
Is Evolutionary Computation Evolving Fast
Enough?

Graham Kendall, School of Computer Science, University of Nottingham, UK and University of Nottingham

Malaysia Campus, MALAYSIA

Abstract— Evolutionary Computation (EC) has been an active
research area for over 60 years, yet its commercial/home uptake
has not been as prolific as we might have expected. By way
of comparison, technologies such as 3D printing, which was
introduced about 35 years ago, has seen much wider uptake, to
the extent that it is now available to home users and is routinely
used in manufacturing. Other technologies, such as immersive
reality and artificial intelligence have also seen commercial
uptake and acceptance by the general public. In this paper
we provide a brief history of EC, recognizing the significant
contributions that have been made by its pioneers. We focus on
two methodologies (Genetic Programming and Hyper-heuristics),
which have been proposed as being suitable for automated
software development, and question why they are not used more
widely by those outside of the academic community. We suggest
that different research strands need to be brought together into
one framework before wider uptake is possible. We hope that
this position paper will serve as a catalyst for automated software
development that is used on a daily basis by both companies and
home users.

I. INTRODUCTION

EVOLUTIONARY Computation (EC) has been part of

the research agenda for at least 60 years. In a typical

EC algorithm, a population of potential solutions is created

and they compete for survival. The weakest (less fit) members

of the population are killed off, and the remaining members

are retained and copies made, which are mutated. This new

population is then evaluated with the expectation that the

population’s average fitness improves over time, along with

the best performing individual solution.

It is debatable whether EC has had the impact in the

commercial sector that other technologies have had, which

have seen much more visible adoption. 3D printing is changing

the way that manufacturing is done and is also moving into

the home, to the extent that almost anybody can carry out

3D printing. Immersive reality is on the verge of changing

society, in ways that are not totally clear yet. What is apparent

is that applications such as Pokemon Go have sparked interest

into the challenges and opportunities that immersive reality

brings [1], [2], [3], [4], [5]. Ubiquitous computing is becoming

more prevalent, enabling users to access computing resources

in ways that were unimaginable even just a few years ago.

Artificial Intelligence (AI) is becoming part of our daily lives,

whether that is competing against the best human players in

board games [6] or helping make self driving cars a reality

[7], [8], [9]. EC has not had the same penetration as other

Digital Object Identifier: 10.1109/???.????.???????

Date of publication: dd month year

technologies. A specific example we draw upon in this paper

is large scale software development which is, arguably, where

EC is most needed.

In this paper, we will look back at what EC promised and

will suggest some challenges that, if addressed, might further

advance EC and enable its wider adoption.

Writing a scientific paper that utilizes an evolutionary

approach based on a real world problem is not the same

as using an evolutionary approach to address a real world

problem. This may seem a pedantic statement but a paper

considering a problem that is drawn from the real world

is not the same as addressing the actual problem faced by

industry. Looking at a sample of EC papers, which are labeled

as “real world applications” (see Related Work, Section II),

often shows that the problem being tackled is a problem that

would be recognized as a real world problem. However, the

algorithm is often tested on benchmark datasets and/or uses

a simplified model of the problem. It is our view that if a

problem is presented as a real world problem, there should be

an underlying model that addresses a real problem faced by

the user community, rather than a simplified model that is an

abstraction of the problem that users actually face.

We do recognize the importance that benchmark datasets

play in the investigation, and development of, algorithmic

approaches. Indeed, many important breakthroughs have been

reported by investigating these real world abstractions. We also

note that studying these simplified problems enables easier

analysis of the results. We are also aware that this type of

research (using a simplified problem) is why games are often

used, as they have fixed rules, the rules are unambiguous and

there is a winner and a loser. It is no coincidence that Chess

has been called the drosophila of artificial intelligence [10].

We are also conscious that abstracting a problem so that the

focus is on the methodology is good scientific research and

that fully modeling a specific problem may not be of benefit

to the wider academic community.

So, we are not critical of using abstractions of the real world

but it is not conducive to promoting EC to the commercial

sector, who require solutions to problems which go beyond

these benchmarks, and which address the needs of their

specific business.

The fact that the EC research community does not tend

to tackle real, real world problems is partly (largely?) due

to the industrial/university communities not working together.

Corresponding Author: Graham Kendall (Email: Gra-
ham.Kendall@nottingham.ac.uk)

This is not a criticism of the companies, or the universities.

Universities and companies often have different objectives

(e.g. carrying out research vs. making a profit) and they work

on different time scales (e.g. long term research projects vs

developing new products to maintain a competitive edge).

Another contributory factor may be that other methodologies

may be better accepted by the commercial sector as they are

easier to understand, implement and support. In this respect,

the use of methodologies such as EC can be seen to be

similar to a reluctance to utilize Artificial Neural Networks.

The decisions they reach are not easy to understand so that

the commercial sector is often unwilling to adopt them,

preferring methodologies where the decisions can be more

easily explained.

This paper is structured as follows. In the next section we

consider related work, focusing on those papers that have

reported using EC on real world problems. In Section III

we ask if the potential of EC has been achieved? We note

the significant achievements of the EC pioneers and ask why

their seminal work has not translated into more uptake outside

of the scientific community. Section IV looks at Genetic

Programming (GP), bearing in mind it was probably this EC

methodology that had (has?) the most promise to be used in

the commercial sector. In Section V we consider a more recent

methodology (Hyper-heuristics) which also has the potential

to be used by industry. In Section VI we look specifically at

Large Scale Software Development, highlighting some of its

high profile failures and asking if/how EC can help in this area.

In Section VII we present some suggested research directions,

before concluding in Section VIII.

II. RELATED WORK

The topic of deploying evolutionary algorithms in the real

world has been studied before [11]. Within the context of this

paper, [11] provides a number of inhibitors to using EC based

algorithms in the real world. These include:

• The features of real world problems

• The lack of faith in the underlying model that represents

the problem meaning that companies have little confi-

dence in the solutions that are produced

• The fact that EC algorithms are not integrated within

an overarching framework to assist with areas such as

parameter settings

• The lack of the required skills of the developers

• Resistance to change

It is difficult to track down examples in the scientific

literature where EC has been deployed in a company and

is used as a matter of course in their routine activities. Of

course, there will be examples that the scientific community

is not aware of due to in-house research activity, commercial

sensitivities or the time pressures within a company to write

and present the contribution to the scientific community, but

we do not believe that the use of EC has had large adoption

within commercial companies. There are many examples (e.g.

[12], [13], [14]) where real data has been used and the results

are encouraging, but the algorithm has not been used by a

company to support its on-going business activities. It is often

the case that a company provides data, which is utilized to

study the problem, it is then reported in the scientific literature

but the algorithmic methodology is not used by the company.

A Genetic Algorithm (GA) [15] was reported in [16],

presenting a two-phase algorithm for the “bid-line generation

problem” (the problem of scheduling airline crew) for Delta

Air Lines. As with many staff scheduling problems, there are

many industry and legal factors to take into account [17], [18]

so any systems that are developed for a given company are

often bespoke. The first phase of their algorithm generates as

many high-quality lines as possible. The second phase, where

the GA is run, completes the assignments. The schedules

that are produced were shown to be of comparable quality

to those that were generated using a semi-automatic process

that the airline had previously used. It is interesting to note

that the four authors listed their affiliations as Delta Technol-

ogy or Delta Airlines, indicating that the paper was written

without a university collaborator. This, we feel, is important

as it demonstrates that the industrial sector is deploying EC

algorithms. However, many companies will not report these

successes in the scientific literature for a number of reasons

including lack of time, no pressure to publish and commercial

confidentiality. These factors are likely to misrepresent the real

scale of industrial take up of EC methodologies in industry,

and the lack of reporting in the scientific literature could slow

down progress.

Sundararajan et al. [19] considered the cross selling of loans

in the banking sector, specifically the GEMB bank in Poland.

They used a GA, within an overall framework which draws on

different methodologies, which focussed on a predictive model

for response, risk and profit. The GA that was developed was

a standard GA with a few enhancements that included elitism

and splitting the data into training and validation sets and using

solutions from one set to inject into the other set if it finds

that it performs well. Similar to [16], this paper also had no

authors with a university affiliation.

A GA was also utilized in [20]. The two authors were from

Intel, with no university affiliation listed. They presented a

model for the Product Line Design and Scheduling Problem.

The outer layer of their model was a GA. This handled the

resource constraints, scheduling, and financial optimization.

An inner layer utilized mathematical programming to optimize

product composition. Their new approach replaced a spread-

sheet solution which could take days, or even weeks, to carry

out what-if analysis.

The gerrymandering problem (the process of manipulating

electoral boundaries to gain a political advantage) was ad-

dressed in [21]. This was a joint paper between university

colleagues and a representative from a government department

(Philadelphia Water Department’s Office of Watersheds). This

paper was written as the result of a competition call. The

authors won one of the competition categories which gave

them the opportunity to present to the city council. The

authors classify their algorithm as a form of Evolutionary

Programming, rather than as a GA as they did not use a

recombination operator.

A recent paper [22], a collaboration between two uni-

versities and Ernst & Young, considered the transportation

and scheduling issues for the 2014 Special Olympics USA

Games. The problem considered 3,300 athletes with intellec-

tual disabilities, 1,000 coaches and over 70,000 spectators. The

athletes competed in 16 sports, across 10 locations, spread

over a 30-mile radius. The authors developed a GA to address

the problem as exact methodologies were too computationally

expensive. The resulting schedules were used during the

games.

Another routing problem was addressed in [23], in a paper

that did not include a company representative as an author.

The paper presents a case study based on a humanitarian

scenario, a local branch of the Meals on Wheels Association of

America, which provides food to individuals who are in need.

The approach adopted interfaces a spreadsheet with a GA and

is being used by the Metro Meals on Wheels Treasure Valley.

It is noted that the tool could be used anywhere that has access

to Google Maps or MapQuest.

Ogris et al. [24] studied a primary school timetabling prob-

lem [25] from Slovenia. The paper was co-authored by univer-

sity researchers and industrial collaborators. Their evolutionary

algorithm (there was no crossover operator) comprised three

objective functions, which were changed probabilistically. The

system was used in three Slovenian primary schools but could

easily be adapted to other schools and universities.

Simulated annealing [26] and Tabu search [27] are not

classified as evolutionary methodologies, rather they are meta-

heuristics [28]. However, they have been used in industrial

applications so we thought it was worth briefly mentioning

them here. We also note that the leading EC journal (IEEE

Transactions on Evolutionary Computation) has previously

reported work that includes these methodologies [29], [30],

albeit hybridized with an evolutionary algorithm. Simulated

annealing and tabu search has been reported as being deployed

in industry, including Oil Field Drilling [31], Sports [32], [33],

[34], [35], Vehicle Routing [36], Underground Mine Layouts

[37] and Personnel Scheduling [38].

The papers that we discuss above might suggest that there

has been a lot of commercial applications of EC but consider-

ing that the field has been active for over 60 years, the number

of reported applications of EC methodologies is somewhat

small. No doubt, there are other papers that we have not

included and there will be successes that are not reported in

the scientific literature but we still argue that adoption of EC

by the commercial sector is not as prevalent as some other

technologies.

This might be about to change with recent interest in Deep

Learning and the success of projects such as AlphaGo [6],

which was able to win against the best Go player in the

world, a feat that most people predicted would take another

ten years. However, this is just one methodological example

and, whilst Deep Learning Neural Networks have a bright

future, it still does not answer the question as to why more

EC methodologies have not had wider uptake.

III. HAS THE POTENTIAL BEEN REALIZED?

EC has been an active research area since the 1950’s [39],

[40]. Many eminent scientists have been recognized as being

pioneers in this field, demonstrating the strength in depth of

this area. Table I shows the IEEE Computational Intelligence

Society Pioneers, along with a small sample of their contri-

butions. It is beyond question that these pioneers, along with

the wider community, have made significant advances in EC.

When these pioneers were carrying out their early work,

it was in their minds that it would be adopted by the wider

community. For example, Box [41] says “Its basic philosophy

is that it is nearly always inefficient to run an industrial

process to produce product alone. A process should be run

so as to generate product plus information on how to improve

the product.” In 1996, Schwefel said “. . . the past decade has

witnessed an exponential increase in diverse applications, from

design synthesis, planning and control processes, to various

other adaptation and optimization tasks.”

It is, perhaps, surprising that we have not seen more exam-

ples reported in the scientific literature of EC being deployed

in commercial systems. Although the related work section

provides some examples, and no doubt some are missing, but

given that the field has been active for at least 60 years we

might expect to see more examples being reported?

In comparison, 3D printing [91], [92] has seen a signifi-

cantly faster uptake. The first patent was issued to Charles Hull

in 1986, which can be traced back to his original invention

from 1983. Since then the technology has seen rapid uptake, to

the point where it is now possible to buy a 3D printer for home

use. It is likely that we are only just seeing the start of the

additive manufacturing technology and it is likely that many

replacement parts, rather than being bought at a shop, or on-

line, can be downloaded and printed at home. By comparison,

the software development industry is not able to offer the home

user a way to develop, or evolve, software unless they are

already skilled programmers or willing to invest a significant

amount of time learning a programming language.

Technologies such as GP and Hyper-heuristics (both dis-

cussed below), despite delivering excellent research advances,

have not really made the transition from the research envi-

ronment to a position where the benefits can be experienced

by an average home user. In the next two sections, we focus

on these two methodologies, though similar analysis could be

made of the many other EC variants that have been researched

over the years.

IV. GENETIC PROGRAMMING

Many of the papers that were discussed in Section II utilized

GAs, yet GP is, arguably, the EC methodology that is most

associated with automated software development.

Introduced by Koza [93], [94], [95], GP seeks to evolve

computer programs and/or evolve functions. Does it matter

which it does; evolve programs or functions?

In [96] the authors say (Section 1.1) “In genetic program-

ming we evolve a population of computer programs.” In one of

the seminal GP papers [93], it states “Automatic programming

requires developing a computer program that can produce a

desired output for a given set of inputs”, which is more akin

to suggesting that GP evolves functions, rather than a program.

We can debate whether a function (a relationship between a

TABLE I
IEEE COMPUTATIONAL INTELLIGENCE SOCIETY EVOLUTIONARY COMPUTATION PIONEERS

Year Pioneer References

2016 Marco Dorigo [42], [43], [44]
2015 Thomas Bäck [45], [46], [47]
2014 George Burgin [48], [49]
2013 Xin Yao [50], [51], [52], [53]
2012 Russell C. Eberhart, James Kennedy, and J. David Schaffer [54], [55], [56], [57], [58], [59], [60]
2011 Larry J. Eshelman [55], [56], [57]
2010 David E. Goldberg and John Grefenstette [61], [62], [63]
2008 David B. Fogel [64], [65], [66], [67], [47], [68]
2005 Kenneth De Jong [69], [70], [71], [72]
2004 Richard Friedberg [73], [74]
2003 John H. Holland [75], [76], [61], [62]
2002 Ingo Rechenberg and Hans-Paul Schwefel [77], [78], [45], [79], [80]
2001 Michael Conrad [81], [82], [83]
2000 George Box [41], [84]
1999 Alex S. Fraser [40], [85], [86], [87]
1998 Lawrence J. Fogel [39], [88], [89], [48], [49], [90]

set of inputs and a permissible set of outputs) and a program

(a sequence of coded instructions to automate a task on a

computer) are the same thing but to the general public if GP

is sold as evolving computer programs they will assume that

this means that a complete program will be evolved, and not

just a function (a mathematical function or a function for a

given programming language), which is usually the case. We

hasten to add that no criticism is implied, or meant, of the GP

pioneers, or other researchers. The terminology has evolved

over time and the expressions used in the scientific literature

are the ones that are most applicable, or preferred, by the

authors of a given paper. We note, as in many areas of EC

— and even beyond, such as the heuristic community — that

there are no widely accepted terms and definitions in much of

the terminology that is used.

However, to the general public saying “evolve computer

programs” may indicate that GP is much more general than

the state of the art would suggest. There have been advances in

moving towards more general environments. The 2016 Human

Competitive Awards, the so called “Humies”1, winner [97]

says “Automated transplantation would open many exciting

avenues for software development: suppose we could auto-

transplant code from one system into another, entirely unre-

lated, system. This paper introduces a theory, an algorithm,

and a tool that achieves this.” This is certainly a significant

contribution to automated program development but there is

still a lot of work to do, as acknowledged by the authors,

“While we do not claim automated transplantation is now a

solved problem, our results are encouraging.”

Since 2004, the GP community has been able to compete

in the Humies. This annual competition invites entries that

report human-competitive results by any form of genetic or

evolutionary computation. The entries must satisfy one of the

following eight criteria (taken from1):

1) The result was patented as an invention in the past, is an

improvement over a patented invention, or would qualify

today as a patentable new invention.

1http://www.human-competitive.org/awards, last accessed 04 Feb 2018

2) The result is equal to or better than a result that was

accepted as a new scientific result at the time when it

was published in a peer-reviewed scientific journal.

3) The result is equal to or better than a result that was

placed into a database or archive of results maintained by

an internationally recognized panel of scientific experts.

4) The result is publishable in its own right as a new

scientific result independent of the fact that the result

was mechanically created.

5) The result is equal to or better than the most recent

human-created solution to a long-standing problem for

which there has been a succession of increasingly better

human-created solutions.

6) The result is equal to or better than a result that was

considered an achievement in its field at the time it was

first discovered.

7) The result solves a problem of indisputable difficulty in

its field.

8) The result holds its own or wins a regulated competition

involving human contestants (in the form of either live

human players or human-written computer programs).

The Humies have certainly demonstrated the versatility of

GP (see Table II), along with other EC approaches. However,

looking at the papers, which support the entries, shows that

GP still requires tailoring for the problem at hand. It might

also be argued that some of the problems are not challenging,

with respect to the domains that they address and the fact that

they do not suggest that they have a more generic applicability.

There are GP frameworks available, but they still require

the knowledge and experience of the researcher to utilize that

framework and then tailor it for the problem under considera-

tion. Unquestionably, GP has succeeded, and continues to do

so and the scientific literature has a significant body of peer

reviewed work on this topic. However, it has yet to get to the

position where it can be used by a non–expert user, sitting at

home, who wants to evolve software for a problem they have.

TABLE II
HUMIES GOLD MEDAL WINNERS (IN SOME YEARS THE GOLD MEDAL WAS SHARED, INDICATED BY “=”)

Year Entry References

2017 “Explaining quantum correlations through evolution of causal models” [98]
2016 “Automated Software Transplantation” [97]
2015 “Evolutionary Approach to Approximate Digital Circuits Design” [99]
2014 “Genetic Algorithms for Evolving Computer Chess Programs” [100]
2013= “Evolutionary Design of FreeCell Solvers” [101]
2013= “Search for a grand tour of the Jupiter Galilean moons” [102]
2012 “Go without KO on Hexagonal Grids” and “Yvalath: Evolutionary Game Design” [103]
2011 “GA-FreeCell: Evolving Solvers for the Game of FreeCell” [104]
2010 “Evolutionary design of the energy function for protein structure prediction” and “GP challenge: evolving

the energy function for protein structure prediction” and “Automated design of energy functions for protein
structure prediction by means of genetic programming and improved structure similarity assessment”

[105], [106], [107]

2009 “Automatically finding patches using genetic programming” and “A Genetic Programming Approach to
Automated Software Repair”

[108], [109]

2008 “Genetic Programming for Finite Algebras” [110]
2007 “Evolutionary Design of Single-Mode Microstructured Polymer Optical Fibres using an Artificial

Embryogeny Representation”
[111]

2006 “Catalogue of Variable Frequency and Single-Resistance-Controlled Oscillators Employing A Single
Differential Difference Complementary Current Conveyor” and “Novel Canonic Current Mode DDCC
Based SRCO Synthesized Using a Genetic Algorithm” and “Evolving Sinusoidal Oscillators Using
Genetic Algorithms”

[112], [113], [114]

2005= “Two-dimensional photonic crystals designed by evolutionary algorithms” [115]
2005= “Learning from Learning Algorithms: Applications to attosecond dynamics of high-harmonic generation”

and “Shaped-pulse optimization of coherent soft-x-rays”
[116], [117]

2004= “An Evolved Antenna for Deployment on NASA’s Space Technology 5 Mission” [118]
2004= “Automatic Quantum Computer Programming: A Genetic Programming Approach” [119]

V. HYPER-HEURISTICS

A hyper-heuristic has the aim of raising the level of

generality of search/optimization algorithms, recognizing that

no one search algorithm exists that is superior across all

search/optimization problems [120]. Instead of searching the

solution space directly, the most relevant heuristic to apply at

any decision point is identified, which is applied to the solution

space. It is hoped that a hyper-heuristic search algorithm can

be applied to a wide range of problems, simply by changing

the heuristics and utilizing the same heuristic search algorithm.

Following these so called “Heuristic Selection Algorithms”,

later research investigated whether the heuristics themselves

could be evolved [121], [122] thus saving the need to imple-

ment heuristics when new problems are tackled.

The first mention of the term “hyper-heuristic” in the

scientific literature was in [123] (the term was also used in

[124], but in a different context), although even earlier work

could also be regarded as being a hyper-heuristic (e.g. [125],

[126]), although the term was not used. A survey of hyper-

heuristics is available in [127].

A 2000 research proposal (the author of this paper was

one of the authors) said: “We will try to demonstrate how

quick- and cheap-to-implement knowledge-poor heuristics can

be used within a hyper-heuristic framework to provide a

methodology suited to fast and cheap development of indus-

trial and commercial systems. This will lead to a prototype

hyper-heuristic ‘toolbox’ for the user community.”

The authors of the proposal recognized that to provide a

methodology suited to fast and cheap development of indus-

trial and commercial systems was a challenging goal, and it

was recognized that it would not be completed in the lifetime

Fig. 1. Hyper-Heuristic Framework.

of the research award but, nonetheless, it was a long term

vision for hyper-heuristics.

A generic hyper-heuristic framework is shown in Fig. 1. The

initial research in hyper-heuristics focused on methodologies

where several low-level heuristics were provided (no. 4 in

the figure) and a high-level selector (no. 1) chooses which

of the low level heuristics to apply at any given decision

point. This was the so called “Heuristics to Choose Heuristics.”

Note should be taken of the domain barrier (no. 3). The high-

level selector has no knowledge of the domain. Rather, it only

knows how many heuristics there are and receives non-domain

feedback, such as change in evaluation function, computation

time etc. This enables the high level selector to operate on

different domains, by replacing the low level heuristics by

those that are able to address the new problem at hand.

Having to develop and replace a set of low level heuristics

led to the obvious research question; can we evolve the low

level heuristics so that we do not have to implement them when

we want to change domains? A further question is, should a

solution from one of the low level heuristics being accepted as

the incumbent solution, and what form should that acceptance

criteria take (e.g. always accept, improving only, sometimes

accept worse solutions etc.) and can this acceptance criteria

be evolved?

These latter questions are of more interest to the focus

of this paper, as the approaches tend to be more EC based,

and these research directions have been investigated in recent

papers (e.g. [128], [129], [130]).

Hyper-heuristics have been an active research area for at

least 20 years, and arguably back to the 1960’s, yet there is

still no off-the-shelf hyper-heuristic product that enables the

commercial sector to benefit from this technology, let alone

home users being able to access this methodology in the same

way that they can now access 3D printing and immersive

reality.

VI. LARGE SCALE SOFTWARE DEVELOPMENT

As noted in Section IV, GP has had many successes and

hyper-heuristic research (Section V) has made significant

progress in the last 20 years. Both technologies still have some

way to go before being able to be offered to the business/home

user in an easy to use form.

The scientific community recognizes that GP evolves func-

tions, and saying that it evolves programs, could be viewed in

a different way by the non-GP community, which means that

their expectations are not met when they start using GP as a

tool to integrate with their own systems.

Hyper-heuristic research has tended to focus on the main

elements of the framework (see Fig. 1). There has been some

work in trying to unify the various elements, but nothing is

readily available at the moment that can be used off-the-shelf.

There are tools available, such as TSPLIB2, MATLAB3 and

CPLEX4 but these are either expensive, more suited to expert

users and not necessarily EC related.

We know that large scale software development is difficult.

Rosenberg [131] tells the story of Mitch Kapor who developed

Lotus 1-2-3 and the popular personal information manager,

Agenda. Kapor decided to develop a more up to date, ex-

tensible, fully functioning and featured personal information

manager. What started as a grand vision became a tale of

managing a large software development team with all the

issues and problems that this brings. The resultant product,

Chandler, is freely available but it never had the impact that

was hoped for. The book [131] provides a stark reference to

the difficulties of large scale software development, even by

people who have developed highly successful products before.

Brooks [132], in his famous work – The Mythical Man–

Month – noted that software development is difficult and when

large software development projects do run into problems,

2https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/,
last accessed 04 Feb 2018

3https://www.mathworks.com/, last accessed 04 Feb 2018
4https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-

optimizer, last accessed 04 Feb 2018

adding additional manpower cannot save it. Indeed, it will

make it even later.

There are many examples of software development projects

failing. A small sample (there are numerous) are highlighted

here:

1) “The U.S. Air Force has decided to scrap a major

ERP (enterprise resource planning) software project after

spending US$1 billion, concluding that finishing it would

cost far too much more money for too little gain.”5

2) “In 2003, Levi Strauss, was a global corporation, with

operations in more than 110 countries but with an IT

system that was an antiquated, ’Balkanised’ mix of in-

compatible country-specific systems. So its bosses de-

cided to migrate to a single SAP system and hired a

team of fancy consultants (from Deloitte) to lead the

effort. ‘The risks seemed small,’ wrote the researchers.

‘The proposed budget was less than $5m.’ But very

quickly things fell apart. One major customer, Walmart,

required that the system interface with its supply chain

management system, creating additional work. During the

switchover to the new system, Levi Strauss was unable

to fulfil orders and had to close its three US distribution

centres for a week. In 2008, the company took a $192.5m

charge against earnings to compensate for the botched

project and fired its chief information officer.”6

3) “We examined 1,471 projects, comparing their budgets

and estimated performance benefits with the actual costs

and results. They ran the gamut from enterprise resource

planning to management information and customer rela-

tionship management systems. Most, like the Levi Strauss

project, incurred high expenses - the average cost was

$167 million, the largest $33 billion – and many were

expected to take several years. Our sample drew heavily

on public agencies (92%) and U.S.-based projects (83%),

but we found little difference between them and projects

at the government agencies, private companies, and Euro-

pean organizations that made up the rest of our sample.”7

There appears to be a need for more support for large scale

software development projects. There are enough personnel

working as software developers (see Table III8) that any

automation should be welcomed by the industry. Perhaps not

by those whose jobs are at risk, but certainly by those who

employ the developers. Of course, this is no different to many

other industries, where jobs have been replaced by automation,

but it does seem ironic that those responsible for automating

so many jobs are now at risk themselves.

Even if we were able to get technologies such as GP and

hyper-heuristics to the stage where they could be used by

experienced software developers, it is not clear how these

technologies could be packaged to make them readily available

to business/home users, who are not experienced developers.

5https://www.cio.com/article/2390341/, last accessed 04 Feb 2018
6https://www.theguardian.com/technology/2013/apr/21/fred-brooks-

complex-software-projects, last accessed 04 Feb 2018
7https://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think,

last accessed 04 Feb 2018
8https://www.infoq.com/news/2014/01/IDC-software-developers, last ac-

cessed 04 Feb 2018

TABLE III
SIZE OF SOFTWARE DEVELOPER COMMUNITY, FROM IDC STUDY

Role Estimated # for 2014

ICT-skilled Workers
Professional software developers 11,005,000
ICT Operations and management skilled workers 18,008,900
Total 29,013,900

Software Developers
Professional software developers 11,005,000
Hobbyist software developers 7,534,500
Total 18,539,500

It is unrealistic, at least in the foreseeable future, to expect

an evolutionary process to evolve a complete software product

and perhaps this will never be an aim, or an expectation.

Perhaps a more immediate aim would be to enable software

developers to specify the requirements and interface as part

of the software development life cycle and let an evolutionary

process deliver required functionality, with some guarantees

that it is fit for the purpose.

Indeed, this is similar to evolutionary art [133], which has a

long and proven history [134]. In this paradigm the human is

often part of the fitness evaluation and they judge the quality

of the art that the evolutionary process produces. It could be

envisaged that humans judge the quality of an evolved program

by being part of the fitness evaluation. In this way, the human

developer would not simply be a coder but would be tasked

with guiding the evolutionary process via their feedback as to

the effectiveness of each member of the population and would

be helping to decide which programs are worthy of surviving

to the next generation.

This could be seen as being part of an agile approach to

software development. That is, software developers start de-

veloping the software system by providing some functionality

and gradually adding to it. If they come across some part

of the system that is particularly difficult to develop they

could call upon an EC based approach to evolve the required

functionality, perhaps while they work on other parts of the

system. Once the required functionality has been evolved, it is

simply plugged into the system without the software developer

having to do anything else. This functionality could even

continue to evolve, should that be required, even when the

system is deployed in a live environment.

It is likely that we would also have to draw on “Search-

based Software Engineering” (i.e. the utilization of search

methodologies such as GAs, simulated annealing and tabu

search to address software engineering problems) [135], [136],

[137]. If we are able to develop a user friendly framework

that incorporates EC, search based software engineering; along

with guarantees of what is delivered this would be a powerful

product which would benefit the wider world, outside of the

scientific community.

VII. SUGGESTED RESEARCH DIRECTIONS

Despite the large number of references in this paper, a

more extensive survey of where EC has been used in the real

world would certainly of benefit, if nothing else to serve as a

baseline for future researchers. It would be useful to carry out

a survey/analysis considering which methodologies from the

scientific literature are utilized by the industrial community

and to understand the reasons why some methodologies are

adopted, whilst others are not. It would also be useful to survey

the existing scientific literature to establish when authors say

they are addressing a real world problem, is this really the

case or are they modelling a simplified version of a problem,

utilizing a benchmark dataset or addressing a problem that

would not be recognized by the industrial community?

Most of the examples given utilized GAs. This is a little

surprising as there are many other methodologies available

[138], although GAs were one of the earliest and most popular

EC methodologies. There might be some scope to look at

how industry could benefit from other methodologies, as well

as reporting non-GA examples that have been successfully

deployed in industry. A book, or a series of articles, aimed

at the commercial community might be useful so that there

could be more take up.

The scientific community may benefit from a more complete

survey where EC has been used in applications outside of

the research arena. This might provide insights into the most

useful methodologies, what domains are taking up the use

of EC and the benefits that have arisen from using EC in

a commercial environment.

Frameworks, that could be used out of the box, would be

a valuable addition to the tools available to the commercial

sector. It is recognized that some of these tools do exist but

it is a steep learning curve, and sometimes expensive, for

inexperienced users to start using them.

It would certainly be useful to investigate how various

methodologies, such as EC, hyper-heuristics and search based

software engineering could be integrated into a single frame-

work.

If there was an integrated framework that enabled EC to be

made easily available to the industrial/home user, it begs the

question which EC methodology would be most suitable to

use for a given problem provided to the framework? This is

certainly worthy of further research. That is, provided with

a problem should the framework use GA, GP; or one of

the many other EC methodologies that are available, or even

hybridizations of two, or more, of them?

VIII. CONCLUSION

The related work section of this paper has highlighted a

number of projects where EC has been used, and is being

used, in applications that have been deployed in the real world.

It is noticeable that there are relatively few papers which

report deployment of EC into a live industrial environment.

It is also noticeable that many of these papers are from R&D

departments within the companies involved.

We are certainly a long way from where an interested home

user can access EC in the same way that access to 3D printing

and immersive reality have become possible in the past few

years.

EC has made significant research progress in the past 60

years but an integrated framework is lacking where all of this

functionality can be easily accessed. The development of a

framework would be welcome but there is research activity

that needs to take place to support this framework so that the

underlying complexity remains largely hidden from the end

user.

ACKNOWLEDGEMENT

This paper is based on a plenary talk that the author gave at

the 2016 Congress on Evolutionary Computation, 24-29 July

2016, Vancouver. The author would like to acknowledge the

support of IEEE and the Computational Intelligence Society,

as without the opportunity to present the plenary talk it would

not have been possible to write this paper.

REFERENCES

[1] N. R. Murch, “Game on for Pokemon Go: Placement of Pokemon
characters may breach confidentiality,” BMJ – British Medical Journal,
vol. 354, 2016.

[2] T. Althoff, R. W. White, and E. Horvitz, “Influence of Pokemon Go on
physical activity: Study and implications,” Journal of Medical Internet

Research, vol. 18, no. 12, pp. 82–95, 2016.
[3] M. Tateno, N. Skokauskas, T. A. Kato, A. R. Teo, and A. P. S. Guerrero,

“New game software (Pokemon Go) may help youth with severe social
withdrawal, hikikomori,” Phychiatry Research, vol. 246, pp. 848–849,
2016.

[4] M. Serino, K. Cordrey, L. McLaughlin, and R. L. Milanaik, “Pokemon
Go and augmented virtual reality games: A cautionary commentary
for parents and pediatricians,” Current Opinion in Pediatrics, vol. 28,
no. 5, pp. 673–677, 2016.

[5] J. W. Ayers, E. C. Leas, M. Dredze, J.-P. Allem, J. G. Grabowski, and
L. Hill, “Pokemon GO - A new distraction for drivers and pedestrians,”
Jama Internal Medicine, vol. 176, no. 12, pp. 1865–1866, 2016.

[6] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van
den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[7] S. Bringsjord and A. Sen, “On creative self-driving cars: Hire the
computational logicians, fast,” Applied Artificial Intelligence, vol. 30,
no. 8, pp. 758–786, 2016.

[8] N. J. Goodall, “Can you program ethics into a self-driving car?” IEEE

Spectrum, vol. 53, no. 6, pp. 28–58, 2016.
[9] S. E. Shladover, “The truth about “self-driving” cars,” Scientific Amer-

ican, vol. 314, no. 6, pp. 53–57, JUN 2016.
[10] N. Ensmenger, “Is chess the drosophila of artificial intelligence? A

social history of an algorithm,” Social Studies of Science, vol. 42, no. 1,
pp. 5–30, 2012.

[11] V. Oduguwa, A. Tiwari, and R. Roy, “Evolutionary computing in
manufacturing industry: An overview of recent applications,” Applied

Soft Computing, vol. 5, no. 3, pp. 281–299, 2005.
[12] N. M. Mohmad Kahar and G. Kendall, “A great deluge algorithm

for a real-world examination timetabling problem,” Journal of the

Operational Research Society, vol. 66, no. 1, pp. 116–133, 2015.
[13] N. G. Beligiannis, C. Moschopoulos, and D. S. Likothanassis, “A

genetic algorithm approach to school timetabling,” Journal of the

Operational Research Society, vol. 60, no. 1, pp. 23–42, 2009.
[14] G. T. Dias, P. J. de Sousa, and F. J. Cunha, “Genetic algorithms

for the bus driver scheduling problem: A case study,” Journal of the

Operational Research Society, vol. 53, no. 3, pp. 324–335, 2002.
[15] K. Sastry, D. E. Goldberg, and G. Kendall, Introductory Tutorials in

Optimization and Decision Support Techniques. Springer US, 2014,
ch. Genetic Algorithms, pp. 93–117.

[16] I. Christou, A. Zakarian, J.-M. Liu, and H. Carter, “A two-phase
genetic algorithm for large-scale bidline-generation problems at Delta
Air Lines,” Interfaces, vol. 29, no. 5, pp. 51–65, 1999.

[17] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester, and
L. De Boeck, “Personnel scheduling: A literature review,” European

Journal of Operational Research, vol. 226, no. 3, pp. 367–385, 2013.
[18] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff scheduling

and rostering: A review of applications, methods and models,” Euro-

pean Journal of Operational Research, vol. 153, no. 1, pp. 2–27, 2004.
[19] R. Sundararajan, T. Bhaskar, A. Sarkar, S. Dasaratha, D. Bal, J. K.

Marasanapalle, B. Zmudzka, and K. Bak, “Marketing optimization in
retail banking,” Interfaces, vol. 41, no. 5, pp. 485–505, 2011.

[20] E. Rash and K. Kempf, “Product line design and scheduling at intel,”
Interfaces, vol. 42, no. 5, pp. 425–436, 2012.

[21] R. Gopalan, S. O. Kimbrough, F. H. Murphy, and N. Quintus, “The
philadelphia districting contest: Designing territories for city council
based upon the 2010 census,” Interfaces, vol. 43, no. 5, pp. 477–489,
2013.

[22] A. Johnson, Y. Zhao, and X. Xu, “Transportation planning and schedul-
ing for the 2014 special olympics usa games,” Interfaces, vol. 46, no. 3,
pp. 218–230, 2016.

[23] A. S. Manikas, J. R. Kroes, and T. F. Gattiker, “Metro meals on wheels
treasure valley employs a low–cost routing tool to improve deliveries,”
Interfaces, vol. 46, no. 2, pp. 154–167, 2016.

[24] V. Ogris, T. Kristan, A. Škraba, M. Urh, and D. Kofjač, “iUrnik:
Timetabling for Primary Educational Institutions in Slovenia,” Inter-

faces, vol. 46, no. 3, pp. 231–244, 2016.
[25] N. Pillay, “A survey of school timetabling research,” Annals of Oper-

ations Research, vol. 218, no. 1, pp. 261–293, 2014.
[26] E. Aarts, J. Korst, and W. Michiels, Introductory Tutorials in Opti-

mization and Decision Support Techniques. Springer US, 2014, ch.
Simulated Annealing, pp. 265–285.

[27] M. Gendreau and J.-Y. Potvin, Introductory Tutorials in Optimization

and Decision Support Techniques. Boston, MA: Springer US, 2014,
ch. Tabu Search, pp. 243–263.

[28] E. Burke and G. Kendall, Eds., Introductory Tutorials in Optimization

and Decision Support Techniques. Springer US, 2014.
[29] R. Bai, E. K. Burke, G. Kendall, J. Li, and B. McCollum, “A

hybrid evolutionary approach to the nurse rostering problem,” IEEE

Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 580–
590, 2010.

[30] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated
annealing-based multiobjective optimization algorithm: AMOSA,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 3, pp.
269–283, 2008.

[31] K. Eagle, “Using simulated annealing to schedule oil field drilling rigs,”
Interfaces, vol. 26, no. 6, pp. 35–43, 1996.

[32] M. A. Trick, H. Yildiz, and T. Yunes, “Scheduling major league
baseball umpires and the traveling umpire problem,” Interfaces, vol. 42,
no. 3, pp. 232–244, 2012.

[33] A. Farmer, J. S. Smith, and L. T. Miller, “Scheduling umpire crews for
professional tennis tournaments,” Interfaces, vol. 37, no. 2, pp. 187–
196, 2007.

[34] J. R. Willis and J. B. Terrill, “Scheduling the australian state cricket
season using simulated annealing,” Journal of the Operational Research

Society, vol. 45, no. 3, pp. 276–280, 1994.
[35] M. Wright, “Timetabling county cricket fixtures using a form of tabu

search,” Journal of the Operational Research Society, vol. 45, no. 7,
pp. 758–770, 1994.

[36] M. J. Fry and J. W. Ohlmann, “Route design for delivery of voting
machines in hamilton county, Ohio,” Interfaces, vol. 39, no. 5, pp.
443–459, 2009.

[37] M. Brazil, P. Grossman, J. H. Rubinstein, and D. Thomas, “Improving
underground mine access layouts using software tools,” Interfaces,
vol. 44, no. 2, pp. 195–203, 2014.

[38] K. W. Campbell, R. B. Durfee, and G. S. Hines, “Fedex generates bid
lines using simulated annealing,” Interfaces, vol. 27, no. 2, pp. 1–16,
1997.

[39] L. J. Fogel, “The human computer in flight control,” I.R.E. Transactions

on Electronic Computers, vol. EC-6, no. 3, pp. 197–202, 1957.
[40] A. S. Fraser, “Simulation of genetic systems by automatic digital

computers. I. Introduction,” Australian Journal of Biological Sciences,
vol. 10, pp. 484–491, 1957.

[41] G. E. P. Box, “Evolutionary operation: A method for increasing
industrial productivity,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 6, no. 2, pp. 81–101, 1957.

[42] M. Dorigo, M. Vittorio, and C. Alberto, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man

and Cybernetics Part B : Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.
[43] M. Dorigo, G. Di Caro, and L. Gambardella, “Ant algorithms for

discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.
[44] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimiza-

tion from social insect behavior,” Nature, vol. 406, pp. 39–42, 2000.
[45] T. Bäck and H. Schwefel, “Evolutionary computation: An overview,”

in International Conference on Evolutionary Computation, 1996, pp.
20–29.

[46] T. Bäck, “An overview of parameter control methods by self-adaptation
in evolutionary algorithms,” Fundamenta informaticae, vol. 35, pp. 51–
66, 1998.

[47] T. Bäck, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary

Computation. IOP Publishing and Oxford University Press, 1998.
[48] L. Fogel and G. Burgin, “Competitive goal-seeking through evolution-

ary programming,” in Final Report, Contract AF 19(628), Air Force

Cambridge Research Laboratories, 1969.
[49] G. Burgin and L. Fogel, “Air-to-air combat tactics synthesis and

analysis program based on an adaptive maneuvering logic,” Journal

of Cybernetics, vol. 2, no. 4, pp. 60–68, 1972.
[50] X. Yao, “A review of evolutionary artificial neural networks,” Interna-

tional Journal of Intelligent Systems, vol. 8, no. 4, pp. 539–567, 1993.
[51] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial

neural networks,” IEEE Transactions on Neural Networks, vol. 8, no. 3,
pp. 694–713, 1997.

[52] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[53] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–
102, 1999.

[54] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference

on Genetic Algorithms, 1985, pp. 93–100.
[55] J. Schaffer, R. Caruana, L. Eshelman, and R. Das, “A study of

control parameters affecting online performance of genetic algorithms
for function optimization,” in Proceedings of the third international

conference on Genetic algorithms, 1989, pp. 51–60.
[56] L. Eshelman, R. A. Caruana, and J. Schaffer, “Biases in the crossover

landscape,” in Proceedings of the third international conference on

Genetic algorithms, 1989, pp. 10–19.
[57] J. D. Schaffer and L. J. Eshelman, “On crossover as an evolutionarily

viable strategy,” in International Conference on Genetic Algorithms

(ICGA), 1991, pp. 61–68.
[58] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of

genetic algorithms and neural networks: A survey of the state of the
art,” in International Workshop on Combinations of Genetic Algorithms

and Neural Networks, 1992, pp. 1–37.
[59] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of the 1995 IEEE International Conference on Neural Networks,
1995.

[60] R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. Morgan
Kaufmann, 2001.

[61] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2-3, pp. 95–99, 1988.

[62] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems
and genetic algorithms,” Artificial Intelligence, vol. 40, no. 1-3, pp.
235–282, 1989.

[63] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley Professional, 1989.
[64] D. B. Fogel, “An evolutionary approach to the traveling salesman

problem,” Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.
[65] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,”

Biological Cybernetics, vol. 63, no. 6, pp. 487–493, 1990.
[66] D. B. Fogel, “An introduction to simulated evolutionary optimization,”

IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, 1994.
[67] D. B. Fogel, Ed., Evolutionary Computation: A Fossil Record. Wiley-

Blackwell, 1998.
[68] K. Chellapilla and D. B. Fogel, “Evolution, neural networks, games,

and intelligence,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1471–
1496, 1999.

[69] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, University of Michigan Ann
Arbor, 1975.

[70] ——, “Genetic algorithms: A 10 year perspective,” in Proceedings of

an International Conference on Genetic Algorithms and their applica-

tions, 1985.

[71] ——, “Learning with genetic algorithms,” Machine Learning, vol. 3,
no. 3, pp. 121–138, 1988.

[72] ——, Evolutionary Computation: A Unified Approach. MIT Press,
2016.

[73] R. M. Friedberg, “A learning machine: Part I,” IBM Journal of Research

and Development, vol. 2, no. 1, pp. 2–13, 1958.
[74] R. M. Friedberg, B. Dunham, and J. H. North, “A learning machine:

Part II,” IBM Journal of Research and Development, vol. 3, no. 3, pp.
282–287, 1959.

[75] J. H. Holland, Adaptation in Natural and Artificial Systems. MIT
Press, 1975.

[76] ——, “Genetic algorithms and the optimal allocation of trials,” SIAM

Journal on Computing, vol. 2, no. 2, pp. 88–105, 1973.
[77] I. Rechenberg, “Cybernetic solution path of an experimental problem,”

in Royal Air Force Establishment, Farnborough, Hampshire, England

1122, 1965.
[78] H. P. Schwefel, Understanding evolution as a collective strategy for

groping in the dark. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 388–397.

[79] ——, “Evolutionary computation - History, status, and perspectives,” in
Artificial Neural Networks - ICANN 96, (LNCS 112), 1996, pp. 15–15.

[80] H. Beyer and H. Schwefel, “Evolution strategies - A comprehensive
introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[81] M. Conrad and H. H. Pattee, “Evolution experiments with an artificial
ecosystem,” Journal of Theoretical Biology, vol. 28, pp. 393–409, 1970.

[82] D. Fogel, R. W. Anderson, R. G. Reynolds, and W. Rizki, “Memorial
tribute to Dr. Michael Conrad,” IEEE Transactions on Evolutionary

Computation, vol. 5, no. 1, pp. 1–2, 2001.
[83] R. R. Kampfner and M. Conrad, “Computational modeling of evo-

lutionary learning processes in the brain,” Bulletin of Mathematical

Biology, vol. 45, no. 6, pp. 931–968, 1983.
[84] G. E. P. Box and N. Draper, Evolutionary Operation. A Method for

Increasing Industrial Productivity. New York: Wiley, 1969.
[85] A. S. Fraser, “Monte Carlo analyses of genetic models,” Nature, vol.

181, pp. 208–209, 1958.
[86] ——, “Simulation of genetic systems,” Journal of Theoretical Biology,

vol. 2, pp. 329–246, 1962.
[87] D. Fogel, “In memoriam Alex S. Fraser,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 5, pp. 429–430, 2002.
[88] L. J. Fogel, “A new concept: The kinalog system,” Journal of the

Human Factors Society, vol. 1, no. 2, pp. 30–37, 1959.
[89] ——, “Autonomous automata,” Industrial Research Magazine, vol. 4,

no. 2, pp. 14–19, 1962.
[90] V. Piuri, “In memoriam - Dr. Lawrence J. Fogel,” IEEE Computational

Intelligence Magazine, vol. 3, no. 1, pp. 68–69, 2008.
[91] J. Kietzmann, L. Pitt, and P. Berthon, “Disruptions, decisions, and

destinations: Enter the age of 3-D printing and additive manufacturing,”
Business Horizons, vol. 58, pp. 209–215, 2015.

[92] B. Berman, “3-D printing: The new industrial revolution,” Business

Horizons, vol. 55, pp. 155–162, 2012.
[93] J. R. Koza, “Hierarchical genetic algorithms operating on populations

of computer programs,” in IJCAI’89 Proceedings of the 11th Interna-

tional Joint Conference on Artificial intelligence - Volume 1, 1989, pp.
768–774.

[94] ——, Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.
[95] J. R. Koza and J. P. Rice, “Automatic programming of robots using

genetic programming,” in AAAI’92 Proceedings of the tenth national

conference on Artificial intelligence, 1992, pp. 768–774.
[96] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic

Programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (with contributions from J. R. Koza),
2008.

[97] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International

Symposium on Software Testing and Analysis. ACM, 2015, pp. 257–
269.

[98] R. Harper, R. J. Chapman, C. Ferrie, C. Granade, R. Kueng,
D. Naoumenko, S. T. Flammia, and A. Peruzzo, “Explaining quantum
correlations through evolution of causal models,” Phys. Rev. A, vol. 95,
p. 042120, 2017.

[99] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Transactions on Evolutionary Computa-

tion, vol. 19, no. 3, pp. 432–444, 2015.
[100] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu,

“Genetic algorithms for evolving computer chess programs,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 779–
789, 2014.

[101] A. Elyasaf, A. Hauptman, and M. Sipper, “Evolutionary design of
FreeCell solvers,” IEEE Transactions on Computational Intelligence

and AI in Games, vol. 4, no. 4, pp. 270–281, 2012.
[102] D. Izzo, L. F. Simões, M. Märtens, G. C. de Croon, A. Heritier,

and C. H. Yam, “Search for a grand tour of the jupiter galilean
moons,” in Proceedings of the 15th Annual Conference on Genetic

and Evolutionary Computation. ACM, 2013, pp. 1301–1308.
[103] C. Browne, Evolutionary Game Design. London: Springer London,

2011, ch. Yavalath, pp. 75–85.
[104] A. Elyasaf, A. Hauptman, and M. Sipper, “GA-FreeCell: Evolving

solvers for the game of FreeCell,” in Proceedings of the 13th Annual

Conference on Genetic and Evolutionary Computation. ACM, 2011,
pp. 1931–1938.

[105] P. Widera, J. M. Garibaldi, and N. Krasnogor, “Evolutionary design
of the energy function for protein structure prediction,” in Proceedings

of the 2009 IEEE Congress on Evolutionary Computation, 2009, pp.
1305–1312.

[106] ——, “GP challenge: Evolving energy function for protein structure
prediction,” Genetic Programming and Evolvable Machines, vol. 11,
no. 1, pp. 61–88, 2010.

[107] P. Widera, “Automated design of energy functions for protein structure
prediction by means of genetic programming and improved structure
similarity assessment,” Ph.D. dissertation, School of Computer Science,
University of Nottingham, UK, 2010.

[108] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st

International Conference on Software Engineering, 2009, pp. 364–374.
[109] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic pro-

gramming approach to automated software repair,” in Proceedings of

the 11th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2009, pp. 947–954.

[110] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein, “Genetic
programming for finite algebras,” in Proceedings of the 10th Genetic

and Evolutionary Computation Conference 2008. ACM Press, 2008,
pp. 1291–1298.

[111] S. Manos, M. C. J. Large, and L. Poladian, “Evolutionary design of
single-mode microstructured polymer optical fibres using an artificial
embryogeny representation,” in Proceedings of the 9th Genetic and

Evolutionary Computation Conference 2007. ACM Press, 2007, pp.
2549–2556.

[112] S. Kilinç, V. Jain, V. Aggarwal, and U. Cam, “Catalogue of variable
frequency and single-resistance-controlled oscillators employing a sin-
gle differential difference complementary current conveyor,” Frequenz,
vol. 60, no. 7-8, pp. 142–146, 2006.

[113] V. Aggarwal, “Novel canonic current mode DDCC based SRCO
synthesized using a genetic algorithm,” Analog Integrated Circuits and

Signal Processing, vol. 40, no. 1, pp. 83–85, 2004.
[114] ——, “Evolving sinusoidal oscillators using genetic algorithms,” in

Proceedings of 2003 NASA/DoD Conference on Evolvable Hardware,
2003, pp. 67–76.

[115] S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic
crystals designed by evolutionary algorithms,” Applied Physics Letters,
vol. 86, no. 6, p. 061111, 2005.

[116] R. A. Bartels, M. M. Murnane, H. C. Kapteyn, I. Christov, and H. Ra-
bitz, “Learning from learning algorithms: Application to attosecond
dynamics of high-harmonic generation,” Phys. Rev. A, vol. 70, p.
043404, 2004.

[117] R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. C.
an M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization
of coherent emission of high-harmonic soft x-rays,” Nature, vol. 406,
pp. 164–166.

[118] J. D. Lohn, G. S. Hornby, and D. S. Linden, An Evolved Antenna for

Deployment on Nasa’s Space Technology 5 Mission. Boston, MA:
Springer US, 2005, pp. 301–315.

[119] L. Spector, Automatic Quantum Computer Programming: A Genetic

Programming Approach. Springer US, 2007.
[120] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[121] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “Automating
the packing heuristic design process with genetic programming,” Evo-

lutionary Computation, vol. 20, no. 1, pp. 63–89, 2012.
[122] E. K. Burke, M. Hyde, and G. Kendall, “Grammatical evolution of local

search heuristics,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 3, pp. 406–417, 2012.

[123] P. Cowling, G. Kendall, and E. Soubeiga, A Hyperheuristic Approach

to Scheduling a Sales Summit. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 176–190.

[124] J. Denzinger, M. Fuchs, and M. Fuchs, “High performance ATP
systems by combining several AI methods,” Technical Report, SEKI-
Report SR-96-09, University of Kaiserslautern, Tech. Rep., 1996.

[125] H. Fisher and G. Thompson, “Probabilistic learning combinations of
local job-shop scheduling rules,” in Industrial Scheduling, J. Muth and
G. Thompson, Eds. Prentice Hall, 1963, pp. 225–251.

[126] W. B. Crowston, F. Glover, G. Thompson, and J. D. Trawick, “Proba-
bilistic and parametric learning combinations of local job shop schedul-
ing rules,” ONR Research memorandum, GSIA, Carnegie Mellon
University, Pittsburgh 1(117), 1963.

[127] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal

of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[128] S. Asta, E. Özcan, and A. J. Parkes, “Champ: Creating heuristics
via many parameters for online bin packing,” Expert Systems with

Applications, vol. 63, pp. 208–221, 2016.
[129] N. R. Sabar, M. A. G. Kendall, and R. Qu, “A dynamic multiarmed

bandit-gene expression programming hyper-heuristic for combinatorial
optimization problems,” IEEE Transactions on Cybernetics, vol. 45,
no. 2, pp. 217–228, 2015.

[130] ——, “Automatic design of hyper-heuristic framework with gene
expression programming for combinatorial optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, pp.
309–325, 2015.

[131] S. Rosenberg, Dreaming in Code: Two Dozen Programmers, Three

Years, 4,732 Bugs, and One Quest for Transcendent Software. Three
Rivers Press (CA), 2008.

[132] F. P. Brooks Jr., The Mythical Man-Month. Addison-Wesley, 1975.
[133] C. G. Johnson, “Fitness in evolutionary art and music: A taxonomy

and future prospects,” International Journal of Arts and Technology,
vol. 9, no. 1, pp. 4–25, 2016.

[134] S. Todd and W. Latham, Eds., Evolutionary Art and Computers.
Academic Press Inc, 1992.

[135] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[136] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, “A tabu search hyper-
heuristic strategy for t-way test suite generation,” Applied Soft Com-

puting, vol. 44, pp. 57–74, 2016.
[137] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren, “Adaptive

multi-objective evolutionary algorithms for overtime planning in soft-
ware projects,” IEEE Transactions on Software Engineering, In Press.

[138] K. Sörensen, “Metaheuristics – the metaphor exposed,” International

Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.

