

with a balanced sample and group impact (see Appendix C of online supplemental material for 

descriptive results).  

Latent Mean Type I Error and Bias When Attaining Full Scalar Invariance  

 Table 2 presents the type I error rates and bias for estimated latent mean subgroup 

differences. Results are only presented for replications that attained full scalar invariance 

(allowing for direct mean comparisons) when the subgroups differed in NER by 2%, 4.5%, and 

7% (NER rates of 14.5% and 22% were excluded due to their high type I errors). Across these 

conditions, this led to the inclusion of between 85% to 93% of replications for a NER rate of 7% 

(dependent on test length) and 100% of replications for NER rates of 2% and 4.5%.  

Across test length, group impact, and NER-ability relationship conditions, type I errors 

increased as the differential NER rate between subgroups increased, with error rates ranging 

from 6% to 100% (Table 2). However, as is shown in Table 3, the association between type I 

error and NER rate was moderated by both test length and the NER-ability relationship. 

Concerning the former moderator, higher type I error rates of latent mean subgroup differences 
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were observed for the longer of the two test length conditions. For instance, aggregating across 

group impact and NER-ability relationship conditions, type I error was greater for the 60-item 

condition by 5%, 13%, and 5% for NER rates of 2%, 4.5%, and 7%, respectively; though, this 

result may be associated with the greater statistical power obtained in the longer test condition 

(i.e., more statistically significant differences were observed because the standards errors of the 

latent subgroup mean differences estimates were smaller). This is supported by an examination 

of the bias results, which showed nearly identical magnitude of negative bias between test 

lengths. 

 Turning to the NER-ability relationship moderating effect, results demonstrated that 

when simulees engaging in NER were predominately of lower ability a greater degree of type I 

errors was observed. As an example, for the unrelated NER-ability condition, estimated latent 

mean differences across test lengths were found to be statistically different from their known 

values by 9%, 16%, and 74% for NER rates of 2%, 4.5%, and 7%, respectively. In comparison, 

for the same NER rates, when NER was related to simulees’ underlying ability, type I error rates 

increased to 24%, 36% and 100%. Concerning the extent and direction of estimation distortion, 

the bias results demonstrated that across conditions estimated latent mean differences were 

always lower than the true difference; however, the degree of negative bias was consistently 

smaller for the unrelated NER-ability condition. For instance, when NER and ability were 

related, the average bias for NER rates of 2%, 4.5%, and 7% were equal to -0.04, -0.05, and -

0.19 SDs across test length and impact conditions, which was two times larger than the values 

observed in the unrelated condition.  

Applied Analysis 
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 An applied analysis is included to examine how differential noneffortful responding may 

influence decisions around measurement invariance analyses in practice. To do this, data were 

examined for examinees sampled from two countries (mirroring the simulation study design) 

who were administered the Programme for International Student Assessment (PISA). Details of 

the methodology for this analysis are described below. 

Methodology 

Sample 

 Data were sampled from examinees administered the PISA science domain (more detail 

provided below) from the United Arab Emirates (UAE; n = 763) and China (n = 452). These 

countries were selected as they provided some of the largest sample sizes compared to all other 

countries and represented distinctive cultures from the Middle East and Asia that have been 

shown to display differential levels of test endurance (OECD, 2019). In each country, examinees 

were sampled (using a matrix sampling design) from 5,000 nationally representative students 

attending 150 schools or more. Examinees were excluded if possessing: (a) a moderate to severe 

permanent physical, cognitive, behavioral, or emotional disability that would not allow them to 

participate in testing; (b) and/or limited proficiency in the assessment language.    

Measure 

PISA is an international assessment measuring 15-year-old’s knowledge and skills in 

reading, mathematics, and science. The focus of this study is on Form 18 of the 2018 

administration of the science literacy (i.e., knowledge of science and of science-based 

technology) domain, which was comprised of item clusters 1 and 6 (each cluster was expected to 

take 30-minutes to complete). As response times were utilized as a proxy of noneffortful 

responding (more detailed is provided below), only the 30 keyed selected-response option items 
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were utilized, due to the limitations associated with current methods to evaluate test-taking effort 

for items with open-ended response options (see Wise, 2017).  

Analysis 

 The analysis consisted of two distinctive activities. First, noneffortful responding was 

identified via response times. Specifically, a response time threshold was established in which 

any response provided in less time than the criterion was classified as a noneffortful response. 

Although there are multiple approaches to choosing a threshold (for details, see Wise, 2017), this 

study adopted the same approach taken by Wise & Kuhfeld (2020) in which any response 

provided in less than 30% of the sample’s average response time for the given item of interest 

was deemed to be a noneffortful response. Due to differences in reading load introduced by the 

separate testing languages employed for the Brazilian and Chinese samples, a criterion threshold 

for each item was established separately by country. Upon identifying noneffortful responses, a 

filtered dataset was created in which noneffortful responses were treated as missing based on the 

assumption that such responses are uninformative in reflecting an examinees underlying science 

knowledge (see Wise & DeMars, 2006).  

To examine the potential impact of noneffortful responses on inferences related to 

measurement equivalence, nested invariance analyses were conducted separately for unfiltered 

(ignoring the presence of noneffortful responses) and filtered (treating noneffortful responses as 

missing) datasets. These invariance analyses were conducted in the exact manner described in 

the analyses subsection of the simulation study. Following the recommendations of Kline (2005), 

the chi-square statistic, CFI, RMSEA, and SRMR fit indexes were reported. Adequate model fit 

was supported by meeting the following criteria for at minimum two of the three fit indices: CFI 

≥ .90, RMSEA ≤ .06, and SRMR ≤ .08 (Hu & Bentler, 1999). Similar to the simulation study, the 

following criteria were used to evaluate the fit of nested models: ΔCFI < -.01, ΔRMSEA < .01, 
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and ΔSRMR < .015. If the fit of a constrained model was found to exceed two of the three 

criteria, it was determined that the additional equalities specified led to significant model 

deterioration.  

Results 

 Invariance analyses are first presented for the unfiltered data. The first step of this 

analysis was to establish a baseline model by fitting each country’s data separately to test for 

unidimensionality. Across both UAE (𝜒𝜒2 = 501.34, df = 405, p = .001;  CFI = .988; RMSEA = 

.018; SRMR = .052) and Chinese samples (𝜒𝜒2 = 426.68, df = 405, p = .24; CFI = .991; RMSEA 

= .010; SRMR = .079), the unidimensional model was found to provide adequate fit to the 

sample data. Next, configural invariance was evaluated across countries based on the 

unidimensional model and found to be supported in the sample data based on CFI, RMSEA, and 

SRMR model fit statistics (CFI and RMSEA; 𝜒𝜒2 = 974.68, df = 868, p = .007; CFI = .989; 

RMSEA = .014; SRMR = .063), suggesting that the overall factor structure stipulated fit equally 

well across UAE and Chinese examinees. However, constraining the factor loadings equal across 

countries (𝜒𝜒2 = 1527.85, df = 899, p < .001; CFI = .937; RMSEA = .034; SRMR = .090) led to 

significant model deterioration according to the ΔCFI (-.052), ΔRMSEA (.020), and ΔSRMR 

(.027) indices. This result indicates that the magnitudes of the factor loadings across countries 

were not equivalent, suggesting that the scale origin differed by sample. As a consequence, there 

is a lack of evidence to support the validity of making direct mean comparisons across UAE and 

Chinese samples on the science assessment examined based on the unfiltered data. 

 Turning next to the invariance analyses based on filtered data, a comparison between the 

two countries sampled demonstrated large differences in noneffortful responding. Specifically, 

the percentage of noneffortful responses in the UAE data matrix was approximately 20% 
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compared to only 8% for the Chinese sample. Although, the percentage of noneffortful 

responders (i.e., examinees engaging in at least one noneffortful response) was only 9% higher in 

the UAE sample (85% compared to 76% in the Chinese sample), nearly 50% of Emirati 

examinees noneffortfully responded on more than five of 31 items and 15% provided a 

disengaged response on 50% or more of items. In comparison, almost 70% of Chinese 

noneffortful responders provided a disengaged response for 15% or less of items, while no 

examinees provided noneffortful responses on 50% or more of items. Furthermore, the average 

number of noneffortful responses per examinee was higher by 0.70 standard deviations for 

Emirati examinees (M = 6.08; SD = 7.12) when compared to the Chinese (M = 2.32; SD = 2.39).  

 Upon filtering noneffortful responses, a unidimensional model was fit separately to each 

country’s data to establish a baseline model. Across UAE (𝜒𝜒2 = 472.40, df = 405, p = .01; CFI = 

.987; RMSEA = .015; SRMR = .063) and Chinese samples (𝜒𝜒2 = 414.51, df = 405, p = .36; CFI 

= .994; RMSEA = .007; SRMR = .088), the data were found to support a unidimensional factor 

structure. Fitting the multiple group configural invariance model showed excellent fit to the 

sample data across the CFI, RMSEA, and SRMR indices (𝜒𝜒2 = 942.07, df = 868, p = .04;  CFI = 

.989; RMSEA = .012; SRMR = .073). Turning to the stricter metric invariance model, the 

analysis showed significant model fit deterioration (𝜒𝜒2 = 1281.98, df = 899, p < .01; CFI = .944; 

RMSEA = .027; SRMR = .092) across all three criteria (ΔCFI = -.055; ΔRMSEA= .015; 

ΔSRMR = .019). This result has two implications. First, based on filtered data, there is no 

evidence to support direct mean comparisons between Emirati and Chinese samples, given a 

failure to attain metric invariance. Second, although the measurement invariance inferences 

between the filtered and unfiltered datasets were similar, the results demonstrated improved 
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model fit at the metric invariance level when filtering noneffortful responses for two of the three 

indices (filtered – unfiltered; ΔCFI = -.003; ΔRMSEA= -.005; ΔSRMR = -.008).  

Discussion 

The objective of this study was to examine the impact of differential NER on 

measurement invariance analyses and latent mean subgroup comparisons. Overall, results 

demonstrated that type I errors of measurement invariance were found to occur as differential 

NER rates between subgroups grew, with type I errors observed under certain conditions with as 

little as a 7% difference in NER, which is well within the range observed in prior applied 

analyses (e.g., Goldhammer et al., 2016; Rios & Guo, 2020). When invariance was incorrectly 

rejected, which was observed for 26% of replications investigated, it was done consistently at the 

metric invariance level, with no negative impacts on either configural or scalar invariance. This 

finding indicates that NER significantly led to biased factor loading estimates, which supports 

prior literature that has demonstrated that NER, when ignored, typically leads to significant 

underestimation of item discrimination (an equivalent of factor loadings in the IRT framework; 

e.g., Rios & Soland, 2020). Another potential cause for the incorrect rejection of measurement 

invariance is that differential NER could be associated with misspecified correlated errors, which 

have been shown to lead to type I errors of metric invariance tests (but not scalar invariance 

tests; see Joo & Kim, 2019).  

The relationship between NER rate and type I error was found to be moderated by 

subgroup sample sizes and group impact. Concerning the former, when the subgroups were 

unbalanced (i.e., focal group simulees comprised 67% of the sample), the percentage of type I 

error was lower. One potential reason for the lower type I errors is that imbalanced subgroup 

sample sizes can mask violations of measurement invariance (Yoon & Lai, 2018). In addition, 
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across conditions, group impact was associated with higher type I error rates. Prior research 

conducted by Stark et al. (2006) supports this finding, as these authors showed that when testing 

for measurement invariance within a confirmatory factor analytic framework, type I errors can 

increase in the presence of group impact, particularly when sample sizes are large (N = 1,000). 

This is likely due to differential stability of model parameter estimates based on a shifting of the 

ability distribution, leading to less available data for estimation, which when coupled with 

differential NER can lead to biased model parameter estimates and type I errors when testing for 

measurement invariance. Taken together, findings from this study suggest that type I error rates 

may be quite high (as high as 100%) when testing for measurement invariance in the presence of 

differential NER between subgroups that are unbalanced in sample size and differ in their 

underlying mean abilities; however, this is largely dependent on the NER rate. As demonstrated 

via data from PISA and other operational testing contexts, subgroups in practice can differ in 

NER by as much as 22%, which at minimum can lead to model fit deterioration, and potentially 

incorrect measurement invariance inferences under the certain contexts. 

Although minimal type I errors were observed for NER rates less than or equal to 7% 

when testing for measurement invariance, differential NER still led to bias in estimates of latent 

mean differences. Specifically, the relationship between latent mean difference type I error (and 

bias) and NER rate was moderated by whether simulees engaging in NER were predominately of 

lower ability or were representative of the entire ability continuum. As expected, greater type I 

error and bias was observed for the former condition, due to the tendency of overestimating 

group ability when NER is related to the underlying ability of examinees (see Rios & Soland, 

2020). As a consequence, for a NER rate of 7%, type I error rates reached 100%, while latent 

mean differences were biased by an average of -0.18 SDs. To put this magnitude into context, the 
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observed degree of negative bias is nearly equivalent to two-thirds a year reduction in the 

average annual growth in science for K-12 students in the United States (0.29 SDs; Bloom et al., 

2008). Such a degree of bias has the potential to negatively affect the validity of inferences 

around subgroup inferences concerning achievement gains (e.g., Wise & DeMars, 2010), 

treatment effects (e.g., Osborne & Blanchard, 2011), and international comparisons (e.g., Debeer 

et al., 2014), to name a few. Taken together, findings from this study suggest that even when 

differential NER does not lead to type I errors of measurement invariance, under certain 

conditions, its presence is still linked to making potentially incorrect inferences concerning 

subgroup comparisons given the tendency of NER to mask true differences. 

Limitations and Directions for Future Research 

 A number of study limitations should be noted. First, although the simulation design in 

this study included factors that considered underlying sample size, ability, and noneffortful 

responding rate differences between subgroups, additional variables should be explored in future 

research. As an example, across simulation conditions, the number of subgroups in the 

invariance analyses was constrained to two. Although this reflects the most common number of 

subgroups included in most simulation research on measurement invariance topics, given the 

limited research, it is unclear what the influence on fit indices and measurement invariance 

inferences would be if increasing the number of subgroups (Putnick & Bornstein, 2016). Clearly, 

more research is needed in this area, and as a result, readers should limit the generalizability of 

findings to the two-group context. Similarly, while this study assumed normal ability 

distributions, prior research has found that skewed latent trait distributions can influence 

measurement invariance testing (Finch et al., 2018). As such, future research should investigate 

the dependent variables examined in this study under conditions with skewed ability distributions 

and group impact.  
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Second, there is a need to research the practical effect of differential NER on other 

measurement contexts. One area with serious potential consequences is score linking. Though 

Mittelhaëuser et al. (2015) examined the role of differential test-taking effort for linking under 

external anchor and pretest designs, many international testing programs, such as PISA, use an 

internal anchor design with IRT concurrent calibration linking. In such an approach, item 

parameters are tested for invariance across forms (or countries) to identify an internal anchor for 

which to link scores. However, as countries in international testing contexts, such as PISA, have 

been found to show large variation in test-taking effort (e.g., Debeer et al., 2014), it would be of 

interest to examine how differential NER could impact the accuracy of identifying anchor items, 

and ultimately, bias in linking coefficients.   

Recommendations for Practice 

 As the presence of differential NER can negatively influence both evaluations of scale 

property equivalence and latent mean comparisons across subgroups, it is vital that practitioners 

document evidence that subgroups put forth equal effort when disaggregating data. To provide 

this evidence, a number of procedures have been proposed that rely on survey data, item 

responses, and/or the availability of response time data (for a review, see Wise & Kong, 2005). 

Furthermore, a number of filtering procedures and IRT models have been developed to improve 

ability estimation in the presence of NER (e.g., Liu et al., 2019; Rios et al., 2017; Rios & Soland, 

2020; Wise & Kingsbury, 2016). Although further research is needed to continually improve the 

accuracy of both identification and ability estimation procedures for NER, many options are 

readily available for practitioners to document and attempt to improve ability estimation in the 

presence of differential NER.  
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Beyond documenting this information post-hoc, practitioners can attempt to increase test-

taking effort either before and/or during test administration to mitigate NER. To this end, Rios 

(2020) has documented several interventions that researchers have developed to improve test-

taking effort, which include increasing test relevance, providing feedback, altering test design 

and administration procedures, and offering contingency-based external incentives. Although 

Rios found the latter two intervention types to be most successful on average, there has been 

minimal research that has investigated whether the utility of interventions is equivalent across 

subpopulations. Clearly, further research is needed on this topic; however, practitioners can still 

attempt to mitigate NER by addressing low test-taking effort via some of these interventions.  

Therefore, it is recommended that prior to evaluating measurement invariance and 

making subgroup comparisons from low-stakes testing contexts, practitioners should: (a) employ 

interventions to improve test-taking effort; (b) document potential differential NER; and (c) filter 

(i.e., remove) or model NERs to improve item and ability parameter estimation accuracy. A 

failure to do so may lead to incorrect inferences concerning scale property equivalence and 

subgroup mean comparisons when differential NER is present.  
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Table 1 

Results of Regressing Study Factors on Type I Error of Measurement Invariance  

Predictor Estimate S.E. 
Intercept -9.77*** 0.46 
Test Length 0.21* 0.09 
Group Impact 4.08*** 0.50 
Ability Relationship -0.11 0.09 
Focal Percent 2.40*** 0.53 
NER Rate 93.65*** 5.02 
NER Rate x Group Impact -58.79*** 5.21 
NER Rate x Focal Percent -28.33*** 5.67 
Group Impact x Focal Percent -2.19*** 0.62 
NER Rate x Group Impact x Focal Percent 18.01** 5.98 

Note. A logistic regression analysis was conducted for the Type I error dependent variable (N = 
4,800). Estimates are on a logit scale. ***<.0001; **<.01; *<.05 
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Table  2 

LV Mean Difference Type I Error Rates and Bias 
Condition Differential NER Rate 

Test Length Group Impact NER-Ability Relationship 2% 4.5% 7% 
30 items No Impact Related 19% (-0.04) 27.5% (-0.05) 100% (-0.18) 

  Unrelated      7.5% (-0.02) 14% (-0.03) 64.85% (-0.08) 
 Impact Related 19.5% (-0.04) 24.5% (-0.04) 100% (-0.18) 
  Unrelated 9.5% (-0.02) 11.5% (-0.03) 73.49% (-0.09) 

60 items No Impact Related 32% (-0.04) 52% (-0.06) 100% (-0.19) 
  Unrelated 6% (-0.01) 19% (-0.04) 76% (-0.08) 
 Impact Related 25% (-0.05) 38% (-0.06) 100% (-0.19) 
  Unrelated 13% (-0.02) 20% (-0.04) 82% (-0.10) 

Note. The average latent mean difference bias is presented in parentheses. Results are averaged across focal simulee percentage. For 
the 2% and 4.5% conditions, sample sizes were equal to 100, while the 7% condition is based on sample sizes of 93 and 85 for test 
lengths of 30 and 60 items, respectively (replications failing to attain full scalar invariance were removed). Differential NER rates of 
14.5% and 22% were excluded due to the high measurement invariance type I errors observed for these conditions.
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Table 3 

Results of Regressing Study Factors on Latent Mean Difference Type I Error 

Predictor Estimate S.E. 
Intercept 0.52*** 0.02 
No. Items -0.03 0.02 
Group Impact -0.10*** 0.01 
Ability Relationship 0.19*** 0.02 
Focal Percent 0.03* 0.02 
NER Rate: 4.5% -0.38*** 0.03 
NER Rate: 7% -0.22** 0.03 
No. Items x NER Rate: 4.5% 0.17*** 0.03 
No. Items x NER Rate: 7% 0.18*** 0.03 
Ability Relationship x NER Rate: 4.5% -0.01 0.03 
Ability Relationship x NER Rate: 7% -0.11*** 0.03 

aDue to the extensive number of replications that failed to attain full scalar invariance, the 14.5% 
and 22% NER rate conditions were excluded. Estimates are on a logit scale. ***<.0001; **<.01; 
*<.05 
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Figure 1 

Measurement Invariance Type I Error Rates 

 

Note. Type I error rates shown are aggregated across relationship with ability conditions. 
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Appendix A 
 

Generating Item Parameters for 30 Item Condition 
Item a b 

1 0.83 1.55 
2 1.39 -0.75 
3 0.94 -0.29 
4 0.76 0.55 
5 0.71 1.38 
6 0.7 0.72 
7 1.02 -0.65 
8 0.94 -0.05 
9 0.87 0.38 
10 0.98 0.46 
11 1.19 -0.13 
12 1.06 -0.64 
13 1.28 0.76 
14 1.01 -0.87 
15 1.55 -0.93 
16 1.35 0.87 
17 1.74 0.21 
18 0.4 -0.3 
19 1.31 1.32 
20 0.68 1.02 
21 1.44 0.82 
22 1.19 -0.2 
23 1.69 0.36 
24 0.91 0.79 
25 0.49 -1.57 
26 1.55 1.08 
27 0.6 -2.14 
28 1.58 -0.29 
29 0.45 0.72 
30 1.68 0.86 

Mean 1.07 0.17 
Standard Deviation 0.39 0.89 

Note. These item parameters were taken from an operational administration of the NAEP reading 
assessment. 
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Appendix B 
 

Generating Item Parameters for 60 Item Condition 
Item a b 

1 0.83 1.55 
2 1.39 -0.75 
3 0.94 -0.29 
4 0.76 0.55 
5 0.71 1.38 
6 0.7 0.72 
7 1.02 -0.65 
8 0.94 -0.05 
9 0.87 0.38 

10 0.98 0.46 
11 1.19 -0.13 
12 1.06 -0.64 
13 1.28 0.76 
14 1.01 -0.87 
15 1.55 -0.93 
16 1.35 0.87 
17 1.74 0.21 
18 0.4 -0.3 
19 1.31 1.32 
20 0.68 1.02 
21 1.44 0.82 
22 1.19 -0.2 
23 1.69 0.36 
24 0.91 0.79 
25 0.49 -1.57 
26 1.55 1.08 
27 0.6 -2.14 
28 1.58 -0.29 
29 0.45 0.72 
30 1.68 0.86 
31 0.68 -1.84 
32 0.52 -1.54 
33 1.48 -0.16 
34 1.19 1.24 
35 1.89 0.14 
36 1.55 1.01 
37 0.52 -1.57 
38 0.59 2.17 
39 0.54 -2.1 
40 1.21 -0.49 
41 1.14 0.38 
42 0.55 -1.68 
43 1.62 -0.48 
44 1.07 0.14 
45 1 -0.58 
46 1.9 1.31 
47 0.74 -1.56 
48 1.91 1.29 
49 1.31 1.83 
50 1.61 -0.3 
51 1.8 1.73 
52 1.18 0.62 
53 0.72 -1.84 
54 1.29 -0.16 
55 1.14 -0.2 
56 1.12 0.72 
57 1 0.64 
58 1.12 2.02 
59 1.57 1.82 
60 1.02 0.54 

Mean 1.12 0.14 
Standard Deviation 0.41 1.10 

Note. These item parameters were taken from an operational administration of the NAEP reading assessment. 
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Appendix C 

Type I Error Rates of Metric Invariance by Condition  
Test 

Length Impact Ability Subgroup 
Sample Size 

Differential NER 
Rate ΔCFI ΔRMSEA ΔSRMR Type I 

Error Rate 
30 -0.5 0 0 7% 0.006 0.012 0.009 7% 
30 -0.5 0 1 7% 0.006 0.012 0.008 12% 
30 -0.5 0 0 14.5% 0.020 0.016 0.016 99% 
30 -0.5 0 1 14.5% 0.020 0.014 0.014 96% 
30 -0.5 0 0 22% 0.025 0.016 0.018 100% 
30 -0.5 0 1 22% 0.027 0.014 0.015 100% 
30 -0.5 1 0 7% 0.005 0.011 0.009 3% 
30 -0.5 1 1 7% 0.005 0.012 0.008 1% 
30 -0.5 1 0 14.5% 0.018 0.016 0.015 98% 
30 -0.5 1 1 14.5% 0.020 0.015 0.014 100% 
30 -0.5 1 0 22% 0.025 0.016 0.018 100% 
30 -0.5 1 1 22% 0.026 0.014 0.015 100% 
30 0 0 0 22% 0.004 0.010 0.007 1% 
30 0 0 1 22% 0.004 0.010 0.006 0% 
30 0 0 0 7% 0.012 0.011 0.010 77% 
30 0 0 1 7% 0.013 0.009 0.009 81% 
30 0 0 0 14.5% 0.014 0.012 0.012 91% 
30 0 0 1 14.5% 0.014 0.010 0.010 86% 
30 0 1 0 22% 0.002 0.007 0.006 0% 
30 0 1 1 22% 0.002 0.007 0.005 0% 
30 0 1 0 7% 0.009 0.012 0.009 44% 
30 0 1 1 7% 0.009 0.009 0.008 40% 
30 0 1 0 14.5% 0.012 0.011 0.011 76% 
30 0 1 1 14.5% 0.012 0.010 0.010 78% 
60 -0.5 0 0 14.5% 0.007 0.013 0.011 8% 
60 -0.5 0 1 14.5% 0.007 0.013 0.010 18% 
60 -0.5 0 0 22% 0.024 0.015 0.019 100% 
60 -0.5 0 1 22% 0.026 0.013 0.017 100% 
60 -0.5 0 0 7% 0.034 0.015 0.022 100% 
60 -0.5 0 1 7% 0.037 0.013 0.019 100% 
60 -0.5 1 0 14.5% 0.007 0.014 0.012 9% 
60 -0.5 1 1 14.5% 0.007 0.013 0.010 11% 
60 -0.5 1 0 22% 0.024 0.016 0.020 100% 
60 -0.5 1 1 22% 0.025 0.014 0.018 100% 
60 -0.5 1 0 7% 0.033 0.015 0.022 100% 
60 -0.5 1 1 7% 0.035 0.014 0.019 100% 
60 0 0 0 7% 0.004 0.011 0.008 1% 
60 0 0 1 7% 0.004 0.011 0.007 0% 
60 0 0 0 14.5% 0.015 0.010 0.013 96% 
60 0 0 1 14.5% 0.016 0.009 0.011 96% 
60 0 0 0 22% 0.021 0.011 0.016 100% 
60 0 0 1 22% 0.021 0.009 0.013 100% 
60 0 1 0 7% 0.002 0.008 0.007 0% 
60 0 1 1 7% 0.002 0.008 0.005 0% 
60 0 1 0 14.5% 0.013 0.011 0.013 94% 
60 0 1 1 14.5% 0.013 0.009 0.011 87% 
60 0 1 0 22% 0.019 0.012 0.016 100% 
60 0 1 1 22% 0.018 0.010 0.013 100% 

Note. NER rates of 2.5% and 5% are not included, as type I error rates for these conditions were equal to 0%. Impact = group impact (-0.5 = 
difference in mean between groups by 0.5 SD; 0 = matched mean ability); Ability = relationship between ability and NER (0 = unrelated; 1 = 
related); Subgroup Sample Size: 0 = balanced sample sizes; 1 = unbalanced sample sizes; NER Rate = difference in NER between focal and 
reference groups; % Type I Error rate is based on 100 replications 

 

 

 


