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ABSTRACT
The natural hormone 17b-estradiol (E2) induces tumors in var-

ious organs of rats, mice, and hamsters. In humans, slightly ele-
vated circulating estrogen levels caused either by increased en-
dogenous hormone production or by therapeutic doses of estrogen
medications increase breast or uterine cancer risk. Several epige-
netic mechanisms of tumor induction by this hormone have been
proposed based on its lack of mutagenic activity in bacterial and
mammalian cell test systems. More recent evidence supports a dual
role of estrogen in carcinogenesis as a hormone stimulating cell
proliferation and as a procarcinogen inducing genetic damage.
Tumors may be initiated by metabolic conversion of E2 to 4-hy-
droxyestradiol catalyzed by a specific 4-hydroxylase (CYP1B1) and

by further activation of this catechol to reactive semiquinone/qui-
none intermediates. Several types of direct and indirect free
radical-mediated DNA damage are induced by E2, 4-hydroxyestra-
diol, or its corresponding quinone in cell-free systems, in cells in
culture, and/or in vivo. E2 also induces various chromosomal and
genetic lesions including aneuploidy, chromosomal aberrations,
gene amplification, and microsatellite instability in cells in culture
and/or in vivo and gene mutations in several cell test systems.
These data suggest that E2 is a weak carcinogen and weak mutagen
capable of inducing genetic lesions with low frequency. Tumors
may develop by hormone receptor-mediated proliferation of such
damaged cells. (Endocrine Reviews 21: 40 –54, 2000)
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I. Carcinogenicity of E2

THE INDUCTION of tumors by E2 and its esters was
described in the late 1930s by Lipschutz and Vargas in

guinea pigs and by Gardner in the early 1940s in mice [re-
viewed by the International Agency for Research on Cancer
(IARC) (1, 2)]. Since that time, many more reports of tumor
induction by estrogens have been published, and many ro-
dent tumor models have been introduced (1, 2). In contrast,
the potential carcinogenic activity of estrogen-containing
medications in humans has not been recognized for many
years. Estrogens have generally been considered beneficial,
based on a variety of hormonal effects. However, in the past
15–20 yr, epidemiological studies have increasingly pointed
to an increased breast or uterine tumor risk associated with
estrogens. This text cannot provide a detailed review of the
animal and human carcinogenicity data [which may be
found elsewhere (1, 2)], but can only highlight key reports.

A. Carcinogenicity of E2 in animals

The evidence for the carcinogenic activity of 17b-estradiol
(E2) in animals has been deemed sufficient by the IARC to
consider this hormone a carcinogen (1, 2). This conclusion is
based on numerous tests of E2 administered to rodents by
oral or subcutaneous administration. For instance, the ad-
ministration of E2 to mice increased the incidence of mam-
mary, pituitary, uterine, cervical, vaginal, testicular, lym-
phoid, and bone tumors (3–6). In rats, E2 or estrone (E1)
increased the incidence of mammary and/or pituitary tu-
mors (7–9). In hamsters, a high incidence of malignant kidney
tumors occurred in intact and castrated males (10–13) and in
ovariectomized females, but not in intact females (10). In
guinea pigs, diffuse fibromyomatous uterine and abdominal
lesions were observed (14). E2 also induced tumors when
administered orally in the drinking water or in rodent chow
(4, 5, 15, 16). All these tumor models have been developed
using pharmacological doses of E2 with the aim of examining

Address reprint requests to: Joachim G. Liehr, Ph.D., The Stehlin
Foundation for Cancer Research, 1918 Chenevert Street, Houston, Texas
77003 USA. E-mail: jliehr@mindspring.com

*Studies in the author’s laboratory have been supported by grants
from the National Cancer Institute (NIH Grants CA-63129 and CA-
74971).

0163-769X/00/$03.00/0
Endocrine Reviews 21(1): 40–54
Copyright © 2000 by The Endocrine Society
Printed in U.S.A.

40

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/21/1/40/2423794 by guest on 21 August 2022



the tumorigenic activity of this hormone in a relatively short
period of time.

The purpose of all these studies was the development of
useful and practical animal models for the investigation of
mechanistic aspects of hormone-induced tumorigenesis. No
animal models have been developed in which tumors are
induced by very low doses of E2, presumably because of the
cost of maintenance of a large number of animals for such a
model and the difficulty of dosing in view of the varying
levels of endogenous estrogen in cycling females. The same
considerations, however, are also true for almost all other
carcinogens known to man, which have been established as
carcinogens at high doses in small groups of animals over a
short period of time. Although the predictive value of car-
cinogenicity testing at high doses has been questioned (17,
18), estrogens are nevertheless considered to be carcinogens,
based mainly on two types of evidence (1, 2): various tumor
types are induced in animals in many organ sites under a
variety of treatment conditions as discussed above. More-
over, a consensus is developing that estrogens impart a de-
fined carcinogenic risk to human populations exposed to the
low concentrations of estrogens used for medication pur-
poses as discussed below.

B. Carcinogenicity of E2 in humans

Estrogen administration is accepted by most epidemiolo-
gists as a risk factor of human endometrial adenocarcinoma
(19, 20). Thus, estrogens unopposed by progestins increase
the risk of uterine tumors. This risk increases with increasing
doses of estrogen and with the length of treatment (21).
Obesity also increases uterine tumor risk, most likely because
the aromatase activity of adipose cells elevates tissue and
circulating E1 levels (21, 22).

Increasing evidence shows that slightly elevated levels of
circulating estrogens are also a risk factor for breast cancer
(23, 24). This role of endogenous estrogen in human breast
carcinogenesis is supported by risk factors of breast cancer
such as high serum or urine estrogen levels (25, 26), the early
onset of menstruation, or late menopause (27). While early
cohort studies failed to identify an association between se-
rum hormone levels and breast cancer (28, 29) (presumably
due to shortcomings of the assay methods), more recent
cohort studies have demonstrated strong relationships be-
tween endogenous estrogen levels and breast cancer risk (25,
30–33). The role of endogenous E2 as a risk factor in human
breast cancer is reviewed in more detail in the epidemio-
logical literature (Refs. 23, 24, and 27 and references cited
therein).

Exogenous estrogens, alone or in combination with pro-
gestin, also elevate breast cancer risk (34–36). Progestin
added to the estrogen medications does not inhibit mam-
mary carcinogenesis (37) because the former hormone ap-
pears to be the primary mitogen of mammary ductal epi-
thelial cells (38), whereas estrogen appears to function in
this manner in the uterus. Pike et al. (39) summarized the
population-based studies of oral contraceptive use and
breast cancer among women under 45 yr of age that had been
published through 1990 and derived a weighted average of
approximately 3.1% increase in breast cancer risk per year of

oral contraceptive use (relative risk estimate: 1.36). The
weighted relative risk for young women who consumed oral
contraceptives for 10 yr before their first full-term pregnancy
was 1.45 compared with nonusers.

Pike et al. (39) also summarized the population-based ep-
idemiological studies that had been published through 1990
and derived a weighted average of the relative breast cancer
risk from use of hormone replacement therapy. Of the 10
studies reviewed, 9 showed a positive association and the
results of 5 were statistically significant. Based on these stud-
ies, the average annual increase in breast cancer risk was 3.1%
per year of estrogen replacement therapy use. For women
with 10 yr of use, the risk of breast cancer was 1.36 times that
of women who have never used these preparations. In a more
recent meta-analysis of more than 50 studies, the relationship
has been examined between breast cancer risk and estrogen
replacement therapy during menopause (40). Although no
randomized, controlled, double-blind studies have been con-
ducted, the observational data available show an increased
risk of breast cancer with the use of estrogen replacement
therapy for more than 5–10 yr. The relative risk of breast
cancer under these circumstances increases by about 30%.
The absolute risk is small with about one additional breast
cancer case/100 women of age 50 who have taken estrogen
for at least 10 yr.

C. Conclusion: carcinogenicity of E2

These biological studies in animals and epidemiological
studies in humans all clearly identify E2 as a carcinogen.
Tumors are induced in small groups of animals with phar-
macological doses of E2 in a short period of time. In humans,
slight elevations of circulating estrogen levels caused either
by elevated endogenous production of hormone or by ther-
apeutic doses of estrogen medications also increase breast or
uterine cancer risk (1, 2, 39, 40). This carcinogenic activity of
steroidal estrogens is recognized by the IARC, which clas-
sifies the evidence for the carcinogenicity of steroid estrogens
to humans as sufficient (1, 2).

The human epidemiological data point to E2 and other
estrogens as only weak carcinogens. This conclusion is not
contradicted by laboratory animal tests, which provide only
qualitative results given the difficulties with appropriate
dosing. Thus in animals, E2 may well be only a weak car-
cinogen compared with other laboratory carcinogens such as
benzo[a]pyrene or 7,12-dimethylbenzanthracene. However,
only a weak carcinogenic activity is to be expected because
E1, E2, and other steroidal estrogens are endogenous hor-
mones at low picomolar levels and because a strong carci-
nogenicity would have provided an evolutionary disadvan-
tage to humans and many other species.

II. Hormonal Contributions of E2 to Carcinogenesis

There is widespread agreement among scientists that on-
cogenesis in hormone-responsive tissues such as in the mam-
mary gland or the uterus is not possible without a contri-
bution by receptor-mediated hormonal effects. E2 regulates
or, in conjunction with other hormones, participates in the
regulation of the development of reproductive organs early
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in life, in differentiation, and later in their proper functioning
during reproduction (41, 42). The biological basis for this role
of E2 and of other steroid hormones is the differential control
of gene expression and of the stimulation of proliferation of
uterine or mammary epithelial cells or other responsive cells.
The mechanism of E2-induced cell proliferation is still under
discussion and beyond the scope of this review. Various
mechanisms have been proposed, including the stimulation
by E2 of the expression of genes critical for regulating the cell
cycle (43, 44). E2 may bind to nuclear estrogen receptors and
thus initiate this gene expression. Estrogen binding to plasma
membrane receptors may also participate in the stimulation
of cell proliferation (45). Alternatively, E2 has been proposed
to bind to a regulatory plasma protein and thus cancel the
inhibition of cell proliferation exerted by this protein (46).
Whatever the mechanistic details, the inhibition of E2-
induced proliferation of human tumor cells by hormone an-
tagonists clearly demonstrates the role of the estrogen re-
ceptor in cell proliferation and hormone-dependent tumor
growth (47). In vivo, the hormone antagonists also inhibit
E2-induced tumor development as illustrated by the inhibi-
tion of renal carcinogenesis in Syrian hamsters (48). In that
model, tamoxifen clearly inhibits tumor appearance by re-
ceptor-mediated processes, since early events such as estro-
gen-induced DNA alterations are not affected by this treat-
ment. These data demonstrate that estrogen-regulated
proliferation of hormone-responsive transformed or tumor
cells may fix any spontaneous or induced DNA damage and
thus establish a potentially malignant tumor.

III. E2 as Epigenetic Carcinogen

Estrogens including E2 have been classified as epigenetic
nongenotoxic carcinogens based on their failure to induce
mutations in a series of bacterial and mammalian gene mu-
tation assays (49, 50). For instance, E2, E1, and other estrogens
do not display any mutagenic activity in the Ames (Salmo-
nella typhimurium) assay with or without an extrinsic metab-
olizing system (51–53). E2 and E1 also failed to induce mu-
tations in V79 Chinese hamster cells when tested in the 1029

to 102 4 m concentration range (54, 55). Moreover, E2 did not
induce sister chromatid exchanges in human lymphocytes,
whereas diethylstilbestrol generated such alterations (56).
This lack of apparent mutagenic activity of E2 led several
researchers to propose various epigenetic pathways of tumor
induction by estrogens as an explanation of the role of es-
trogen in breast cancer and other human tumors. Several of
these pathways are presented and discussed below.

A. Uncontrolled cell proliferation by E2

Tumorigenesis by uncontrolled stimulation of mammary
epithelial cell proliferation has been proposed by Furth (57).
A more recent modification of this mechanistic proposal is
the hormone-dependent receptor-mediated proliferation of
mammary epithelial cells carrying spontaneous replication
errors (23). The absence of estrogen receptors in proliferating
human mammary epithelial cells (58, 59) provides evidence
against this mechanistic pathway, at least in the form pro-
posed. It is possible that estrogens stimulate growth factors

by receptor-mediated pathways in neighboring cells, which
in turn stimulate mammary epithelial cell proliferation (44).
However, the development of synthetic estrogens such as
17a-ethinylestradiol or 2-fluoroestradiol with well main-
tained hormonal potency but significantly reduced carcino-
genic activity in animal models (10, 13, 60) indicates that the
background of spontaneous replication errors of normal cells
may not be sufficient for tumors to develop solely in response
to a proliferative stimulus. More likely, tumors may arise by
hormone receptor-mediated proliferation of cells trans-
formed by specific genetic damage in addition to background
lesions. This view is consistent with the ability of estrogens
to induce various genetic lesions as described below.

B. Carcinogenesis by covalent modification of E2 receptors

Fishman, Bradlow, and co-workers (61, 62) proposed the
induction of breast cancer by a covalent modification of E2
receptors resulting in a permanent uncontrolled stimulation
of mammary epithelial cell proliferation by receptor-medi-
ated processes. According to this hypothesis, 16a-hy-
droxyestrone, an E1 metabolite, covalently binds to amino
groups of proteins, including the estrogen receptor protein,
and thus permanently stimulates the receptor and induces
hormone-responsive processes, including gene expression
and cell proliferation, in an uncontrolled manner (63). In
support of this mechanism, many studies have been con-
ducted with the aim of correlating 16a-hydroxylation of es-
trogens with tumor induction in laboratory rodents (61), with
incidence of breast cancer and other diseases in humans
(62–65), and with other parameters of tumorigenesis, such as
induction of oncogene expression (66–70). In most of the
early studies of Bradlow, Fishman and associates (71, 72), 2-
and 16a-hydroxylation of E1 were assayed by tritium release
from [2-3H]- and [16a-3H]estrone as substrates, respectively
(71, 72). These assays have never been fully validated against
established product isolation assays of estrogen metabolism
but have been questioned because of spurious release of
tritium from 3H-labeled E1 (73–77). In addition, the positive
correlation between elevated 16a-hydroxylation rates and
breast cancer risk observed by Fishman and Bradlow and
associates (62) and Osborne et al. (78) could not be validated
in other laboratories by other researchers (26, 79, 80). Because
of this lack of validation of the assay of E1 2- and 16-hy-
droxylation and because of inadequate corroboration of the
molecular epidemiology results by other laboratories using
validated product isolation assays, further work is needed
to determine the validity of the mechanistic hypothesis
of breast cancer induction as proposed by Fishman and
Bradlow.

C. Estrogen-induced chromosomal abnormalities

Barrett and co-workers (81, 82) have reported the neoplas-
tic transformation of Syrian hamster embryo cells by E2 and
by the synthetic estrogen diethylstilbestrol without detect-
able concomitant gene mutations at the ouabain resistance
and 6-thioguanine resistance loci. In contrast, there was a
consistent correlation of cell transformation with aneu-
ploidy. Both chromosome losses and gains were observed,
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suggesting a nondisjunctional mechanism (81, 82). The lack
of detectable gene mutations at defined loci by synthetic and
natural estrogens and the occurrence of aneuploidy concom-
itant with cell transformation led Barrett and co-workers
(83–85) to propose an epigenetic pathway of estrogen-
induced carcinogenesis with the following features: synthetic
or natural estrogens including E2 may disrupt microtubule
organization of cells, resulting in anaphase abnormalities
and nondisjunction. The resulting chromosomal aneuploidy
subsequently may induce cell transformation. However, in a
study of the genetic changes occurring during the rare spon-
taneous progression of Syrian hamster embryo (SHE) cells
from normal to immortalized and further to neoplastic trans-
formed cells, Endo et al. (86) observed chromosomal abnor-
malities in cells that were not capable of inducing tumors in
nude mice. Thus, these authors (86) concluded that other
genetic changes (mutations) were necessary in addition to
chromosomal abnormalities for cells to acquire tumorigenic-
ity. This view is also consistent with the concept of Lengauer
et al. (87) that aneuploidy is a part of multiple types of genetic
alterations, including base substitutions, deletions, inser-
tions, gene amplifications, numerical chromosomal changes,
and chromosomal translocations that together make up the
genetic instability leading to human cancer.

D. Epigenotoxic mechanism of estrogen carcinogenesis

Li and co-workers proposed an “epigenotoxic,” multistage
scheme for estrogen carcinogenesis in the hamster kidney
(88–91). They defined an epigenotoxic carcinogen as “an
agent that is not involved in direct (covalent) or indirect
interactions with genetic material but, nevertheless, is able to
elicit heritable changes by alternative mechanisms” (91, 92).
According to this hypothesis, which has been developed
mainly by studying the hamster kidney model, estrogen-
induced carcinogenesis involves estrogen-mediated cathep-
sin D and peroxidase induction, reparative cell proliferation,
aneuploidy and inappropriate protooncogene and suppres-
sor gene expression such as amplification of c-myc (91, 92–
95). The sustained overexpression of early estrogen response
genes such as c-fos and c-myc is thought to be related to
estrogen-induced genomic instability as manifested by am-
plification of c-myc (95), which is a mechanism of activation
of this gene to a transforming oncogene. Tumors are thought
to arise from the distinct growth advantage of cells overex-
pressing c-fos, c-myc, and c-jun and other early estrogen re-
sponse genes.

Li et al. (94, 96–98) postulated the induction of genetic
instability by mechanisms other than direct covalent or in-
direct interactions of estrogen metabolites with genetic ma-
terial because they detected only very low rates of metabolic
conversion of E2 to the catechol metabolites 2- and 4-hy-
droxyestradiol, the precursors of reactive semiquinone and
quinone intermediates (as discussed below). Their hypoth-
esis is also based on their inability to confirm the formation
of estrogen-induced DNA adducts (99) by 32P-postlabeling
assay as described earlier by Liehr and co-workers (100, 101).
Unfortunately, rates of metabolic conversion of estrogens to
catechol metabolites determined by Li and co-workers (94,
96–98, 102) were measured using an unvalidated, indirect

radioenzymatic assay that converts the unstable catecho-
lestrogens to more stable methoxyestrogens catalyzed by
catechol-O-methyltransferase (103, 104). This assay has been
shown to underestimate rates of catecholestrogen formation
by 2 to 3 orders of magnitude (105). Specifically, 4-hydroxy-
lation of estrogens cannot be detected by this radioenzymatic
assay in microsomal preparations expressing both estrogen
2- and 4-hydroxylase activity (105), because 2-hydroxyestra-
diol inhibits the catechol-O-methyltransferase-mediated
methylation of 4-hydroxyestradiol and thus inhibits forma-
tion of assayable product (106).

In contrast, much higher rates of catechol formation than
those described by Li et al. (94, 96–98, 102) were obtained in
target organs where estrogens induce tumors using product
isolation assays fully validated and cross-checked in several
laboratories (105, 107–112). In these studies, assays were
validated in the same (Liehr) laboratory using two different
product isolation procedures, a gas chromatography-based,
and a TLC-based method or in two different laboratories
(Liehr and Weisz) using the same hamster microsomal prep-
arations (105, 109, 111). Finally, the rates of 2- and 4-hy-
droxylation of E2 determined in these studies are consistent
with rates published by other authors [as reviewed by Zhu
and Conney (112)]. Moreover, the covalent binding of estro-
gens including catecholestrogen metabolites to DNA, ini-
tially published by Liehr and associates (100, 101), has now
been confirmed by Cavalieri et al. (see discussion below) and
by Hayashi et al. (113).

Li and associates (89, 90, 94) questioned the ability of
estrogens and their metabolites to induce DNA damage in
the carcinogenesis process on the grounds that insufficient
concentrations of E2 are present in target tissues of hormonal
cancer and that rates of its conversion to catecholestrogens
are too low to result in significant amounts of genotoxic
metabolites. This critique is based upon the measurement of
plasma E2 levels (114) and the assumption of concordance
between plasma and tissue E2 levels (115). However, this
assumption is clearly not correct, since, for instance, in pre-
menopausal women, the ratio of mammary tissue to plasma
E2 levels approximates 1:1, whereas in postmenopausal
women the ratio is 10–50:1 (116). Thus, local concentrations
of E2 in human mammary tissue and in breast tumors depend
more likely on the aromatase activity of individual mam-
mary cells (autocrine or paracrine action) than on the ovarian
hormone supply. Further evidence in support of a predom-
inant local production of hormone is provided by the high
aromatase activity of individual mammary cells (117–120).
The importance of mammary aromatase activity for local E2
concentrations has also been documented by studies in nude
mice inoculated on one side with MCF-7 breast cancer cells
stably transfected with aromatase and on the other side with
sham-transfected cells (121). Administration of the aro-
matase substrate androstenedione stimulated the prolifera-
tion only of the aromatase-positive MCF-7 tumors. The rel-
ative importance of in situ production of E2 vs. uptake from
plasma was examined by administering SILASTIC implants
of this hormone (121). The E2 levels were more than 4-fold
higher in aromatase-positive than -negative tumors. These
experiments identify the local production of E2 in hormone-
responsive tissue including mammary gland as a more im-
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portant determinant of tissue E2 levels than the hormone
supplied by circulation.

The metabolic conversion of E2 to catecholestrogen me-
tabolites has been underestimated by Li et al. as discussed
above. A specific conversion of E2 to the carcinogenic cate-
chol metabolite 4-hydroxyestradiol by a specific cytochrome
P450 has been detected in organs of rodents where estrogens
induce tumors and in human breast and uterine tissue, as
discussed below. This specific metabolic process may also
result in elevated local concentrations of catecholestrogen
metabolites. Additional research is needed to correlate local
tissue and cellular estrogen and estrogen metabolite concen-
trations with tumorigenesis.

E. Conclusion: E2 as epigenetic carcinogen

In summary, the proposals of estrogen as an epigenetic
(epigenotoxic) carcinogen as discussed above all emphasize
features that most likely participate in, but may not be suf-
ficient for, the development of hormone-responsive cancers.
There is widespread agreement that the action of estrogens
as hormones by receptor-mediated processes is necessary for
oncogenesis. Also, the induction by estrogens including E2 of
genetic lesions such as c-myc gene amplification or aneu-
ploidy is a part of genetic changes necessary for the induction
of carcinogenesis, as postulated by Lengauer et al. (87) and
discussed below. The early reports of a lack of DNA reac-
tivity and of mutational effects of estrogens or their metab-
olites, which served as the basis for the epigenetic mecha-
nistic hypotheses outlined above, may have been based on
inadequate experimental design and/or insufficiently sen-
sitive detection technology. In more recent studies from var-
ious laboratories, sufficient evidence has been obtained,
which demonstrates the ability of estrogens to undergo met-
abolic activation and to directly or indirectly modify DNA as
discussed below.

Several studies in support of epigenetic mechanistic hy-
potheses have been carried out with poorly validated and
inadequate assays. For instance, values for 16a-hydroxyla-
tion and catecholestrogen formation by radiometric or ra-
dioenzymatic assays have been obtained with unvalidated
assays and have not been corroborated in other laboratories.
Moreover, the roles of local formation and local concentra-
tions of estrogens and their metabolites have not been fully
examined in relation to the carcinogenesis process. Finally,

breast cancer is a complex disease. It is more likely that
estrogens act in a dual function as hormones, as outlined
above, and as carcinogens, as outlined below, with both these
characteristics necessary for completion of tumor develop-
ment.

IV. E2 as Genotoxic Carcinogen

The genotoxicity studies are focused on catecholestrogen
metabolites, because catecholestrogens are hydroquinones
that may readily be oxidized to DNA-reactive quinones and
semiquinones. These investigations of DNA damage by ste-
roidal estrogens via catecholestrogen metabolites received
additional impetus with the discovery of the carcinogenic
activity of 4-hydroxyestradiol, comparable to that of E2 in the
hamster kidney tumor model (52, 122, 123). More recently,
4-hydroxyestradiol administered to CD-1 female mice in the
first 5 days after birth induced a 9-fold higher incidence of
uterine adenocarcinoma than was observed with E2, whereas
2-hydroxyestradiol was approximately as carcinogenic as the
parent hormone (124). Therefore, the formation of catecho-
lestrogens and their metabolic activation to reactive inter-
mediates is discussed below in addition to the various types
of DNA damage they may induce in vitro and in vivo.

A. Metabolic conversion of E2 to catecholestrogens

2-Hydroxylation of steroidal estrogens is the major met-
abolic oxidation of estrogenic hormones in most mammalian
species as illustrated in Fig. 1 (112, 125, 126). In human or
hamster liver, this oxidation is catalyzed by cytochrome P450
3A enzymes, whereas cytochrome P450 1A enzymes are the
predominant estrogen 2-hydroxylases in extrahepatic tissues
(127–130). These estrogen 2-hydroxylases convert E2 to ap-
proximately 80–85% 2-hydroxyestradiol and, due to a lack
of specificity of the enzyme(s), to 15–20% 4-hydroxyestradiol
(76, 109). In contrast, specific estrogen 4-hydroxylase(s),
which convert E2 mainly to 4-hydroxyestradiol (131), have
been identified (107–109) in those organs of rodents in which
chronic estrogen exposure induces malignant or benign tu-
mors: hamster kidney (10), mouse uterus (124, 132), or rat
pituitary (133). The specific and local formation of 4-hy-
droxylated estrogens is important, because 4-hydroxyestra-
diol is as carcinogenic as E2 in the hamster kidney tumor
model (52, 122, 123), whereas in the mouse uterus the 4-hy-

FIG. 1. Metabolic conversion of E2 to
catecholestrogens. Hepatic cytochrome
P450 3A and extrahepatic cytochrome
P450 1A enzymes [1] convert E2 mainly
to 2-hydroxyestradiol and approxi-
mately 15%–20% 4-hydroxyestradiol
(127–130). Cytochrome P450 1B [2] of
uterus, mammary gland, testis and
other tissue converts E2 mainly to 4-hy-
droxyestradiol (131). These catechol
metabolites are methylated by catechol-
O-methyltransferase [3] to correspond-
ing methoxyestrogens.
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droxylated estrogen was 9 times more carcinogenic than the
parent hormone (124).

In humans, the predominant conversion of E2 to 4-hy-
droxyestradiol has been detected in microsomes of uterine
myometrium and fibroids, i.e., in benign uterine myomas
(134), and in benign and malignant mammary tumors and
normal mammary tissue (135). In addition, a specific estro-
gen-4-hydroxylase activity occurs in MCF-7 breast cancer
cells and is induced further in these cells by 2,3,7,8-tetra-
chlorodibenzo-p-dioxin, a common environmental pollutant
(136). This human estrogen-4-hydroxylase activity has been
identified as cytochrome P450 1B1, a novel extrahepatic
isozyme detected specifically in mammary tissue, ovary, ad-
renal gland, uterus, and several other tissues (131, 137, 138).
In one reported measurement of estrogen metabolite con-
centrations in a human breast cancer extract, the ratio of
4-hydroxyestradiol to 2-hydroxyestradiol metabolite con-
centrations was 4:1 (139). The same 4:1 ratio was detected for
the rates of formation of these catechols by breast cancer
microsomes (135). It was concluded from all these studies
that in rodent or human organs prone to estrogen-associated
cancer, the predominant metabolic conversion of E2 to 4-hy-
droxyestradiol might result in raised concentrations of this
carcinogenic estrogen metabolite in these tissues. Local tissue
catechol estrogen concentrations need to be measured in
future studies to examine this possibility.

B. Metabolic activation of catecholestrogens

Catecholestrogens are capable of metabolic redox cycling
as illustrated for 4-hydroxyestradiol in Fig. 2. This process
consists of the organic hydroperoxide-dependent oxidation
of the catecholestrogen (the hydroquinone) to the quinone,
and the NADPH-dependent cytochrome P450 reductase-
catalyzed reduction of the quinone intermediate back to the
hydroquinone (140). The semiquinone free radical is an in-
termediate in each of these metabolic conversions. The es-
trogen semiquinone is a reactive species and may react with
molecular oxygen and form quinone and superoxide radicals
(141). Alternatively, nonenzymatic redox couples between
copper ions and catecholestrogens also generate reactive ox-
ygen radicals (142, 143). Thus, metal ion-catalyzed or en-
zyme-mediated redox cycling is a mechanism of metabolic
activation resulting in the continuous formation of free rad-
icals from possibly small amounts of catecholestrogen sub-
strates that are reused in this process. This cycling reaction
may go on indefinitely, depending on the availability of
catechol substrate and organic hydroperoxide cofactor or
metal ion for the oxidation step of the cycle.

In this context, it is noteworthy that the hormone antag-
onist tamoxifen stimulates quinone reductase (144, 145),
which reduces estrogen quinone metabolites to hydroqui-
nones (catechols) by two-electron reduction (140, 141). This
direct reduction of quinones to hydroquinones bypasses the
semiquinone radical intermediates and thus decreases free
radical generation. Tamoxifen may thus protect from breast
cancer by inhibiting hormone receptor-mediated prolifera-
tion of breast cancer cells and, in addition, by decreasing the
toxicity and potential mutagenicity caused by quinones in-
cluding estrogen quinone metabolites.

C. Free radical-mediated DNA damage
induced by estrogens

Several types of free radical-mediated DNA damage are
induced by estrogens and/or their metabolites and are listed
in Table 1. For instance, DNA single-strand breaks are in-
duced in MCF-7 human breast cancer cells in culture by
3,4-estrone quinone (146, 147), formed by oxidative metab-
olism of 4-hydroxyestrone. This type of DNA damage is also
induced in FX-174 RFI plasmid DNA by 2-hydroxyestradiol
and 10 mm Cu(II)sulfate and in vivo in the kidney of Syrian
hamsters treated with either E2 or 4-hydroxyestradiol many
months before the development of neoplasms in this organ
(142, 148). A tissue-specific induction of DNA single-strand
breaks was observed in the dorsolateral prostates of Nobel
rats treated with E2 plus testosterone for 16 weeks before the
development of E2 1 testosterone-related prostate cancer in
this tissue (149). In contrast, this lesion was not detected in
ventral prostate, where cancers do not develop under these
conditions, and was not induced in either tissue by androgen
treatment alone.

Moreover, concentrations of 8-hydroxyguanine DNA
bases, formed by hydroxy radical reaction with guanine
bases, are increased over control values in DNA incubated
either with catecholestrogens and copper(II) sulfate (143),
with 4-hydroxylated estrogen metabolites and a microsomal
activating system (150), with diethylstilbestrol and horse-
radish peroxidase (151), or in vivo in the DNA of Syrian
hamsters treated with diethylstilbestrol (152), E2, or 4-hy-
droxyestradiol (153). An analogous increase in hydroxy rad-
ical damage to DNA has been identified in human mammary
tissue of breast cancer patients compared with controls (154,
155). Other forms of estrogen-induced free radical action are
consistent with the DNA damage described above and in-
clude increased protein oxidation (156), lipid peroxidation in
kidneys of estrogen-treated hamsters (157, 158) and in dor-
solateral prostates of Noble rats treated with E2 plus testos-
terone (149), and in low-density lipoprotein (LDL) (159). The
role of estrogen-induced free radical generation and action in
carcinogenesis is further supported by the decrease in E2-
induced hamster kidney tumor incidence by ascorbic acid
(vitamin C) (160), which is a free radical scavenger and is

FIG. 2. Metabolic redox cycling of catecholestrogens. 4-Hy-
droxyestradiol (as shown) is capable of metabolic redox cycling be-
tween quinone and hydroquinone (catechol) forms. Catechols are ox-
idized by organic hydroperoxide-dependent cytochrome P450 1A
enzymes or other peroxidases, whereas quinones are reduced by
NADPH-dependent cytochrome P450 reductase or NADH-dependent
cytochrome b5 reductase (140). Both oxidation and reduction proceed
via the semiquinone intermediate, which may react with molecular
oxygen and form superoxide anion (141). 2-Hydroxyestradiol or other
catecholestrogens (not shown) may undergo metabolic redox cycling
in an analogous manner.
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known to reduce estrogen quinones to hydroquinones (161)
but does not have any known estrogenic hormone antagonist
activity.

D. Indirect DNA adduct formation induced by E2

In addition to the direct free radical-initiated DNA damage
described above, estrogen exposure also results in indirect
DNA adduct formation (158, 162, 163). Some of these adducts
have been formed by reactive aldehydes such as malondi-
aldehyde, which are generated by decomposition of lipid
peroxides produced by estrogen treatment of the animals.
For instance, malondialdehyde-DNA adduct levels were in-
creased over control values in hamsters treated with E2 (158).
Adducts of this type have also been identified in mammary
DNA of breast cancer patients (164).

E. Direct estrogen DNA adducts

In addition to indirect DNA adduct formation, estrogen
metabolites also are capable of direct covalent binding to
DNA. As shown in Fig. 2, catecholestrogens may be oxidized
to quinone intermediates, which may covalently bind to
DNA in vitro (165, 166). The adducts of estrone-3,4-quinone,
formed by oxidation of 4-hydroxyestrone, are unstable and
decompose to form apurinic sites (166–168) consistent with
adduction characteristics of carcinogenic hydrocarbons (169,
170). In contrast, the DNA adducts of estrone-2,3-quinone,
formed by oxidation of 2-hydroxyestrone, are chemically
stable and do not generate appreciable amounts of apurinic
sites. The formation of the mutagenic apurinic sites by the
carcinogenic 4-hydroxyestrogen metabolites and the gener-
ation of stable DNA adducts by the weakly or noncarcino-
genic 2-hydroxyestrogen metabolites is consistent with ad-
duct patterns of carcinogenic vs. weakly carcinogenic or
noncarcinogenic hydrocarbons, respectively (169, 170). This
adduct pattern has been taken as evidence for a mechanism

of carcinogenesis by unstable adduct formation of 4-hy-
droxylated estrogens, induction of gene mutation, and sub-
sequent tumor initiation (167, 169, 170). In incubations of
estrone-3,4-quinone with the COIII gene, the estrogen me-
tabolite was covalently bound mainly to guanine (171). Fur-
thermore, the in vitro replication of the COIII template con-
taining these adducts was obstructed, indicating an arrest of
DNA polymerase by these estrogen metabolite-guanine le-
sions. 4-Hydroxyequilenin, a metabolite of the equine ste-
roidal estrogen equilenin (172), which is a component of the
common estrogen replacement medication Premarin (Ayerst
Laboratories, New York, NY), forms unusual cyclic adducts
with DNA in vitro (173, 174). Taken together, these data
demonstrate that steroidal estrogens may be metabolically
activated and form estrogen-DNA adducts in vitro (167, 168)
and in vivo (175).

V. E2-Induced Chromosomal or Genetic Mutations

Numerous genetic lesions affecting growth-controlling
genes are part of a general genetic instability resulting in
tumor development (87). These multiple types of genetic
alterations include: 1) subtle sequence changes such as base
substitutions, deletions, or insertions; 2) alterations in chro-
mosome number such as losses or gains of whole chromo-
somes; 3) chromosome translocations; and 4) gene amplifi-
cations (87). The latter three of these types of genetic lesions
have clearly been shown to be inducible by the natural hor-
mone E2 as discussed below: 1) numerical chromosomal al-
terations such as aneuploidy with or without apparent DNA
damage; 2) structural chromosomal aberrations; and 3) c-myc
gene amplications. In addition, there is preliminary evidence
of estrogen-induced gene mutations and gene deletions.
These events will be discussed in this order and are also listed
in Table 2.

TABLE 1. Estrogen-induced direct or indirect DNA damage in vitro or in rodents

Type of DNA damage Estrogen used In cell free systems or
cells in culture (reference) In vivo (ref.)

Single-strand breaks
Estrone-3,4-quinone MCF-7 cells (146, 147)
E2 Hamster (148)
2- or 4-Hydroxyestradiol FX 174 RFI DNA (142) Hamster (148)
E2 plus testosterone Rat prostate (149)

8-Hydroxylation of guanine bases
2- or 4-Hydroxyestradiol DNA, Cu(II)SO4 (143)
4-Hydroxyestradiol DNA, microsomes (150) Hamsters (153)
4-Hydroxyestrone DNA, microsomes (150)
Equilenine-3,4-quinone DNA, microsomes (150)
E2 Hamsters (153)

Bulky DNA adducts (unknown structure)
E2 Hamsters (162)

E2-induced malondialdehyde-DNA adducts
E2 Hamster (158)

Estrogen-DNA adducts
Estrone-3,4-quinone DNA (165–168)
Estrone-3,4-quinone COIII gene (171)
Estradiol-3,4-quinone DNA (165–168) Rat (167)
4-Hydroxyestradiol DNA, peroxidase (167) Rat (167), hamster (175)
4-Hydroxyestrone DNA, peroxidase (167)
4-Hydroxyequilenine
Semiquinone DNA (173, 174)
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A. E2-induced chromosomal aberrations

Changes in the number of chromosomes (numerical chro-
mosomal aberrations or genome mutations) may be induced
by E2 and other estrogens in cells in culture (81, 85, 176) or
in laboratory animals (93, 177, 178). In addition, E2 is a potent
inhibitor of mitosis in vitro and is capable of inducing
genomic mutations in cultured cells (176, 179, 180). Potential
targets for inducing numerical changes in the chromosome
are the spindle apparatus (microtubules and centrioles), the
DNA, regulating proteins, and centromeres. Alterations of
these cellular components may be induced by estrogen me-
tabolites directly via covalent binding or indirectly by free
radical generation as discussed above.

Synthetic and natural estrogens including E2 also induce
structural chromosomal aberrations in addition to the nu-
merical changes discussed above. For instance, perinatal ex-
posure of rodents to estrogen results in chromosomal aber-
rations in the same target tissues in which tumors
subsequently develop (181, 182). Treatment of Syrian ham-
sters with E2 also leads to structural chromosomal aberra-
tions such as deletions, inversions, and translocations in kid-
ney cells long before tumors develop in this organ (93, 177,
178). The lower frequency of chromosomal aberrations in the
hamster kidney cortex induced by 17a-ethinylestradiol com-
pared with frequencies induced by E2 or diethylstilbestrol
(178) points to a role of catechol metabolites in the genesis of
this lesion, because the rate of conversion of this synthetic
estrogen to 2- and 4-hydroxylated metabolites by hamster
kidney microsomes is one third the rate observed with the
natural hormone (110) and correlates with the low carcino-
genic activity compared with that of E2 (10). In summary, E2
induces aneuploidy and structural chromosomal changes
(81, 85, 93, 176–183), which may be viewed as part of a larger
pattern of various types of covalent damage to genetic ma-
terial at the DNA or chromosome level occurring in vitro or
in vivo. These types of chromosomal aberrations by them-
selves may not be sufficient for tumors to develop (86) but
may contribute to tumorigenesis by compromising the in-
tegrity of the genetic material (87).

B. E2-induced gene mutations

The mutagenic potential of estrogens including the natural
hormone E2 has been highly controversial. Early studies of
the mutagenic activity of estrogens were all negative, i.e.,

neither E2 nor its catechol metabolites induced point muta-
tions in the Ames bacterial reversion test (51–53), in Syrian
hamster embryo cells (81–85), or in V79 Chinese hamster
cells (53–55) in the concentration ranges tested. Estrogens
including E2 were classified as nonmutagenic and nongeno-
toxic based on this failure to induce gene mutations (49, 50,
83, 84). However, these results are not consistent with the
various types of DNA damage discussed above, which are
known to be potentially mutagenic.

More recent observations point to estrogen-induced gene
mutations in several test systems. For instance, diethylstil-
bestrol induces mutations at the Na1/K1-ATPase locus
(184). Moreover, either E2 or the synthetic estrogen diethyl-
stilbestrol are mutagenic and inactivate the gpt transgene of
the Chinese hamster G12 cell line (185, 186). Specifically, the
inactivation of the gpt transgene is caused by a pattern of
mutations unique for a given mutagen. Diethylstilbestrol
induces approximately 37% deletion and 25% methylation
silencing among independent 6-thioguanine-resistant
clones, whereas E2 produced 53% deletions and only a few
methylation-silenced mutants (186, 187). 4-Hydroxyestrone
and 16a-hydroxyestrone both induce methotrexate resis-
tance in MCF-7 breast cancer cells with an enhancement
factor of 88 and 2-hydroxyestrone with an enhancement fac-
tor of 33 (188). In contrast, the parent hormone E2 showed
only a slight effect with an enhancement factor of 3.2. These
data clearly implicate the metabolic activation of parent es-
trogens to catecholestrogens in the induction of this type of
mutation. The induction of methotrexate resistance did not
correlate with receptor-mediated responses (188). Both E2

and 16a-hydroxyestrone stimulated expression of the pS2
gene, whereas 2- and 4-hydroxyestrone did not do so. The
authors concluded that the development of methotrexate
resistance was possible in the absence of estrogen receptors
(188).

The testing of E2 at various concentrations demonstrated
a low frequency of mutations of the hprt gene by this hor-
mone at the lowest dose assayed (10210 m E2) in V79 Chinese
hamster lung cells, whereas at higher doses this effect was
not observed (55). This mutagenic activity of E2 at that low
dose but not at elevated doses was independently confirmed
(T. Albrecht and J.G. Liehr, unpublished). Moreover,
Markides et al. (159) provided an explanation for this con-
centration dependence of the mutagenic activity of E2 by
demonstrating that only the catecholestrogen metabolites 2-

TABLE 2. E2-induced genetic mutations

Type of genetic mutation Test system (ref.)

Numerical chromosomal aberrations (aneuploidy)
Syrian hamster embryo cells (81, 85, 176)
Human fibroblasts (183)
Syrian hamster kidney (177, 178)

Structural chromosomal aberrations
Mouse genital tract (181, 182)
Syrian hamster kidney (177, 178)

Gene mutations
gpt Transgene, Chinese hamster G12 cells (185, 186)
hprt Gene, Chinese hamster V79 cells (55)
Methotrexate resistance gene, MCF-7 human breast cancer cells (188)

Gene amplification c-myc Gene, hamster kidney tumors (95)
Microsatellite instability Syrian hamster kidney (189)
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and 4-hydroxyestradiol exhibit prooxidant characteristics
and only at low physiological concentrations and in the pres-
ence of metal ions. In contrast, at higher micromolar con-
centrations, all estrogens, including catecholestrogen metab-
olites, act as antioxidants. These data may provide an
explanation for the failure of estrogens to induce mutations
in previous studies, because only micromolar concentrations
of E2 have been examined in these previous assays (54, 55,
81–85).

In other more recent studies, a 2.4- to 3.6-fold amplification
of the c-myc gene was detected by Southern blot analysis in 67%
of primary renal tumors induced by E2 or diethylstilbestrol
treatment of Syrian hamsters (95). The c-myc gene was localized
to hamster chromosome 6qb by fluorescence in situ hybridiza-
tion. This chromosome 6 has a high frequency of trisomies and
tetrasomies in the kidney of hamsters treated for at least 5
months and in renal tumors (95). Li et al. (95) concluded that
estrogen-induced genomic instability, as demonstrated by c-
myc gene amplification and concurrent chromosomal changes,
was a key element in carcinogenic processes induced by estro-
gens (95). In the same animal model, E2 has been shown to alter
tandem repeat sequences of DNA (microsatellite instability) in
premalignant kidney of hamsters treated with this hormone for
3 and 4 months and subsequently in kidney tumors that had
developed after 7 months (189). This type of mutation has been
shown to be inducible by free radicals (190) and may have been
generated by metabolic redox cycling of estrogen metabolites
(140, 141). This type of mutation is important because micro-
satellite instability has been detected in 100% of genital tract
tumors induced in the daughters of women treated with the
transplacental carcinogen and synthetic estrogen, diethylstil-
bestrol (191).

Taken together, these data demonstrate that estrogens, in-
cluding the natural hormone E2, induce multiple forms of ge-
netic lesions including DNA microsatellite instability, DNA
sequence deletions, gene amplification, chromosomal aberra-
tions, and changes in the number of chromosomes. Such genetic
alterations have recently been proposed by Lengauer, Kinzler,
and Vogelstein (87) to be the basis of most human cancers. It is
possible that estrogens may only be weak mutagens. However,
only a low frequency of mutations is expected from natural
circulating hormones. Thus, this area of research requires ad-
ditional studies with more refined assay conditions designed to
detect weak mutagens. Moreover, several types of mutations,
such as DNA microsatellite instability or gene amplification,
may have been missed by classical gene mutation assays be-
cause these tests are designed to detect only single-point mu-
tations in only one specific gene.

VI. Indirect Evidence for the Genotoxic and
Mutagenic Activity of E2

In addition to the genotoxic and mutagenic activity of E2
discussed above, other indirect biochemical and genetic ev-
idence supports the role of genotoxicity and gene mutations
in the induction of tumors by the natural hormone E2 and
contradicts a mechanism of oncogenesis based solely on hor-
monal receptor-mediated pathways. The following examples
illustrate this dual role of estrogens as hormones and car-
cinogens:

1. There are several synthetic estrogens such as 2-flu-
oroestradiol and 17a-ethinylestradiol, which exhibit compa-
rable hormonal potency, yet poor carcinogenicity compared
with E2, which induces a 100% tumor incidence in the Syrian
hamster kidney model (10, 13, 60). These poorly carcinogenic
estrogens, 2-fluoroestradiol and 17a-ethinylestradiol, have a
decreased catecholestrogen formation compared to that of
the parent estrogens (101, 110, 192). The existence of such
poorly carcinogenic, yet hormonally potent, synthetic estro-
gens directly contradicts tumor incidence mediated solely by
hormone receptor pathways. Their altered metabolism im-
plicates catecholestrogen metabolites to play a crucial role in
tumor initiation.

2. The induction of kidney tumors in hamsters by E2 may
be completely prevented by coadministration of a-naph-
thoflavone, an inhibitor of cytochrome P450 1A-mediated
catecholestrogen formation, or inhibited by ascorbic acid
(vitamin C), a free radical scavenger and reductant of the
DNA-reactive catecholestrogen quinone metabolites (160,
161, 193). This modulation of E2-induced carcinogenesis by
decreasing concentrations of catecholestrogen or catecho-
lestrogen quinone metabolites further supports the concept
of tumor initiation by reactive metabolic intermediates of this
hormone.

In this context, it is noteworthy that Ah receptor agonists
such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which induce
the metabolic conversion of E2 to 4-hydroxyestradiol (136),
do not appear to induce mammary carcinogenesis. To the
contrary, in rats exposed to this chemical, spontaneous mam-
mary and uterine tumorigenesis is decreased over controls,
and the sizes of chemically induced tumors are reduced (194,
195). In humans, short-term exposure to this organochlorine
compound (e.g., after an explosion of a chemical manufac-
turing facility in Seveso, Italy) may provide protection from
mammary cancer (196), whereas long-term occupational ex-
posure to 2,3,7,8-tetrachlorodibenzo-p-dioxin slightly ele-
vates the risk for breast cancer (197–199). These apparently
conflicting results may be due to various biological effects of
this organochlorine chemical on the carcinogenesis process.
In addition to stimulation of estrogen hydroxylation via the
Ah receptor, it may also act as an antiestrogen and inhibit a
variety of hormone receptor-mediated responses [reviewed
by Safe (200)]. Thus, it is possible that this compound may
stimulate tumor initiation by inducing metabolic activation,
but then may inhibit the completion of tumor development
by its hormone antagonism. These data illustrate that chem-
ical modulators of estrogen-induced carcinogenesis may be
useful for the study of mechanistic aspects only if they alter
narrowly defined biological parameters. Mechanistic con-
clusions cannot be drawn from studies of agents with mul-
tiple biochemical and endocrine effects.

3. Estrogen receptors in the human mammary epithelium
are localized in cells distinct and different from cells express-
ing markers of cell proliferation (58, 59). Moreover, SHE cells,
which have been used to study the mechanism of estrogen-
induced cell transformation (81–85), do not express measur-
able levels of estrogen receptor and estrogen treatment is not
mitogenic to these cells (201). In this cell line, either estrogens
or the hormone antagonists tamoxifen or ICI 164,384 induce
morphological transformation and aneuploidy (176). These
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data indicate that estrogen-induced cell transformation and
aneuploidy arise in cells early in the carcinogenesis process
and do not require estrogen receptors. Moreover, receptor-
mediated processes may be linked indirectly rather than
directly to mammary cell proliferation during mammary
oncogenesis as discussed in Section III.A.

4. The strongest evidence for an additional (carcinogenic)
role of estrogens in hormone-induced oncogenesis is pro-
vided by experiments in transgenic mice. Mice overexpress-
ing the Wnt-1 gene produce elevated amounts of a protein
important in cell signaling during embryonal development.
These mice develop mammary tumors with high incidence
within a few months after birth (202). These transgenic mice
have been cross-bred with estrogen receptor-a knockout
(ERKO) mice to examine the role of estrogen receptors in
breast tumor incidence (203). The incidence of mammary
tumors was delayed, but not eliminated, in the cross-bred
animals (48 weeks) compared with mice only overexpressing
the Wnt-1 gene (24 weeks). When the Wnt-1 overexpressing/
estrogen receptor-a knockout cross-bred animals were ovari-
ectomized to reduce their E2 production, the mammary tu-
mor incidence was significantly reduced (203). The authors
concluded that ectopic expression of the Wnt-1 protoonco-
gene induces mammary tumors in transgenic mice in the
absence of estrogen receptors. Moreover, decreases in circu-
lating E2 concentrations achieved by ovariectomy of these
animals decrease this tumor incidence. The data support a
role of genotoxicity of E2 in mammary carcinogenesis and
contradict oncogenesis in this organ mediated solely by hor-
mone receptor pathways.

All these data are consistent with and support the con-
clusion that genotoxic processes and gene mutations partic-
ipate and play a tumor-initiating role in the induction of
mammary tumors by the natural hormone E2. These data are
inconsistent with tumor induction solely based on hormonal
receptor-mediated processes (as postulated previously (23,
49, 50).

Estrogen-induced carcinogenesis in the mammary gland
and in other organ sites likely is complex and requires both
receptor-mediated and genotoxic events for neoplastic de-
velopment. Indirect evidence in support of this dual role of
estrogens as hormones and as tumor-initiating chemicals is
the inhibition of tumor incidence either by: 1) hormone an-
tagonists interfering with receptor-stimulated cell prolifer-
ation (44, 47, 48); or 2) inhibitors of metabolic activation of
estrogens (160, 161, 193). An important aspect of this pro-
posed action of estrogens is that inhibition of either of these
events will inhibit oncogenesis, albeit at a different stage of
neoplastic development. The modulation of receptor-medi-
ated tumor cell proliferation by hormone antagonists thus
may leave intact the accumulated genetic lesions induced by
estrogens and/or other carcinogens. This concept is sup-
ported by the inhibition of estrogen-induced renal carcino-
genesis in Syrian hamsters by tamoxifen without concomi-
tant decrease in estrogen-induced DNA adduct levels (48). In
contrast, inhibitors of metabolic activation of estrogens are
proposed to act by inhibiting the accumulation of potentially
mutagenic DNA alterations induced by estrogens. This con-
cept is supported by the inhibition of estrogen-induced renal
tumorigenesis in hamsters by a-napthoflavone or ascorbic

acid (vitamin C) (160, 161, 193). It is also supported by the
action of poorly carcinogenic, yet hormonally potent, syn-
thetic estrogens 2-fluoroestradiol or 17a-ethinylestradiol (10,
13, 60). Inhibitors of estrogen metabolism have not yet been
explored for the prevention of breast and other hormone-
associated cancer in humans and may offer an attractive
alternative to hormone antagonists, because they may inhibit
mammary tumorigenesis at an early stage.

VII. Summary and Conclusion

The data outlined above clearly demonstrate that the nat-
ural hormone E2 is a carcinogen in humans and in animals
(1–40). Multiple forms of DNA damage are induced by E2 in
vitro, in cells in culture, and in laboratory animals (142–153,
158, 162–178). Several of these estrogen-induced DNA le-
sions have also been detected in human tissue (154, 155, 164,
183). In addition, E2 induces at least a low frequency of gene
mutations (55, 95, 185–189). The failure to detect mutagenic
activities of steroidal hormones reported previously may
have been due to either inappropriate assay conditions,
which could not have identified a weak mutagen, or due to
an inappropriate choice of assays not designed to detect the
type(s) of mutations induced by E2.

The multiple forms of DNA damage induced by catecho-
lestrogen metabolites after metabolic activation to quinone-
reactive intermediates provide strong support for the con-
clusion that the natural estrogenic hormone E2 exerts
genotoxicity most likely via metabolic activation to catecho-
lestrogens. The induction of gene mutation by estrogens
outlined above also supports this conclusion but requires
further work and experimental detail. We do not yet know
which critical genes are mutated by estrogen or their me-
tabolites in the oncogenesis process and the mechanism of
induction of mutations. Much additional research is needed
to sketch the mechanistic events resulting in hormone-asso-
ciated cancer.

Despite these deficiencies in our knowledge of the muta-
genic activity of E2, the human epidemiological studies point
to estrogen as a weak carcinogen adding approximately 3%
breast cancer risk/year of estrogen exposure (39, 40). These
human data are in line with animal carcinogenicity and cell
culture data. They are also in agreement with the more mod-
erate levels of DNA modification by estrogen compared with
the substantial genotoxicity of potent carcinogens such as
benzo[a]pyrene or 7,12-dimethylbenzanthracene (169, 170).
The weak mutagenic activity of E2 at the hprt locus of V79
cells also points to E2 as a weak mutagen/carcinogen (55). In
a comparison of the induction of aneuploidy by E2 in human
and hamster fibroblasts, Tsutsui et al. noted the much weaker
induction of this genetic instability in the human compared
with the rodent cells (183). This weak mutagenic activity of
E2 explains the difficulties of previous workers to detect any
mutational events and the underlying genotoxicity induced
by E2 and makes understandable the resulting eagerness to
classify estrogens as epigenetic, nonmutagenic carcinogens.
However, this classification will have to be reconsidered in
light of the more recent evidence cited above. The weak
mutagenic activity of E2 is also understandable in view of the
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role of this endogenous hormone in many physiological pro-
cesses. A high mutagenic and carcinogenic activity of E2
would not have permitted the existence of many higher life
forms including that of the human species.
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