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IS GAUSS QUADRATURE BETTER THAN CLENSHAW–CURTIS?

LLOYD N. TREFETHEN∗

Abstract. We consider the question of whether Gauss quadrature, which is very famous, is
more powerful than the much simpler Clenshaw–Curtis quadrature, which is less well-known. Seven-
line MATLAB codes are presented that implement both methods, and experiments show that the
supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain
this effect. First, following Elliott and O’Hara and Smith in the 1960s, the phenomenon is explained as
a consequence of aliasing of coefficients in Chebyshev expansions. Then another explanation is offered
based on the interpretation of a quadrature formula as a rational approximation of log((z+1)/(z−1))
in the complex plane. Gauss quadrature corresponds to Padé approximation at z = ∞. Clenshaw–
Curtis quadrature corresponds to an approximation whose order of accuracy at z = ∞ is only half
as high, but which is nevertheless equally accurate near [−1, 1].

Key words. Newton–Cotes quadrature, Gauss quadrature, Clenshaw–Curtis quadrature, Cheby-
shev expansion, rational approximation, FFT, spectral methods

AMS subject classifications. 65D32, 41A20, 41A58

1. Introduction. Every numerical analysis textbook has a chapter on numerical
integration. Most of these present two families of (n+1)-point quadrature rules: first
Newton–Cotes formulas, based on equally spaced points, and then Gauss formulas,
based on optimal (in a sense) points. Among the books that fit this pattern are

Hamming (1962) Henrici (1964)
Isaacson and Keller (1966) Acton (1970)
Young and Gregory (1972) Phillips and Taylor (1973)
Dahlquist and Björck (1974) Atkinson (1978)
Burden and Faires (1978) Meinardus and Merz (1979)
Stoer and Bulirsch (1980) Fröberg (1985)
Numerical Recipes (1986) Kahaner, Moler and Nash (1989)
Schwarz and Waldvogel (1989) Golub and Ortega (1992)
Stewart (1996) Tyrtyshnikov (1997)
Kress (1998) Van Loan (2000)
Plato (2000) Schatzman (2002)
Süli and Mayers (2003)

Now in fact, as the books to varying degrees make clear, Newton–Cotes formulas
are useless for high values of n, suffering from the catastrophic O(2n) Runge phe-
nomenon: they can integrate only functions that are analytic in a large region in the
complex plane, and even these only in the absence of rounding errors [13, 36, 37].
Gauss quadrature formulas, by contrast, have perfect robustness as well as their
well-known apparent factor-of-2 advantage in efficiency: whereas the (n + 1)-point
Newton–Cotes formula exactly integrates polynomials of degree n, the (n + 1)-point
Gauss formula exactly integrates polynomials of degree 2n + 1. Gauss quadrature
nodes and weights take more work to calculate, but this can be done with excellent
accuracy in O(n3) operations by solving a tridiagonal eigenvalue problem, as shown
by Golub and Welsch [22]. In the end many of us absorb a simple lesson: for large n,
Gauss quadrature is the only serious competitor.

∗Oxford Computing Laboratory, Wolfson Bldg., Parks Rd., Oxford OX1 3QD, UK
(LNT@comlab.ox.ac.uk).
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2 L. N. TREFETHEN

This view is mistaken, for Newton–Cotes is a straw man. In fact, we should com-
pare Gauss quadrature with Clenshaw–Curtis quadrature, a much simpler technique
based on sampling the integrand at Chebyshev points. This method also integrates
polynomials of degree n exactly, with no difficulties as n → ∞. Clenshaw–Curtis
formulas are mentioned in the textbooks of Johnson and Riess (1982), Ueberhuber
(1997), Neumaier (2001), and Heath (2002), as well as more briefly in endnotes or ex-
ercises in Gautschi (1997) and Cheney and Kincaid (1999). They are not mentioned in
Krylov’s 1962 book on numerical integration [30], but they are treated in later books
in this field including Davis and Rabinowitz (1967, 1975 and 1984), Engels (1980),
and Krommer and Ueberhuber (1998) [10, 13, 14, 29]. Concerning Gauss quadrature,
an indispensable source is the masterful 1981 survey by Gautschi [20].

Perhaps the following is a reasonable summary of the conventional wisdom, among
the minority who are aware of Clenshaw–Curtis quadrature, of n-point quadrature for-
mulas. Gauss quadrature is the gold standard, with perfect convergence and stability
properties, though in some applications one might choose to rely instead on simpler
formulas enhanced by adaptivity or extrapolation. Clenshaw–Curtis is a footnote, for
it is only half as efficient.

We shall see that in fact, for many integrands, Clenshaw–Curtis and Gauss
quadrature are equally efficient.

2. Gauss and Clenshaw–Curtis formulas. Throughout this article we are
concerned with what are known as interpolatory quadrature formulas. A continuous
function f on [−1, 1] is given, and we seek to approximate the integral

I = I(f) =

∫ 1

−1

f(x)dx(2.1)

by sums

In = In(f) =

n
∑

k=0

wkf(xk)(2.2)

for various n, where the nodes {xk} depend on n but not f . The weights {wk} are
defined uniquely by the property that In is equal to the integral of the degree ≤n
polynomial interpolant through the data points. Thus by construction, (2.2) gets the
exactly correct answer if f is a polynomial of degree ≤n.

Newton–Cotes formulas are defined by taking the nodes to be equally spaced
from −1 to 1. The Newton–Cotes formulas of low order are important as building
blocks for discretizations of differential equations and other numerical methods. Their
properties as n → ∞ are very bad, however, and we shall not discuss them further
except for brief reappearances in Figures 2.1 and 6.1.

Gauss formulas are defined by choosing the nodes optimally in the sense of max-
imizing the degree of polynomials that (2.2) integrates exactly. Since there are n + 1
nodes, it is not surprising that the attainable degree is n + 1 orders higher than in
the generic case, i.e., degree 2n + 1. Gauss quadrature formulas were discovered by
Gauss in his mid-thirties [19], and it is a measure of the extraordinary productivity of
Gauss’s career that this great discovery merits hardly a mention in many accounts of
his life. For these formulas are truly powerful. Their impact was mainly theoretical
before the advent of computers, because of the difficulty of determining the nodes and
weights and also of evaluating integrands at irrational arguments, but in the computer



IS GAUSS QUADRATURE BETTER THAN CLENSHAW–CURTIS? 3

era, especially since the appearance of a paper by Golub and Welsch in 1969 (follow-
ing earlier work of Goertzel 1954, Wilf 1962 and Gordon 1968), it has been practical
as well [22]. We shall not give details but just offer the following MATLAB function
gauss.m, which is almost the same as the code by the same name in [41].

function I = gauss(f,n) % (n+1)-pt Gauss quadrature of f

beta = .5./sqrt(1-(2*(1:n)).^(-2)); % 3-term recurrence coeffs

T = diag(beta,1) + diag(beta,-1); % Jacobi matrix

[V,D] = eig(T); % eigenvalue decomposition

x = diag(D); [x,i] = sort(x); % nodes (= Legendre points)

w = 2*V(1,i).^2; % weights

I = w*feval(f,x); % the integral

For example, the command gauss(@cos,6) yields 1.68294196961579, which is cor-
rect to full precision. The command gauss(@cos,1000) yields the same result, though
it takes 17 seconds on my laptop.1

The idea of Clenshaw–Curtis quadrature is to use Chebyshev points instead of
optimal nodes. There are three main variations on this theme (see [34] for others):

Chebyshev roots in (−1, 1): Fejer’s “first rule” (1933) [15]
Chebyshev extrema in (−1, 1): Fejer’s “second rule” (1933) [15]
Chebyshev extrema in [−1, 1]: Clenshaw and Curtis (1960) [7]

The first and the third variants are also called “classical” and “practical” Clenshaw–
Curtis formulas, respectively. (A number of the relevant papers published especially
in the 1960s make no reference to Fejér.) It seems that the last choice may be the most
accurate [12] as well as having the easiest connection with the fast Fourier transform,2

and also the potential advantage of convenient reuse of nodes when n is doubled; it
is certainly the one used mainly in practice. The nodes in question, which we shall
simply call Chebyshev points, are defined by

xj = cos
jπ

n
, 0 ≤ j ≤ n.(2.3)

The Clenshaw–Curtis quadrature formula is the formula (2.2) based on these nodes. A
better name might have been “Chebyshev” or “Fejér”—indeed, Clenshaw and Curtis
call it “the Chebyshev formula”—but the term Clenshaw–Curtis is standard.

Clenshaw and Curtis published their paper in 1960, before the introduction of the
Fast Fourier Transform in 1965. Soon afterwards, the connection with the FFT was
pointed out by Gentleman [21]. Again we shall not give details but offer a MATLAB
code with the same functionality as gauss.m:

function I = clenshaw_curtis(f,n) % (n+1)-pt C-C quadrature of f

x = cos(pi*(0:n)’/n); % Chebyshev points

fx = feval(f,x)/(2*n); % f evaluated at these points

g = real(fft(fx([1:n+1 n:-1:2]))); % fast Fourier transform

a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; % Chebyshev coefficients

w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).^2); % weight vector

I = w*a; % the integral

1Here are Stroud and Secrest in 1966, working on a Control Data 1604: “The formula for n = 512
took about 4.5 hours to calculate and 0.5 hour to check” [39]. Thus in forty years we have a speedup
from hours on a mainframe to seconds on a laptop.

2For FFT evaluations of the other two rules, see [44].
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To get full accuracy for the cosine example, we now need clenshaw_curtis(@cos,11).
Increasing n from 11 to 103 or 106 gives the same result. The former runs in less than
a millisecond on my laptop, and the latter takes 1.6 seconds.

From the point of view of integrating polynomials exactly, Clenshaw–Curtis nodes
appear like Newton–Cotes nodes: both are exact merely for degree n. Yet it is
clear from Figure 2.1 that in a literal sense, at least, they are closer to Gauss
nodes. Certainly they have the same asymptotic distribution as n → ∞, the density
nπ−1(1 − x2)−1/2 that is well known to be optimal in various senses for polynomial
approximation on [−1, 1] [41, chap. 5].

Clenshaw−Curtis

Gauss

Newton−Cotes

Fig. 2.1. Newton–Cotes, Gauss, and Clenshaw–Curtis quadrature points in [−1, 1] for n = 32.
The latter two sets have asymptotically the same clustering near ±1 as n → ∞.

3. Experimental comparison. Figure 3.1 shows the convergence as n → ∞ of
the Gauss and Clenshaw–Curtis formulas for six functions f(x). (This experiment is
adapted from Outputs 30b and 30c of [41].) We begin with the monomial f(x) = x20,
the algebraic analogue of what in the periodic context would be called a band-limited
function. Here the factor of 2 is in one sense clearly visible: the Gauss formula is
exact for n ≥ 10, the Clenshaw–Curtis formula for n ≥ 20. Even so, it is apparent
that for smaller values of n, the Gauss advantage in efficiency (i.e., size of n needed to
achieve a certain accuracy) is less than a factor of 2. The second function is ex, which
is entire, i.e., analytic throughout the complex plane. Here again Gauss appears more
efficient than Clenshaw–Curtis, but by less than a factor of 2.

Given f ∈ C[−1, 1] and n ≥ 0, let p∗n be the unique best approximation to f on
[−1, 1] of degree ≤n with respect to the supremum norm ‖ · ‖ = ‖ · ‖∞, and define
E∗

n = ‖f − p∗n‖. The solid curves in each panel of Figure 3.1 show the errors E∗
n and

E∗
2n+1. (We computed these numbers via Carathéodory–Fejér approximation [23]

using the chebfun system [2], a convenient environment for all kinds of explorations
related to this paper.) We shall analyze these curves in the next section, but for now,
we mention just the essential point: Clenshaw–Curtis quadrature converges faster
than E∗

n.

The next four functions are successively less smooth. The third is e−x2

, which is
also entire, but now with stronger growth O(e|x|

2

) as x → ∞ in the complex plane.
Here again we see a difference between Gauss and Clenshaw–Curtis quadrature, but
with an efficiency ratio less than 2. The fourth function is f(x) = (1 + 16x2)−1,
which is analytic in a neighborhood of [−1, 1] but not throughout the complex plane,
and now we see that the two quadrature formulas are quite close together. (This
example is discussed further in §6.) For the last two functions, there is again little
difference between Gauss and Clenshaw–Curtis quadrature. We see this both for the
C∞ example e−1/x2

and for the non-smooth function |x|3.
These and similar experiments suggest the following conclusions:
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Fig. 3.1. Convergence in floating-point arithmetic of Gauss (dots) and Clenshaw–Curtis (cir-
cles) quadrature for six functions f on [−1, 1], for n ranging from 1 to 30. The first function is
polynomial, the second and third entire, the fourth analytic, the fifth C∞, and the sixth C2. The
solid curves show the minimax approximation errors E∗

n (upper) and E∗

2n+1
(lower).

• As expected, Gauss quadrature matches best degree 2n + 1 polynomial ap-
proximation: |I − In| ≈ E∗

2n+1.
• However, Clenshaw–Curtis quadrature does much better than |I − In| ≈ E∗

n.
In fact, for functions that are not analytic in a large neighborhood of [−1, 1],
it too comes close to |I − In| ≈ E∗

2n+1.
• Thus Gauss quadrature significantly outperforms Clenshaw–Curtis quadra-

ture only for functions analytic in a large neighborhood of [−1, 1].
• For such functions, the convergence of both methods is very fast. Thus

Clenshaw–Curtis essentially never requires many more function evaluations
than Gauss to converge to a prescribed accuracy.

We are not the first to observe these surprises. Clenshaw and Curtis themselves
recorded the same effect:

It may be of interest to note that a program based on the proposed

method has been prepared for the Deuce at the National Physical Labo-
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Fig. 3.2. Convergence of Gauss (dots) and Clenshaw–Curtis (circles) quadrature for the exam-
ple f(x) = |x + 1

2
|1/2 of Clenshaw and Curtis, shown on log-log axes. The Gauss formula is applied

only up to n = 210, since larger values take too much time and memory.

ratory. The upper limit M of the number of terms is 64, and the program

evaluated the integral
R

+1

−1
|x + 1

2
|
1

2 dx with an error of 0.00078. This may

be compared with the error of 0.00317 committed by the 32-point Gauss

formula, and of 0.00036 by the 64-point Gauss formula. We see that the

Chebyshev formula, which is much more convenient than the Gauss, may

sometimes nevertheless be of comparable accuracy.

Figure 3.2 examines this function considered by Clenshaw and Curtis for a collection
of values of n. There is no advantage whatever for Gauss quadrature. (The reason
the plot does not match the numbers they report is that it shows data for n = 64
whereas their numbers correspond to n = 63.)

A 1968 paper of O’Hara and Smith makes an unqualified statement [35]:

. . . the Clenshaw–Curtis method gives results nearly as accurate as

Gaussian quadratures for the same number of abscissae.

4. Quadrature, polynomial approximation, and Chebyshev expansions.
How can we explain these observations? In the next section we shall see that some
of the answers can be found in the work in the 1960s of O’Hara and Smith, quoted
above, and Elliott [12]. To prepare the way, we begin with a discussion of some con-
nections between quadrature formulas, polynomial approximations, and Chebyshev
expansions. Though the flavor of these developments is standard, the precise esti-
mates we give are sharper than those we have found in the literature: this applies to
(4.6), (4.10), (4.12), (4.13), and (4.14), as well as the Jackson theorem of footnote 4.
We consider Chebyshev expansions for two reasons: first, because they provide near-
best polynomial approximations and thus near-sharp bounds on Gauss quadrature
errors; second, because they have a special connection with Clenshaw–Curtis quadra-
ture that will lead to an explanation of its surprising accuracy.

Given a continuous function f on [−1, 1], let the degree ≤n polynomial best
approximation p∗n and error E∗

n be defined as in the last section. The rationale for
including the solid curves in Figure 3.1 is the following result due to Bernstein [3].

Theorem 4.1. If the weights wk in (2.2) are nonnegative, as is true for both
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Gauss and Clenshaw–Curtis quadrature, then for any f ∈ C[−1, 1] and n ≥ 0,

|I − In| ≤ 4E∗
n,(4.1)

and In → I as n → ∞. In the special case of Gauss quadrature, (4.1) can be improved

to

|I − In| ≤ 4E∗
2n+1.(4.2)

Proof. We take advantage of the fact that since (2.2) integrates polynomials of
degree ≤n exactly, I and In are the same for f − p∗n as for f itself. From (2.2), using
the fact that the interval [−1, 1] has length 2, we thus have

|I(f) − In(f)| = |I(f − p∗n) − In(f − p∗n)|

≤ |I(f − p∗n)| + |In(f − p∗n)| ≤ 2E∗
n +

n
∑

k=0

|wk|E∗
n.(4.3)

Since the quadrature formula is interpolatory,
∑

wk = 2, and if the weights are
nonnegative, this implies

∑ |wk| = 2, from which (4.1) follows, and similarly (4.2) in
the case of Gauss quadrature since in that case p∗n can be replaced by p∗2n+1. The
positivity of the weights was proved for Gauss quadrature by Stieltjes in 1884, and
for Clenshaw–Curtis quadrature by Imhof in 1963 [24]. The convergence of In to I is
a consequence of (4.1) together with the Weierstrass approximation theorem.

Theorem 4.1 tells us that if the best approximants to f converge rapidly as n → ∞,
then In will converge rapidly to I. The next step is to combine this theorem with
results of approximation theory to the effect that if f is smooth, its best approxi-
mants converge rapidly. We shall consider some results of this kind derived from the
Chebyshev series for a function f ∈ C[−1, 1]. The logic of the development can be
summarized like this:

smooth function f

⇓
rapidly decreasing Chebyshev coefficients

⇓
rapidly converging Chebyshev partial sums

⇓
rapidly converging best approximations

⇓
rapidly converging quadrature

We shall also see that sometimes the sharpest results can be obtained by bypass-
ing steps three and four and going directly from the Chebyshev coefficients to the
quadrature formulas.

Let Tj denote the Chebyshev polynomial of degree j, Tj(x) = cos(j cos−1 x),
which equioscillates between j + 1 extrema ±1 on [−1, 1]. The Chebyshev series for
f ∈ C[−1, 1] is defined by [38, p. 165]

f(x) =

∞
∑

j=0

′
ajTj(x), aj =

2

π

∫ 1

−1

f(x)Tj(x)√
1 − x2

dx,(4.4)
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where the prime indicates that the term with j = 0 is multiplied by 1/2. (These
formulas are nothing more than the transplantation to x = cos θ of the Fourier series
for the 2π-periodic even function f(cos θ).) The equals sign in the first formula is
justified, for it is known that the series converges pointwise for any f ∈ C[−1, 1] [31,
p. 119], and if f is Hölder continuous with any Hölder exponent > 0, the convergence
is uniform and absolute [38, p. 168].

Our first step is to show that if f is smooth, its Chebyshev coefficients decrease
rapidly. We consider two smoothness conditions: a kth derivative satisfying a con-
dition related to bounded variation, or analyticity in a neighborhood of [−1, 1]. Re-
garding the former, let ‖ · ‖T be the Chebyshev-weighted 1-norm defined by

‖u‖T =

∥

∥

∥

∥

u′(x)√
1 − x2

∥

∥

∥

∥

1

.(4.5)

This norm is defined via a Stieltjes integral for any u of bounded variation (see, e.g.,
[47, p. 220]), though ‖u‖T may be infinite depending on the behavior near x = ±1.
The condition of interest for our theorems is that ‖f (k)‖T should be finite, where f (k)

is the kth derivative of f .3

Theorem 4.2. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T =
V < ∞ for some k ≥ 0, then for each n ≥ k + 1,

|an| ≤
2V

πn(n − 1) · · · (n − k)
.(4.6)

If f is analytic with |f(z)| ≤ M in the region bounded by the ellipse with foci ±1 and

major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

|an| ≤
2M

ρn
.(4.7)

Proof. For (4.7), see [38, p. 175]. As for (4.6), I do not know where this result
can be found in print; I am grateful to József Szabados and Endre Süli for suggesting
the following argument. We proceed by transplanting to the θ = cos−1 x variable and
integrating by parts k + 1 times; the assumptions ensure that the first k derivatives
exist in the ordinary sense and that f (k) can in turn be written as a Stieltjes integral.
Since dx = − sin θdθ and

√
1 − x2 = sin θ, the first integration by parts can be written

as

an =
2

π

∫ 1

−1

f(x)Tn(x)√
1 − x2

dx

=
2

π

∫ π

0

f(cos θ) cos(nθ)dθ

=
2

πn

∫ π

0

f ′(cos θ) sin(nθ) sin θdθ;

the boundary terms vanish because of the sine. The trigonometric identity sin θ1 sin θ2 =
1
2 cos(θ1 − θ2) − 1

2 cos(θ1 + θ2) converts this to

an =
2

πn

∫ π

0

f ′(cos θ)

[

cos((n − 1)θ)

2
− cos((n + 1)θ)

2

]

dθ,

3Our attention to this condition derives from a moral principle: the exponent should come out
right for the function f(x) = |x|. For this function we can take k = 1 in Theorem 4.2, giving
an = O(n−2).
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which implies

|an| ≤
2

πn
‖f ′(cos θ)‖1

∥

∥

∥

∥

cos((n − 1)θ)

2
− cos((n + 1)θ)

2

∥

∥

∥

∥

∞

=
2

πn
‖f ′(x)‖T

∥

∥

∥

∥

cos((n − 1)θ)

2
− cos((n + 1)θ)

2

∥

∥

∥

∥

∞

since dθ = dx/
√

1 − x2. The L∞ norm is bounded by 1, and thus we have established
|an| ≤ 2V (0)/πn with V (0) = ‖f‖T . Further integrations by parts bring in higher
derivatives of f and corresponding higher variations up to V (k) = V = ‖f (k)‖T . More
and more cosine terms appear, but the coefficients are such that their sum always has
L∞ norm at most 1. Just as the first integration by parts introduced a factor n in the
denominator, the second leads to factors n−1 and n+1, the third to factors n−2, n,
and n + 2, and so on. To keep the formulas simple we do not keep track of all these
different denominators but weaken the inequality slightly by replacing them all with
n − 1 at the second differentiation, n − 2 at the third, and so on up to n − k at the
(k + 1)st differentiation. The result is (4.6).

Our next step is to consider polynomial approximations obtained as partial sums
of the Chebyshev series. For any n ≥ 0, define

fn(x) =

n
∑

j=0

′
ajTj(x)(4.8)

and

ET
n = ‖f − fn‖ ≤

∞
∑

j=n+1

|aj |.(4.9)

(The polynomial fn can be interpreted as the least-squares projection of f onto the
set of polynomials of degree ≤n with respect to the weight (1 − x2)−1/2. It can
also be obtained from f by convolution in the θ variable with a certain n-dependent
kernel [38, p. 166].) The following theorem is a corollary of Theorem 4.2 and equation
(4.9).

Theorem 4.3. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T =
V < ∞ for some k ≥ 1, then for each n ≥ k + 1,

ET
n ≤ 2V

πk(n − k)k
.(4.10)

If f is analytic with |f(z)| ≤ M in the region bounded by the ellipse with foci ±1 and

major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

ET
n ≤ 2M

(ρ − 1)ρn
.(4.11)

Proof. Equation (4.11) follows readily from (4.7) and (4.9). (This bound is
erroneously reported without the factor of 2 on p. 133 of [31].) Similarly, (4.10)
follows from (4.6) and (4.9) if we use the inequality

∞
∑

j=n+1

1

j(j − 1) · · · (j − k)
≤

∞
∑

j=n+1

1

(j − k)k+1
≤

∫ ∞

n

dx

(x − k)k+1
=

1

k(n − k)k
.
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Now how does ET
n , the error of the truncated Chebyshev series, compare with

the best approximation error E∗
n? In one direction the answer is obvious, since the

optimality of E∗
n implies E∗

n ≤ ET
n .4 In the other direction it is well known that the

gap is never bigger than O(log n). The following theorem states this result together
with another lower bound on E∗

n.

Theorem 4.4. For any f ∈ C[−1, 1] and n ≥ 0,

π

4
|an+1| ≤ E∗

n ≤ ET
n ≤

(

2 +
4

π2
log(2n + 1)

)

E∗
n.(4.12)

In particular, ET
n < 4.2E∗

n for n ≤ 100 and ET
n < 7.9E∗

n for n ≤ 106.

Proof. The first inequality is due to Bernstein; see [6, p. 131] or [38, p. 171].
The last inequality follows from the fact that the Lebesgue constant for Chebyshev
projection, which is the same as the Lebesgue constant for Fourier projection de-
fined originally by Lebesgue (1909), is bounded by 1 + (4/π2) log(2n + 1) [18]. The
∼(4/π2) log n dependence was known already to Fejér (1910) and Bernstein (1912).

By combining Theorems 4.1 and 4.3, we get bounds on I−In, which Theorem 4.4
indicates are likely to be reasonably sharp. Here are bounds for Gauss quadrature.

Theorem 4.5. Let Gauss quadrature be applied to a function f ∈ C[−1, 1]. If

f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T = V < ∞ for some

k ≥ 1, then for each n ≥ k/2,

|I − In| ≤
64V

15πk(2n + 1 − k)k
.(4.13)

If f is analytic with |f(z)| ≤ M in the region bounded by the ellipse with foci ±1 and

major and minor semiaxis lengths summing to ρ > 1, then for each n ≥ 0,

|I − In| ≤
64M

15(ρ − 1)ρ2n+1
.(4.14)

Partial proof. Suppose the factors 64/15 in these statements are increased to 8.
Then (4.13) follows from (4.2) and (4.10), and (4.14) from (4.2) and (4.11). The
completion of the proof by sharpening the constants to 64/15 is discussed in the next
section.5

The bounds of Theorem 4.5 are valid for Clenshaw–Curtis quadrature, except
with 2n + 1 replaced by n. However, we do not write these inequalities down, as
we have seen that they are highly pessimistic and our aim is to explain that effect.
Ideally, we would like to establish bounds for Clenshaw–Curtis quadrature that are
not much different from those of Theorem 4.5—i.e., with “2n”, not “n”. The next
section will present such an extension to Clenshaw–Curtis quadrature of (4.13), and
Section 6 will point the way toward a possible extension of (4.14).

4Thus (4.10) provides a proof of a variant of one of the Jackson theorems of approximation
theory [6, p. 147]: E∗

n ≤ 2V/πk(n − k)k.
5Bounds based on the assumption of analyticity in an ellipse were first derived by Bernstein [3];

for a discussion, see [20, p. 114]. According to Gautschi, the sharpest result as of 1981 was one
derived by von Sydow, in which 64/15 is replaced in (4.14) by 8ρ/(ρ + 1) [43]. For ρ > 8/7, the
bound (4.14) is better.
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5. Explanation 1: Chebyshev expansions and aliasing. Let us immedi-
ately state our conclusion: the first half of Theorem 4.5 holds for Clenshaw–Curtis as
well as Gauss quadrature. The sole change needed is to replace the condition n ≥ k/2
by the condition of sufficiently large n. Thus Clenshaw–Curtis has essentially the
same algebraic rate of convergence as Gauss quadrature for several-times-differentiable
functions.

Theorem 5.1. Let Clenshaw–Curtis quadrature be applied to a function f ∈
C[−1, 1]. If f, f ′, . . . , f (k−1) are absolutely continuous on [−1, 1] and ‖f (k)‖T = V <
∞ for some k ≥ 1, then for all sufficiently large n,

|I − In| ≤
64V

15πk(2n + 1 − k)k
.(5.1)

“Sufficiently large n” means n > nk for some nk that depends on k but not f or V .

Notice the key implication: the factor 2−k in the error bound (4.13) for Gauss
quadrature, which one thinks of as coming from its doubled order of accuracy, applies
to Clenshaw–Curtis quadrature too. In this section we shall derive this bound. The
theorem is new, but it is built on the ideas of Elliott [12] and O’Hara and Smith [35]
forty years ago.

The crucial fact is that of aliasing. Elementary algebra shows that on the grid
in [0, 2π] of 2n equally spaced points θj = πj/n, 0 ≤ j ≤ 2n − 1, the functions
cos((n + p)πθj) and cos((n − p)πθj) are indistinguishable for any integer p. We say
that the wave numbers (n + p)π and (n− p)π are aliases of one another on this grid.
Transplanting to the variable x = cos θ gives the following result.

Theorem 5.2. For any integer p with 0 ≤ p ≤ n,

Tn+p(xj) = Tn−p(xj) (0 ≤ j ≤ n)(5.2)

on the Chebyshev grid (2.3). Consequently Clenshaw–Curtis quadrature gives the same

result for both functions,

In(Tn+p) = In(Tn−p) = I(Tn−p) =







0 if n ± p is odd

2

1 − (n − p)2
if n ± p is even

,(5.3)

and the error in integrating Tn+p is

I(Tn+p) − In(Tn+p) =







0 if n ± p is odd

8pn

n4 − 2(p2 + 1)n2 + (p2 − 1)2
if n ± p is even

.(5.4)

Proof. The equality (5.2) was established by the discussion above it. Since
Clenshaw–Curtis quadrature is exact for polynomials of degree ≤n, the identity

(5.3) follows from the standard formula
∫ 1

−1
Tj(x)dx = 2/(1 − j2) for the integral

of a Chebyshev polynomial of even order (which appeared in the penultimate line of
clenshaw_curtis in Section 2). Finally, taking the difference of the integrals with
j = n + p and j = n − p gives (5.4).

From (5.4) we can see why Clenshaw–Curtis quadrature is unexpectedly accurate.
Suppose n is even for simplicity. Then the first few terms in the Chebyshev expansion
of f that contribute to the error I(f) − In(f) are

an+2Tn+2, an+4Tn+4, . . . .
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However, the exact integrals of these Chebyshev polynomials are small, of order
O(n−2), and thanks to aliasing, their values as computed by Clenshaw–Curtis quadra-
ture will also be small. From (5.4), we see that if n is large, the errors associated with
the terms above are approximately

16

n3
|an+2|,

32

n3
|an+4|, . . . .

The numbers grow as the subscript increases from n towards 2n, but even for a
“typical” term an+p, the error will be of order n−2. For a numerical illustration,
suppose n = 50. Then the (n + 1)-point Clenshaw–Curtis formula integrates T52

inexactly, but the error is only about 0.0001. Similarly its errors for T60, T70, T80,
and T90 are about 0.0006, 0.002, 0.006, and 0.02, respectively. By contrast the Gauss
formula with n = 50 integrates all the polynomials up to T101 exactly, but after that
its error jumps immediately to order 1: for T102, about −1.6.

We can now derive (5.1), and in the process, explain how the constant 8 in our
partial proof of Theorem 4.5 can be improved to 64/15.

Proof of Theorem 5.1 and completion of proof of Theorem 4.5. From the Cheby-
shev expansion of f we know that the quadrature error can be written

I(f) − In(f) =

∞
∑

j=0

′
aj

(

I(Tj) − In(Tj)
)

.

This implies

|I(f) − In(f)| ≤ S1 + S2 + S3 + S4

where

S1 =

n
∑

j=0

′ |aj |
∣

∣I(Tj) − In(Tj)
∣

∣ ,

S2 =

2n−⌊n1/3⌋
∑

j=n+1

|aj |
∣

∣I(Tj) − In(Tj)
∣

∣ ,

S3 =

2n+1
∑

j=2n+1−⌊n1/3⌋

|aj |
∣

∣I(Tj) − In(Tj)
∣

∣ ,

S4 =

∞
∑

j=2n+2

|aj |
∣

∣I(Tj) − In(Tj)
∣

∣ .

The term S1 is zero since the quadrature formula is interpolatory. From (5.4) it
can be seen that the factors

∣

∣I(Tj) − In(Tj)
∣

∣ that appear in S2 are all of order at

worst n−2/3, and by Theorem 4.2, the coefficients aj are of order V n−k−1. Thus S2

consists of O(n) terms of size O(V n−k−5/3), for a total magnitude O(V n−k−2/3). The
term S3 consists of O(n1/3) terms of size O(V n−k−1), for a total magnitude again
O(V n−k−2/3). Finally, consider S4. The partial proof of Theorem 4.5 given in the last
section implies a bound of 8V/πk(2n+1−k)k, which is what we would get again now
if we estimated S4 by applying the bound (4.6) for aj together with the inequality
|I(Tj) − In(Tj)| ≤ 4. However, since j ≥ 4, from (5.2) or (5.3) it can be seen that we
actually have |I(Tj)−In(Tj)| ≤ 2+2/15 = 32/15. It is this observation that sharpens
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the constant in Theorem 4.5. For Theorem 5.1, we have the freedom to increase n a
little further. In particular, the assumption n ≥ 2 is enough to imply j ≥ 6, further
shrinking the constant to 2 + 2/35 = 72/35. Combining this with (4.6) and putting
the pieces together, we find

S1 + S2 + S3 + S4 ≤ O(V n−k−2/3) +
144V/35

πk(2n + 1 − k)k
<

64V/15

πk(2n + 1 − k)k

for large enough n.

6. Explanation 2: rational approximation of log((z + 1)/(z − 1)). So
far, I have not mentioned why this article came to be written. The answer is about
to appear: Figures 6.1 and 6.2. Some time ago I undertook to investigate analogues
for [−1, 1] of observations put forward in [42] about quadrature and rational approx-
imation on (−∞, 0]. As soon as these figures appeared, I knew there was a story to
be told about Clenshaw–Curtis quadrature.

To set the stage, we turn to an old idea for estimating the accuracy of quadrature
formulas applied to analytic functions: Cauchy integrals in the complex plane. As
always, we are interested in the relationship of the integral I of (2.1) to its discrete
approximation In of (2.2) for a function f ∈ C[−1, 1]. Suppose that f is analytic in a
neighborhood of [−1, 1], and let Γ be a contour in the region of analyticity that winds
once around [−1, 1] in the counterclockwise direction. Then using Cauchy’s integral
formula we can write

I =

∫ 1

−1

f(x)dx =

∫ 1

−1

1

2πi

∫

Γ

f(z)

z − x
dz dx =

1

2πi

∫

Γ

f(z)φ(z) dz,(6.1)

where φ(z) is given by

φ(z) =

∫ 1

−1

dx

z − x
= log

z + 1

z − 1
.(6.2)

To be precise, φ is defined as the analytic function in C ∪ {∞}\[−1, 1] given by the
branch of log((z + 1)/(z − 1)) that is positive for z ∈ (1,∞). At the same time, using
complex residue calculus, we can also express In as a contour integral over Γ:

In =
n

∑

k=0

wkf(xk) =
1

2πi

∫

Γ

f(z) rn(z) dz,(6.3)

where rn is defined by

rn(z) =

n
∑

k=0

wk

z − xk
.(6.4)

Combining (6.1) and (6.3) now gives a beautiful result.
Theorem 6.1. Let f be analytic in a neighborhood of [−1, 1] and let Γ be a

contour contained in the region of analyticity of f that encloses [−1, 1] once in the

counterclockwise direction. Let φ be defined by (6.2), and for any n ≥ 0, let In be the

result of an arbitrary quadrature formula (2.2) with nodes in [−1, 1]. Then the error

is given by

I − In =
1

2πi

∫

Γ

f(z)(φ(z) − rn(z)) dz,(6.5)
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where rn is defined by (6.4), and hence

|I − In| ≤
1

2π
|Γ| ‖f‖Γ ‖φ − rn‖Γ,(6.6)

where |Γ| is the arc length of Γ and ‖ · ‖Γ is the supremum norm over Γ.

This theorem shows that quadrature over [−1, 1] is associated with a problem in
rational approximation: how closely can φ(z) = log((z + 1)/(z − 1)) be approximated
in a region of the complex plane near [−1, 1] by a rational function of type (n, n + 1),
i.e., with numerator of degree ≤n and denominator of degree ≤n + 1? Note that
φ(∞) = 0, so it makes sense that the degree of the denominator exceeds that of the
numerator. Any sum (6.4) with nonzero weights wk and distinct nodes xk defines
a rational function of type (n, n + 1), and conversely, if a rational function of type
(n, n + 1) is expanded in partial fractions, it will have the form (6.4) provided it has
n + 1 distinct poles.

The idea of relating quadrature formulas to rational functions goes back to Gauss
himself [19, 20]. In fact, Gauss’s original derivation is closer to this way of thinking
than many of the subsequent developments framed in terms of orthogonal polyno-
mials by Jacobi, Christoffel, Stieltjes and others. Gauss quadrature formulas have a
wonderfully simple characterization in terms of rational approximants:

Theorem 6.2. For any n ≥ 0, the rational function rn of (6.4) associated with

the (n + 1)-point Gauss quadrature formula is the type (n, n + 1) Padé approximant

to φ(z) at z = ∞. The function φ− rn has a zero of order exactly 2n + 3 at z = ∞.

Proof. Gauss derived this result by continued fractions [19]; see [20, §1.2].
A Padé approximant, as always, is defined as the unique rational function of the

specified type that matches the Taylor expansion of the given function at the given
point, here ∞, to as high an order as possible. This terminology was not available in
Gauss’s day, but Theorem 6.2 is his nonetheless.

What about Clenshaw–Curtis quadrature?
We begin with an experimental comparison. Figure 6.1 shows errors |(φ− rn)(z)|

as contour plots in the complex plane for Newton–Cotes, Gauss, and Clenshaw–Curtis
formulas with n = 8 and 16. In each case the innermost contour corresponds to
|φ(z) − rn(z)| = 1, and moving outward, the levels are 10−1, 10−2, . . . , 10−13. As
z → ∞, all the approximations become very good. Figures like these have been drawn
previously by Takahasi and Mori [40], for Gauss quadrature but not Clenshaw–Curtis,
as part of an important series of papers on quadrature formulas and their enhancement
by changes of variables like the double exponential transformation. Among other
contributions, Takahasi and Mori state Theorem 6.1. The only other publication
that I know of where figures like these appear is [42], for quadrature over (−∞, 0].

What can we infer from such images? Suppose f is analytic in a big region of
the complex plane and does not grow too fast as |z| increases. Then (6.6) implies
that we may get a small bound on |I − In| by integrating over one of the contour
levels far from [−1, 1]. In the extreme case, suppose f is a polynomial of degree k.
Then Theorem 6.2 implies that for Gauss quadrature, (φ − rn)f has a zero of order
2n + 3− k at ∞. If this number is at least 2, i.e., k ≤ 2n + 1, then by taking circular
contours Γ of radius R → ∞ we get arbitrarily small bounds on I−In, confirming the
exactness of Gauss quadrature for polynomials of degree ≤2n + 1. By reversing the
argument we can see that for any interpolatory formula, including Clenshaw–Curtis
or Newton–Cotes, φ− rn must have a zero of order at least n + 2 at ∞. If it did not,
taking a large circular contour Γ in (6.5) would imply a nonzero error I − In for some
monomial f(x) = xk with k ≤ n.
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Newton−Cotes n = 8

−4 −2 0 2 4

−2

0

2

Gauss n = 8

−4 −2 0 2 4

Clenshaw−Curtis n = 8

−4 −2 0 2 4

Newton−Cotes n = 16

−2 −1 0 1 2

−1

0

1

Gauss n = 16

−2 −1 0 1 2

Clenshaw−Curtis n = 16

−2 −1 0 1 2

Fig. 6.1. Contour plots of the error |φ(z) − rn(z)| for the rational approximations associated
with Newton–Cotes, Gauss, and Clenshaw–Curtis quadrature formulas with n = 8 and 16. The
contours, from inner to outer, correspond to 100, 10−1, . . . , 10−13. The Gauss and Clenshaw–Curtis
errors are virtually identical near [−1, 1], explaining their similar accuracy for functions that are
not analytic in a large region of the plane.

At the other extreme, suppose f is analytic in only a small neighborhood of
[−1, 1]. Then Figure 6.1 suggests that Newton–Cotes quadrature will not converge
at all, which is indeed the case. But the remarkable thing is what it suggests about
Clenshaw–Curtis quadrature. The figure reveals that near [−1, 1], the Clenshaw–
Curtis rational function is essentially indistinguishable from the Gauss rational func-
tion as an approximation to φ(z). Thus we can expect that for a function f of this
kind, the two quadrature formulas should have about the same accuracy—exactly
what was observed in the last three sections.

Figure 6.2 shows a closeup for the larger value n = 64. On the left we see contours
for Gauss quadrature, and on the right, Clenshaw–Curtis. Now the pattern is even
more striking. At z = ∞, rn interpolates φ to order 131 for Gauss quadrature and
only order 67 for Clenshaw–Curtis (since n is even, we get one more than the minimal
order n + 2), and that is why the outer curves are twice as far apart on the right as
on the left. The “missing” 64 interpolation points for Clenshaw–Curtis quadrature,
however, lie along a football-shaped curve at a certain distance from [−1, 1] (actually
there are 62 of them, not 64). Inside that curve, the two sides of the figure are almost
indistinguishable.

The following is a first step towards explaining this effect.
Theorem 6.3. Let rn be the rational function (6.4) associated with any interpo-

latory quadrature formula (2.2) with positive weights. Then the function φ(z)− rn(z)
has at least n + 2 zeros at z = ∞ and exactly 2n + 3 zeros in C ∪ {∞}\[−1, 1] if the

points ±1 are not quadrature nodes, or 2n + 1 zeros if these points are nodes.

Proof. A proof of the assertion about z = ∞ was sketched above. The result
about total count of zeros in C ∪ {∞}\[−1, 1] can be established by applying the
argument principle to φ(z) − r(z) over a contour Γ that encloses [−1, 1] sufficiently
tightly. Each quadrature node in (−1, 1) contributes an decrease in argument by 2π
as Γ passes nearby in the upper half-plane, then another decrease by 2π as it passes
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n = 64

Clenshaw−CurtisGauss

−1 −0.5 0 0.5 1

−0.25

0

0.25

Fig. 6.2. Contour plot of the error |φ(z) − rn(z)| as in Figure 6.1, but for n = 64 and with
Gauss on the left half of the image, Clenshaw–Curtis on the right. The scallops in the curves on
the right reveal the presence of n − 2 finite zeros of φ(z) − r(z) lying along a football-shaped curve
surrounding [−1, 1].

nearby in the lower half-plane, and the final contributions come from φ(z), whose
argument decreases by π near x = 1 and again by π near x = −1. We omit the
details.

Thus we see that all interpolatory quadrature formulas with positive weights
correspond to rational interpolants to φ(z) of order approximately 2n. What distin-
guishes Gauss quadrature is that all the interpolation takes place at the single point ∞.
The rational functions associated with other quadrature formulas can be interpreted
as examples of what approximation theorists call multipoint Padé approximants.

Figure 6.3 explores these interpolation points further, showing the n − 2 zeros of
φ − rn (computed numerically) for four values of n. (When n is odd the number of
finite zeros increases to n− 1 and the number of zeros at z = ∞ shrinks from n+3 to
n+2.) Two of the interpolation points are real, lying at approximately ±(1+1.8n−2),
and the remainder lie in complex conjugate pairs along a curve whose height shrinks
approximately at the rate O(n−1). It is an open problem to analyze the details of
this behavior. In particular it would appear that a theorem along the following lines
is likely to be valid, which would make an interesting companion to Theorem 5.1:
the bound (4.14) applies to Clenshaw–Curtis as well as Guass quadrature so long as
n ≤ nρ, where nρ is a number that approaches ∞ as ρ shrinks to 1.

We shall close with an illustration of the implications of Figure 6.3. Consider
again the fourth function of Figure 3.1, f(x) = 1/(1+16x2). This function is analytic
on [−1, 1] but has poles at ±i/4. In Figure 6.3 we see that the curve of interpolation
points crosses ±i/4 somewhere between n = 32 and n = 64. This suggests that for
values of n larger than about 50, the rate of convergence of the Clenshaw–Curtis
formula will cut in half. To test this prediction, Figure 6.4 extends the earlier compu-
tation to n = 120 instead of n = 30. As expected, there is a kink in the convergence
curve at n ≈ 50. Weideman has given an exact analysis of this example [45].

7. Conclusion. Gauss quadrature, one of the jewels of numerical analysis, is
a beautiful and powerful idea. Yet the Clenshaw–Curtis formula has essentially the
same performance and can be implemented effortlessly by the FFT. Figure 6.2 offers
a memorable explanation of the closeness of these two quadrature formulas. The
chebfun system in object-oriented MATLAB takes advantage of the power and speed
of Clenshaw–Curtis quadrature to integrate functions defined by as many as millions
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Fig. 6.3. Points in the complex plane at which φ(z)−rn(z) = 0 for Clenshaw–Curtis quadrature
with n = 8, 16, 32, 64. In addition there are n + 3 interpolation points at z = ∞.
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Fig. 6.4. Repetition of the fourth panel of Figure 3.1, but now to the higher value n = 120.
Near n = 50, the rate of convergence cuts abruptly in half as the curve of interpolation points of
Figure 6.3 crosses the poles of f at ±i/4.

of data points [2].

The observations of this paper may have implications for spectral methods for
the numerical solution of ordinary and partial differential equations [4], where the
debate between collocation (≈Clenshaw–Curtis) and Galerkin (≈Gauss) methods is
perennial.

Along the way to our Theorem 5.1 on Clenshaw–Curtis quadrature, we have
derived some possibly new results from the consideration of Chebyshev expansions of
smooth functions: on decay of Chebyshev coefficients (see eq. (4.6) and footnote 3), on
near-optimality of truncated Chebyshev series (eqs. (4.10) and (4.12)), on Jackson-
type bounds for polynomial best approximations (footnote 4), and on accuracy of
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Gauss quadrature (eqs. (4.13) and (4.14) and footnote 5).

We hope that others may now take up the challenge of explaining Figures 6.1–6.3
rigorously and establishing corresponding convergence theorems for Clenshaw–Curtis
quadrature, perhaps by making use of the potential theoretic notion of “balayage”.
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