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Abstract

We investigate gold’s role as a hedge or safe haven against oil price and currency movements

across calm and extreme market conditions. For the empirical analysis, we extend the intraday

multifractal correlation measure developed by Madani et al. (Bankers, Markets & Investors,

163:2–13, 2020) to consider the dependence for calm and extreme movement periods across

different time scales. Interestingly, we employ the rolling window method to examine the

time-varying dependence between gold-oil and gold-currency in terms of calm and turmoil

market conditions. Based on high frequency (5-min intervals) across the period 2017–2019,

our analysis shows three interesting findings. First, gold acts as a weak (strong) hedge for

oil (currency) market movements, across all agent types. Second, gold has strong safe-haven

capability against extreme currency movements, and against only short time scales of oil price

movements. Third, hedging strategies confirm the scale-dependent gold’s role in reducing

portfolio risk as a hedge or safe haven. Implications for investors, financial institutions, and

policymakers are discussed.

Keywords Hedge ratio · Intraday · Multifractal · Non-linearity · Optimal portfolio · Time

scale

1 Introduction

To understand economic complexity, it is necessary to consider the comprehensive dynamics

of different markets, and particularly, the nature of their interactions. Underlying market

interactions remain a great challenge for successful portfolio management, especially with

the occurrence of several turmoil periods in a short timeframe.
1

Thus, lessons from market

1Since 2000, several periods of turmoil have occurred, including the dot-com bubble, financialization of

commodity markets, the US housing boom, the subprime crisis, the sovereign debt crisis, and an environment

of increased uncertainty, COVID-19 crisis.
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interactions would be useful for asset allocation optimization, portfolio diversification, and

hedging strategies (Markowitz, 1952; Plerou et al., 2002).

Galton (1886) pioneered the development of the theoretical concept of connections

between time series. Pearson (1895) defined the Galton correlation coefficient with the aim

of measuring the similarity of price changes between pairs of assets, which came to be known

as the Pearson correlation coefficient.2 Several measures have been developed to measure

the cross-correlation between time series and especially since the 1980s, there has been a

revolution in econometric theory. Most of this research deals with linear models and station-

ary time-series (e.g., Engle & Granger, 1987, 1991). Some studies deal with time-varying

connection and extended correlation matrix in different ways in order to extract useful infor-

mation for understanding time-varying financial market dependence (Bollerslev et al., 1988;

Campbell et al., 2008; Forbes & Rigobon, 2002; Huang et al., 2013; Krishan et al., 2009).

In the last decade, a new strand of literature has emerged to highlight the complexity of

the behavior of financial series, especially after the occurrence of various turmoil periods

in a short timeframe (since 2000). Interestingly, these studies point out the high degree of

the non-stationary behavior of financial series, indicating self-affinity behavior, which may

characterize cross-correlation by power laws (Wa̧torek et al., 2019).

This study is related to this last strand of literature, specifically, the multifractal approach

used for portfolio management. As diversification benefits occur more during times of greater

volatility in financial markets (Ang & Bekaert, 2002), we propose a new measure of cross-

correlation for different order of moments (second and fourth, in particular). In other words,

we propose a new cross-correlation that is useful for measuring classical dependence (sec-

ond moment) and cross-correlation for extreme movement (fourth moment). Interestingly,

to the best of our knowledge, no research has used this kind of approach to provide further

information about the role of gold as hedge and safe-haven asset against oil and US currency

movements. From an econometric theory point of view, several techniques have been devel-

oped to investigate the fractal and the multifractal properties in time series. Some approaches

are employed for the univariate case, analyzing the auto-correlation of a time series, such as

the detrended fluctuation analysis of Peng et al. (1995) and the detrending moving average

(DMA) analysis of Vandewalle and Ausloos (1998). Multifractal versions have also been pro-

posed, namely, multifractal detrended fluctuation analysis and multifractal detrending moving

average (MFDMA) by Gu and Zhou (2010). Recently, some studies have shown interest

in power-law cross-correlation. Podobnik and Stanley (2008) proposed detrended cross-

correlation analysis (DCCA) to investigate power-law cross correlations between different,

but simultaneously recorded time series in the presence of non-stationarity. Zebende (2011)

and Kristoufek (2014b) proposed scale-specific correlation coefficients based on DCCA and

DMCA, respectively, analogous to the Pearson coefficient.3 The DMCA method is consid-

ered an improvement over the DCCA approach, as it avoids a box-splitting procedure and

assumes a power-law scaling of covariances with increasing moving average window size.

However, the abovementioned methods measure the cross-correlations only for the second

moment. In this work, we introduce a variant of the q-DCCA coefficient (Kwapień et al.,

2015) and an extension of the DMCA coefficient, termed the q-detrending moving average

cross-correlation (q-DMCA) coefficient, which is used to quantify the strength of cross-

correlations on different temporal scales and amplitudes between two non-stationary time

2 The Pearson correlation coefficient has been interpreted in different ways for analysis of the connection

between time series. For details, see Rodgers and Nicewander (1988).

3 Similarly, the variance is presented by the detrended fluctuation function (F2
DF A

or F2
DM A

) and the covari-

ance is presented by the detrended covariance function (F2
DCC A

or F2
DMC A

).
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series. From a theoretical point of view, most previous studies have investigated gold’s role as

a safe haven for stock market movements and oil price changes (Baur & Lucey, 2010; Beck-

mann et al., 2015; Ftiti et al., 2016; Miyazaki et al., 2012; Nguyen et al., 2016, 2020; Sephton

& Mann, 2018; Tiwari et al., 2020) while others have considered gold as a hedge against

inflation (Beckmann et al., 2019; Blose, 2010; Hoang et al., 2016; Lucey et al., 2017; Tully

& Lucey, 2007; Wang et al., 2011). Few studies have focused on the role of gold as a hedge or

investment safe haven against currency depreciation (Baur & McDermott, 2016; Iqbal, 2017;

Joy, 2011; Reboredo, 2013; Reboredo & Rivera-Castro, 2014a). Our analysis fills this gap

in the literature by dealing with intraday gold’s role against movements in oil and currency

markets, which is useful for asset allocation and hedging strategies for various reasons. Inter-

estingly, recent oil price movements have not been driven by market supply–demand forces,

but rather by US exchange rate fluctuations, as the US dollar (USD) is a major invoicing

currency. When the USD depreciates, investors tend to hold gold as a hedge against currency

movements and as a safe-haven asset against extreme currency movements. Empirically, our

study contributes to the literature in several ways. First, we develop a new cross-correlation

coefficient offering the advantage of considering investors’ heterogeneity across calm and

turmoil market conditions. Second, we propose an empirical framework based on an intraday

dataset useful in today’s modern financial markets, as high frequencies offer more informa-

tion and realistic design, especially with respect to market practitioners’ perspective in term

of risk management and hedging.

Based on the intraday data, ranged from May 2017 to March 2019 (the sample includes

35,608 observations), for main currency markets forming the US DXY aggregate index,

giving the main US trend, oil prices, and gold prices, we develop a new multifractal

cross-correlation measure—the q-detrending moving average cross-correlation coefficien-

t—investigating the hedging and/or safe-haven role of the gold market. Then, we test the

performance of this new measure compared to the q-DCCA coefficient developed by Kwapień

et al. (2015), dealing similarly with cross-correlation for different order of moments. Based

on the numerical experiment, in line with Kristoufek (2017), we confirm the superiority of

our measure for large samples (as is the case of an intraday dataset). Finally, the estimation

results are used to test the significant role of gold as a hedge and safe haven against oil and

USD depreciation at different time scales by estimating the optimal portfolio weights and

the optimal hedge ratio. The results between gold and USD exchange rates support the role

of gold as an effective hedge and safe-haven asset. Regarding oil and gold, the results show

independence for all time scales for moment of order two, supporting the weak hedge of gold

against oil. However, for turmoil periods, the relationship is negative for a time scale of less

than 600 (less than 1 week of trade), providing evidence of gold as a safe haven against oil in

the short run. Furthermore, our time-varying measure allows us to conclude that the power

of gold’s role as hedge and safe haven against oil and US currency markets is not stable and

change over time.

The subsequent part of this study is presented as follows. Section 2, briefly reviews the

literature. Sections 3 and 4 present the developed q-DMCA measure of cross-correlation and

its validation based on numerical experiments, respectively. Section 5 discusses the results

and Sect. 6 concludes.

2 Literature review

There are only a few studies dealing with gold as a hedge and/or a safe haven against currency

depreciation and they are quite recent. However, this literature may be related to earlier studies
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on the linear connection between gold and the USD and those investigating the connection

between gold and oil.

Beckers & Soenen (1984) investigated gold’s holding positions for US and non-US

investors, and showed a negative correlation between the return on gold investments (in

USD) and the strength of the USD on the foreign exchange market as well as asymmetric

risk diversification with advantage for non-US investors. Sjaastad & Scacciavillani (1996)

and Sjaastad (2008) concluded that the appreciation or depreciation of the USD has significant

effects on the gold price by using the forecast error approach.

Moreover, another strand of research has found strong relationships between gold and

oil prices (Ye, 2007; Zhang et al., 2007). Using GARCH family models, Hammoudeh &

Yuan (2008) examined the volatility behavior of three metals, gold, silver, and copper, and

found that oil stocks do not impact all three metals in the same way. Other studies support a

long-term relationship between oil and gold prices (Bouri et al., 2017; Narayan et al., 2010).

Few studies have examined the hedging and/or safe-haven capability of gold against cur-

rencies. Joy (2011) investigated the role of gold as a safe haven and/or hedge against currency

depreciation. Based on the DCCA-GARCH model, he indicated that gold is a weak safe haven

and a successful hedge against the USD. Chang et al. (2013) investigated the correlation

among oil prices, gold prices, and the new Taiwan dollar versus the USD exchange rate by

employing several linear tests and models (Johansen co-integration test, Granger causality

test, vector autoregression model, impulse response analysis, and variance decomposition

method). The authors concluded that the variables are considerably independent. Previous

studies have imposed some strong assumptions that do not match the specificities of financial

and commodities markets, which have been characterized by chaotic structural change since

the stock market crash of October 19, 1987 (Hsieh, 1991). In fact, financial globalization since

the 1980s and dynamic patterns in the global economy have been caused by developments

in information-processing technologies and the more global nature of all economic activity.

There was rapid expansion of international financial activity, continuing at least to a peak

in 2006 of “the long boom” (the Joseph effect) that preceded the global financial crisis in

December 2008 (the Noé effect), generating 6 trillion USD or approximately 20\% of world

GDP. To specify these more general mean structures in gold price, oil price, and exchange

rate relationships, many authors have employed non-linear models. By applying the structural

break cointegration test, Narayan et al. (2010) confirmed the existence of structural break

cointegration between these markets. Reboredo (2013) used copulas to characterize average

and extreme market dependence between gold and the USD; the empirical results suggest

that gold can act as a hedge and safe haven against USD depreciation. Kanjilal & Ghosh

(2017) employed threshold cointegration to find a non-linear relationship between gold and

oil prices. The non-linear ARDL model was also employed by Kumar (2017) to underline

the importance of asymmetric co-movement between gold and oil markets. Reboredo and

Rivera-Castro (2014b) and Baruník et al. (2016) examined gold–exchange rate and gold–oil

relationships, respectively, from a perspective of different investment horizons using the

wavelet approach. Recently, Tiwari et al. (2020) used a Markov-switching time-varying cop-

ula model and multi-resolution analysis (MRA) to examine the dependence structure and

dynamics between gold and oil prices.

The above-mentioned literature has investigated gold’s role as a hedge or safe haven against

oil price and/or currency movements. However, this literature does not distinguish between

the roles of gold during calm versus turmoil periods. This study aims to fill this gap by

proposing a new empirical correlation measure based on the intraday multifractal method.

This new measure has at least two advantages. First, we propose an intraday measure to

gain more insights on the co-dynamics of the studied markets and explore the existence of
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evolving short-range predictability. Second, the multifractal approach considers the investors’

heterogeneity. In addition, all the studies mentioned above used data with a daily frequency,

but the actual flow of data is defined tick by tick, at each quote and each transaction. More

specifically, as gold and oil futures are among the most traded commodities, investors can

set a sufficiently narrow window of time around each announcement of a sudden event or

monetary policy to verify whether the markets are impacted by a specific news.

3 Empirical design

3.1 The generalization of the DMCA

We can use the information provided by the detrending cross-correlation moving average

analysis to distinguish between hedge and safe-haven properties which measure dependence

between two or more variables in terms of average movements by the second order (q = 2)

and in terms of extreme market movements by the fourth order (q = 4). According to the

definitional approach described in Kaul & Sapp (2006), Baur & Lucey (2010), and Baur &

McDermott (2010), the distinctive features of an asset as a hedge or safe haven are as follows.

• An asset is a weak (or strong) hedge if it is uncorrelated (or negatively correlated) with

another asset or portfolio on average.

• An asset is a weak (or strong) safe haven if it is uncorrelated (or negatively correlated)

with another asset or portfolio in times of extreme market movements.

The DMCA coefficient can be regarded as an alternative and a complement to the DCCA

coefficient (Kristoufek, 2014b). According to the results of Kristoufek (2014a) and Sun

and Liu (2016), the DCCA coefficient proposed by Zebende (2011) dominates the Pearson

coefficient. Thereafter, Kristoufek (2014b) proposed the DMCA coefficient and found that it

can be regarded as both an alternative and a complement to the DCCA coefficient. This new

measure is based on the DMA (Alessio et al., 2002; Vandewalle & Ausloos, 1998).

For two possibly non-stationary series {xt } and {yt }, we construct the cumulative sum

X t =
∑t

i=1xi and Yt =
∑t

i=1 yi for t = 1, 2, …, N, where N is the same length for both

series.4 According to Xu et al. (2005) and Arianos and Carbone (2007), the moving average

functions X̃ t and Ỹt are defined as

X̃ t =
1

s

⌈(s−1)(1−θ)⌉
∑

k=−⌊(s−1)θ⌋

X t−k, (1)

Ỹt =
1

s

⌈(s−1)(1−θ)⌉
∑

k=−⌊(s−1)θ⌋

Yt−k, (2)

where the position parameter (θ) varies from 0 to 1.5 The reference point (θ) of the moving

average is set in the sliding window (s). ⌊x⌋ denotes the largest integer less than (x), and

⌈x⌉ consists of the smallest integer greater than (x). The residual series is obtained by

subtracting the trend X̃(i) from X(i), εX (i) = X(i) − X̃(i) and in the same way, we obtain

4 In Appendix Fig. 5, we present the dynamics of the cumulative sum of our returns (Fig. 5) to show the trend

behavior of these series motivating the detrending moving average method.

5 Different cases exist for setting the parameter (θ). In this study, we follow Shao et al. (2012), who used the

centered moving average (θ = 0.5), as this leads to the best solution. For other cases of setting the parameter

(θ), refer to Ftiti et al., (2019, p. 3125).
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εY (i) = Y (i) − Ỹ (i) where s − ⌊(s − 1)θ⌋ ≤ i ≤ N − ⌊(s − 1)θ⌋. We divide the residual

series into Ns parts of equal size s, where Ns corresponds to the integer part of ( N
s

− 1). For

1 ≤ i ≤ s, εv(i) = ε(l + i), where l = (v − 1)s and each part of the divided residual series

is denoted by v. We can calculate the root mean square function fv(s) with segment size s

by

f 2
v (s) =

1

s

∑s

i=1
[εv(i)]

2 (3)

The overall detrended fluctuation functions of each time series are estimated as follows:

F2
X ,DM A(s) =

1

Ns

∑Ns

v=1
f 2
X ,v(s) (4)

F2
Y ,DM A(s) =

1

Ns

∑Ns

v=1
f 2
Y ,v(s) (5)

and the bivariate fluctuation function F2
DMC A, following Jiang and Zhou (2011), is defined

as

F2
DMC A(s) =

1

Ns

∑Ns

v=1

(

X t − X̃ t

)(

Yt − Ỹt

)

(6)

The DMCA coefficient6 can be easily obtained by following Zebende (2011) for the

DCCA coefficient, as follows:

ρDMC A(s) =
F2

DMC A(s)

FX ,DM A(s)FY ,DM A(s)
(7)

According to the Cauchy–Schwarz inequality, we have −1 < ρDMC A(s) < 1. A value of

ρDMC A equal to zero implies independence between the two-time series. A value equal to

(−1) indicates that the two-time series have perfect long-range negative cross-correlation. A

value equal to (1) means that the time series have perfect long-range cross-correlation.

Equation (7) shows that the DMCA coefficient is the ratio between the detrended covari-

ance function F2
DMC A and the detrended variance function F2

DM A. This considers only the

level of cross-correlation in the mean and makes the measure unsuitable for other amplitudes.

In other words, the values of ρDMC A might not be the same for all fluctuations (lower q < 0

and higher q > 0).

To surpass this limit, we propose a multifractal generalization of the detrending moving

average cross-correlation coefficient. The idea is the same as that of Kwapień et al. (2015),

and consists of making the coefficient DMCA to the power (q), so that it becomes more

attractive by making it depend on the exponent (q) and the temporal scale (s). Our new

measure is based on the so-called
(

q th
)

-order fluctuation function Fq(s) from the MFDMA

and MF-X-DMA methods (Gu & Zhou, 2010; Jiang & Zhou, 2011). Therefore, we use the

detrended covariance sign, which enables us to keep “all” information about the analyzed

time series (Oświȩcimka et al., 2014). These quantities are defined as follows:

F
q
X/Y (s) =

1

Ns

∑Ns

v=1
f

q
X/Y ,v(s), (8)

F
q
XY (s) =

1

Ns

∑Ns

v=1
sign[ f 2

XY (s)]
∣

∣ f 2
XY (s)

∣

∣

q
2 , (9)

6 In this study, the presentation of the DMCA coefficient is different from those of Kristoufek (2014b).

Specifically, The DMA method presented in Kristoufek (2014b) is based on scaling of fluctuations with moving

average window length whereas in our case, we use moving averages, which are based on box splitting and

scaling with box sizes, as described in Eqs. (4) and (5).
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where, f 2
XY (s) =

1

s

s
∑

i=1

εX ,v(i)εY ,v(i) (10)

Finally, we propose the new detrending moving average
(

q th
)

-order cross-correlation

coefficient (q-DMCA cross-correlation coefficient) as follows,

ρq−DMC A(s) =
F

q
XY (s)

√

F
q
X (s)F

q
Y (s)

(11)

For q > 0, according to the Cauchy–Schwarz inequality, we have

−1 < ρq−DMC A < 1 (12)

When q < 0, the absolute value of the coefficient q-DMCA is greater than 1, and this

occurs frequently when the bivariate series are not cross-correlated or are weakly cross-

correlated. To consider this case, the q-DMCA coefficient can be redefined as follows:

ρ∗
q−DMC A(s) =

{

ρq−DMC A(s) i f
∣

∣ρq−DMC A(s)
∣

∣ ≤ 1
[

ρq−DMC A(s)
]−1

i f
∣

∣ρq−DMC A(s)
∣

∣ > 1
(13)

The cross-correlation coefficient presented in Eq. (11) is a time-scale varying measure

generalized for order q but it is time independent. To obtain a time-varying cross-correlation

measure generalized for order q , we apply the rolling windows based on the q-DMCA

coefficient. This method was first proposed by Cajueiro and Tabak (2004), who applied it for

efficient performance of the daily WTI and Brent crude oil futures prices. One relevant point

to note is that the length of rolling windows can be adjusted to suitable levels for the research

needs. The rolling window length is 3162 observations7 (approximately 2 months), since

using a short length could be associated with poor predictability of the fluctuation function

(Zhou et al., 2006).

4 Numerical experiments for the proposedmeasure q-DMCA

Previous studies dealing with either DMCA or DCCA measures as power-law of correlation

have confirmed the superiority of these measures compared to the traditional correlation

coefficient (Kristoufek, 2014a, 2014b). Actually, Kristoufek (2014a) proposed the DCCA

coefficient to measure correlation between non-stationary series, as an alternative to classical

measures, such as the Pearson coefficient. Based on Monte Carlo simulation of the ARFIMA

model, Kristoufek (2014a) showed the superiority of the DCCA coefficient compared to the

Pearson coefficient. Moreover, Kristoufek (2014b) introduced another measure to compute

the correlation between non-stationary series, based on the DMCA, as an alternative to

the Pearson coefficient. Similarly, through a Monte Carlo simulation exercise based on an

ARFIMA model, he showed the superiority of the DMCA coefficient compared to the Pearson

coefficient. Overall, these studies concern the power-law correlation for moment of order

two, which is analogous to the Pearson correlation measure, and there is consensus on the

superiority of the DCCA and DMCA compared to the Pearson correlation coefficient in terms

of (i) quantifying scale-dependent correlations and (ii) no sensitivity to noise (Piao & Fu,

2016).

7 We have also estimated the q-DMCA coefficient with different rolling window lengths (1 and 4 weeks).

Since the results remain robust across all window lengths, we have chosen the most parsimonious length.
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In our study, we extend these studies for high moments to measure the correlation between

time series in extreme events, particularly for moment of order four, which is not the case for

the Pearson correlation. Therefore, to highlight the superiority of our measure and particularly

its interest in relation to our research question on the hedging and safe haven capabilities of

gold, we should compare our proposed correlation measure with another one dealing with

cross-correlation for high moments, such as q-DCCA developed by Kwapień et al. (2015).

Therefore, we aim to compare the q-DMCA with the q-DCCA.

Our q-DMCA coefficient is compared to the q-DCCA coefficient by using a numerical

experiment based on MC-ARFIMA processes, which allow for various specifications of uni-

variate and bivariate long-term memory (Kristoufek, 2013). The two methods are focused

on estimating the generalized power-law coherency parameter Hρ(q) by controlling the

generalized univariate Hurst exponents Hx (q), Hy(q) and the generalized bivariate Hurst

exponentHxy(q). Kristoufek (2013) showed that the processes (xt ) and (yt ) are separately

and jointly widely stationary (Kristoufek, 2013, pp. 6491–6492). Then, Kristoufek (2017)

simulated the MC-ARFIMA model by considering d1 = d4 = 0.4 andd2 = d3 = 0.3,

supporting the wide stationarity of the data. However, Kristoufek (2014a, 2014b) sim-

ulated a DMCA coefficient based on the ARFIMA model allowing different cases of

d1 = d2 ≡ d=0.1,0.4,0.6,0.9,1.1, 1.4 to consider both stationary and non-stationary cases for

the variables. We consider the model of MC-ARFIMA, as it has a variety of advantages. It

allows us to control for the separate and bivariate Hurst exponents if the bivariate exponent is

not higher than the average of the separate ones; in addition, it allows for short-range depen-

dence. Specifically, the proposed MC-ARFIMA model allows for even more specifications

that encompass fractional cointegration and a short-range cross-correlated AR process.

The parameter Hρ is defined as Hρ(q) = Hxy(q) − 1
2
(Hx (q) + Hy(q)).

The MC-ARFIMA processes are defined as

xt =

+∞
∑

n=0

an(d1)ε1,t−n +
∑+∞

n=0
an(d2)ε2,t−n (14)

yt =

+∞
∑

n=0

an(d3)ε3,t−n +
∑+∞

n=0
an(d4)ε4,t−n (15)

for specific di = Hi − 0.5, we define an(di ) as

an(di ) =
Ŵ(n + di )

Ŵ(n + 1)Ŵ(di )
(16)

and innovations are characterized by

〈εi,t 〉 = 0for i = 1,2,3,4

〈ε2
i,t 〉 = σ 2

εi
for i = 1,2,3,4

〈εi,tε j,t−n〉 = 0for n �= 0and i,j = 1,2,3,4

〈εi,tε j,t 〉 = σi j for i �= jand i,j = 1,2,3,4 (17)

We have Hx = d1 + 0.5, Hy = d4 + 0.5 and Hxy = 0.5 + 1
2
(d2 + d3). In the simulations,

we initialize the following parameters: d1 = d4 = 0.4, d2 = d3 = 0.2. Thus, the theoretical

values of Hurst exponents and the power coherency parameter equal Hx = Hy = 0.9,

Hxy = 0.7 and Hρ = −0.2. Following Kristoufek (2017), we set three different simulated
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time-series lengths (T = 500, 1000, and5000). Power-law coherency is obtained when ε2

and ε3 are correlated, and thus, we study three correlation levels: 0 .1, 0.5, and0.9. For each

correlation level, we simulate 1000 bivariate series.8 To obtain the estimated values of Hρ(q),

we use the variance and covariance scale relations:

Fx (q, s) ∼ s Hx (q) (18)

Fy(q, s) ∼ s Hy(q) (19)

Fxy(q, s) ∼ s Hxy(q) (20)

and then, we obtain the generalized scaling squared correlation as follows:

ρ2
q−DMC A(s) ∼

s2q Hxy(q)

sq Hx (q)sq Hy(q)
= s2q Hxy(q)−q Hx (q)−q Hy(q) = s2q Hρ (q) (21)

The estimated values of Hρ(q) are easily obtained by using log–log regression. Simulation

results are performed according to three criteria: bias, variance, and mean squared error (MSE,

the sum of squared bias and variance) of the estimators.

We are interested only in the order q = 2 and q = 4, as explained in Sect. 3.

The simulation results for q = 2 of the q-DMCA and q-DCCA methods are presented

in Tables 1 and 2, respectively. First, we deduce that the detrended covariance sign in our

results significantly improves the results of Kristoufek (2017), especially for the q-DMCA

analysis.

Second, for low correlation between error terms ε2 and ε3, the bias is roughly 0.5 and 0.4

for the DCCA- and DMCA-based methods, respectively. The situation improves substantially

when the correlation between ε2 and ε3 increases, due to very low variance of the estimators.

The best case occurs when the correlation between innovations equals 0.9 and the window

size is the shortest nmin = 10 and smax = 20 for the estimators q-DCCA and q-DMCA,

respectively. We can generally say that the bias and variance decrease with time-series length.

For a sample of 5000 observations, we have approximately 0.03 (bias) and 0.03 (SD) for the

DCCA method and 0.02 (bias) and 0.02 (SD) for the DMCA method.

The simple change made to the detrended covariance by introducing the sign is evidence

of the main advantage in term of bias and variance. This fact can be explained by the ability

of the estimators to capture almost all information.

We conclude from Tables 1 and 2 that for both methods, when the correlation between

error terms ε2 and ε3 increases, the results improve significantly.

Similarly, the simulation results for q = 4 of the q-DMCA and q-DCCA coefficients are

presented in Tables 3 and 4, respectively. First, we note that the two methods yield a good

estimation of parameter Hρ when we focus on the analyses of high fluctuations. Second, the

findings are independent of the level of correlation and the sample length. In other words,

when we change the setting, the results remain relevant. Similarly, the best situation for high

fluctuations is when the correlation between ε2 and ε3 is lower (ρ = 0, 1).

To improve our numerical study, we extend the length of samples to 100,000 observations

(we set window sizes nmin = 10 and smax = 20, which are the best cases in the previous

simulations with correlation between innovations equal to 0.9 and 0.1 for q = 2 and q = 4,

respectively). The purpose of doing so is to verify whether the methods are stable with respect

to the length of the sample and for further comparison between them (to check whether the

alignment between the two methods remains valid).

8 We follow the setting of Kristoufek (2017) to assess the introduction of the sign function in the detrended

covariance function.
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Fig. 1 Comparative analyses of DCCA and DMCA methods

Figure 1 shows the estimation values of the parameter Hρ against time-series length. The

main deduction from the results is that the two methods show a stable estimation (in mean)

regardless of the length of the sample. For q = 2, the estimation values are approximately

equal to -0.15 and -0.16 for the q-DCCA and q-DMCA methods, respectively. There is almost

the same result for q = 4, as shown by the dashed lines in Fig. 1. Based on a comparison

with the theoretical value, which equals -0.2, we deduce that the q-DMCA method is more

efficient than the q-DCCA method.

5 Empirical validation

5.1 Data and preliminary analysis

This study employs high frequency data (5-min intervals), which enables us to investigate

important and interesting information and capture further phenomena at short-term intervals.

The data related to the gold futures (expressed in USD per ounce), the light sweet crude oil

(expressed in USD per barrel) futures contracts. For exchange rates, we select the currencies

of the main trade partners of the United States: Euro (EUR), pound sterling (GBP), Swiss

franc (CHF), Japanese yen (JPY), Canadian dollar (CAD), and Australian dollar (AUD).

Specifically, we refer to the main currencies forming the US dollar index (DXY). This index

aims to measure the value of the USD relative to a basket of foreign currencies, considered

as a basket of US trade partners’ currencies. This is an aggerate index in 1973 after the

dissolution of the Bretton Woods agreement, and has a value of 100. The DXY index is

quoted in high-frequency data and provides information about the global trend of the USD.

Previous literature (e.g., Barnett et al., 2013) highlights that analyzing aggregated data may

be source of bias. Therefore, we choose to investigate the gold–currency relationship based

on the individual exchange currency market forming the DXY aggregate index.

Formally, the DXY index is calculated as the weighted geometric mean of the dollar’s

value relative to the following selected currencies: (EUR), (JPY), (GBP), (CAD), (SEK), and

(CHF), weighted at 57.6%, 13.6%, 11.9%, 9.1%, 4.2%, and 3.6%, respectively. Interestingly,

for data availability, we replace the SEK with the AUD and this choice is motivated by several

reasons. First, since July 4, 1918, Australia and the US have maintained a unique bilateral
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partnership. Central to the relationship are the ANZUS Alliance and the Australia–US Free

Trade Agreement. During the period of study 2017–2019, Australia and the US traded more

than USD 66 billion yearly in a two-way investment relationship valued at more than USD

1.1 trillion, leading to approximately 25% of Australia’s inward foreign investment being

derived from the US. The selected exchange rates are measured in units of foreign currency per

USD, where an exchange rate decrease denotes USD depreciation. All data are collected from

Bloomberg database on an intraday basis and cover a period of approximately 400 trading

days beginning on May 23, 2017 and ending on March 12, 2019. Thus, the sample includes

35,608 observations for each variable. This period choice is motivated by our discretion to

analyze the role of the gold outside of the COVID-19 period, as it is considered a specific

shock similar to nature disaster (Goodell, 2020). The return series of gold, oil, and currency

are computed on a continuous compounding basis as the first difference of log prices. Figure 2

presents the dynamic of the gold–oil price (Fig. 2a) and gold price–exchange rate dynamics

for the different currencies analyzed in our study (Fig. 2b–g).

Figure 2 shows the following noteworthy aspects. First, we observe a potential negative

co-movement between oil and gold prices (Fig. 2a) in a few periods, explained by gold

investors holding under an upward trend of oil prices and vice versa. Figure 2b–g present the

dynamic of gold with different USD exchange rates. The pattern shows a potential negative

relationship between gold and currency markets.

Table 5 presents the main descriptive statistics. Skewness and kurtosis values show asym-

metry and leptokurtic dynamics of the studied series, respectively. This behavior is confirmed

by the Jarque–Bera test, which rejects the normality of all series. Figure 2 shows volatility

clustering for all data, highlighting the high volatility, extreme movements, and large fluc-

tuations of gold, oil, and exchange rates.9 Those features motivate the use of a non-linear

framework in this study.

Before investigating the dependence between time series through proposing a new mul-

tifractal correlation measure for different amplitudes, it is worthwhile to investigate the

multifractality nature of the studied series. To do this, we employ the MFDMA and MF-X-

DMA methods to investigate the degree of multifractality for the univariate and the bivariate

series, respectively. For different values of time scale (s), the power relationship between

Fq(s) and (s) is Fq(s) ∼ s H(q). Furthermore, according to the standard multifractal frame-

work, the multifractal scaling exponent, τ(q) = q H(q) − 1 can be used to characterize

the multifractal nature. The multifractal series may be characterized based on the singular-

ity strength function, α(q) =
dτ(q)

dq
. This quantity informs the singularities in a time series

and the multifractal spectrum, f (α) = q[α − H(q)] + 1, obtained through the Legendre

transform (Halsey et al., 1986). The strength of multifractality can be estimated by the width

of the generalized Hurst exponents 	H = Hmax − Hmin and the multifractal spectrum

	α = αmax − αmin for univariate and bivariate series (see Table 6).

To investigate the sources of the multifractality, we employ the shuffling and surrogate

procedures10 to the original data for 100 times and we re-estimate the degree of multifractality

	H and 	α. Finally, we can decide about the source of multifractality as follows.

• If 	H and 	α of the original data > 	H and 	α of the surrogated data > 	H and 	α

of the shuffled data, then the multifractality is caused by the long-range correlation.

9 The augmented Dickey–Fuller and Phillips–Perron tests accept the null hypothesis of unit root for all

variables and the Kwiatkowski–Phillips–Schmidt–Shin test rejects the null hypothesis of stationarity of all

variables.

10 For more details about these procedures, readers can refer to Ftiti et al. (2019).
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 2 The dynamic of gold, oil prices and exchange rates
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Table 6 Multifractal degrees of univariate and bivariate series

Variable 	H 	α

Original

data

Shuffled

data

Surrogate

data

Original

data

Shuffled

data

Surrogate

data

Gold 0.4094 0.2966 0.3860 0.6025 0.4465 0.4816

Oil 0.4513 0.4387 0.4224 0.6176 0.6057 0.5822

Bivariate 0.3680 0.1924 0.2325 0.5352 0.2962 0.3632

USD/EUR 0.4707 0.3591 0.3585 0.6553 0.5171 0.5064

Bivariate 0.3405 0.1701 0.2259 0.5200 0.2899 0.4912

USD/GBP 0.5227 0.3892 0.3967 0.7366 0.5498 0.5557

Bivariate 0.3773 0.1621 0.2152 0.5562 0.2534 0.4648

USD/CHF 0.3838 0.3226 0.3319 0.5462 0.4640 0.4728

Bivariate 0.3914 0.1837 0.1726 0.5687 0.2712 0.2577

USD/JPY 0.4699 0.3188 0.3470 0.6501 0.4710 0.4821

Bivariate 0.2790 0.2232 0.1756 0.3936 0.3277 0.2725

USD/CAD 0.4091 0.3121 0.3014 0.5666 0.4341 0.4255

Bivariate 0.3590 0.2043 0.1937 0.5365 0.3358 0.3294

USD/AUD 0.4024 0.3195 0.3275 0.5551 0.4379 0.4494

Bivariate 0.3724 0.1875 0.1893 0.5599 0.2981 0.3002

Bivariate series refers to the relationship between gold and the other variables under study. 	H and 	α

represent the degree of multifractality measures from the generalized Hurst exponents and the multifractal

spectrum, respectively

• If 	H and 	α of the original data > 	H and 	α of the shuffled data > 	H and 	α of

the surrogated data, then the multifractality is caused by the fat-tailed distribution.

When the degree of multifractality decreases after the two procedures, we conclude that

both the long-range correlation and fat-tailed distribution contribute to the multifractality.

It is widely known that the multifractal spectrum (generalized Hurst exponent) of a

monofractal time series is a point (order q independent), that is, the widths of the multi-

fractal spectrum and the generalized Hurst exponent are zero, whereas, they are different

than zero for multifractal time series. Table 6 shows that the widths for all studied series in

the univariate case are significantly non-zero, which supports the multifractal behavior of our

studied series. From a separate markets point of view, we can deduce that long memory and

fat-tailed distribution significantly contribute to the multifractality, since the degree of mul-

tifractality decreases after both shuffle and surrogate procedures. Moreover, for the bivariate

cases (all series with gold markets), the results show that the widths are also significantly

non-zero, confirming the multifractality in the bivariate cases. From an integrated markets

point of view, we have different conclusions. First, the degree of multifractality decreases

after the shuffle procedure for gold–oil, gold–EUR, and gold–GBP relationships, which indi-

cates that long memory plays a crucial role in the sources of multifractality. Second, there is

evidence that both long memory and fat-tailed distribution contribute to the multifractality

for the gold–CHF, gold–CAD, and gold–AUD relationships. Third, the multifractality of the

gold–JPY relationship is explained only by the fat-tailed distribution.
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Based on the abovementioned results, there is evidence of non-linear dependency and

multifractality for the gold–oil and gold–USD relationships, which indicates the vulnerability

to the use of a normal and linear framework.

5.2 Is gold a hedge or a safe haven against oil and the USD?

5.2.1 Evidence from time-scale varying measure

We apply an extension of the detrending moving average cross-correlation analysis to gold,

oil, and exchange rate return series using the q-DMCA cross-correlation coefficient for dif-

ferent window lengths from 20 observations (1.5 h) to 3162 observations (approximately

2 months). For each pair of composite variables, we estimate the coefficient ρq−DMC A(s)

for the medium (q = 2) and high fluctuations (q = 4).

The correlations between gold, oil, and exchange rates computed from Eq. (11) are shown

in Fig. 3a. Overall, we note that the cross-correlations between bivariate series are not the

same for different window sizes which yields useful policy implications, as we consider a

large set of agents with different investment horizons, such as market participants, traders,

hedges funds, and policymakers.

Regarding the relationship between gold and oil, empirical results indicate independence

between the two markets for medium fluctuations (q = 2), regardless of the time scale

which shows a correlation close to zero for all time scales. This result makes it possible for

gold to act as a weak hedge against oil price movement. For extreme movement, the results

(Fig. 3a) show a pronounced relationship in a short time scale (less than 600), with an average

correlation of -15%, and then becomes close to zero. This finding suggests that gold has a

capability of acting as a safe haven against extreme oil price movements, particularly for

short time scales.

Concerning the dynamic of the relationship between gold and exchange rates, the pattern

is different from that with oil. We observe (Fig. 3b–g) that for both medium and large

fluctuations, the relationship between gold and currency markets is negative, with more

pronounced negative correlation in medium fluctuations (q = 2). For large fluctuations,

the correlation between gold and currency markets is around -20% on average. This result

indicates the capability of gold to act as a hedge and safe haven against currency market

movements.

To obtain reliable results, we employ a bootstrap test based on the iterative amplitude

adjusted Fourier transform, as developed by Schreiber and Schmitz (1996), to control poten-

tial correlation between studied series. This method for surrogate data aims to test the

non-linearity of the investigated series. The implementation of the test is easy; the statis-

tic is defined as the q-DMCA coefficient; the distribution of the statistic is generated by

an ensemble of the statistic ρq−DMC A(s), which is obtained by applying the surrogated

procedure 1000 times; and the q-DMCA coefficient ρsur
q−DMC A(s) of each couple of

surrogated series is calculated. The null hypothesis is that the cross-correlation between

original series possesses the same dependence traits as those obtained from surrogated

series, namely,ρq−DMC A = ρsur
q−DMC A(s), where ρsur

q−DMC A(s) is the mean of all

ρsur
q−DMC A(s) values. The difference in terms of correlation between the original series

and the surrogated series is quantitatively described by a two-tailed p-value, which is defined
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(a) (b)

(c)
(d)

(e) (f)

(g)

Fig. 3 Cross-correlation at different time scales. a Time scales varying cross-correlation between gold and oil.

b Time scales varying cross-correlation between gold and USD/EUR exchange rate. c Time scales varying

cross-correlation between gold and USD/GBP exchange rate. d Time scales varying cross-correlation between

gold and USD/JPY exchange rate. e Time scales varying cross-correlation between gold and USD/CHF

exchange rate. f Time scales varying cross-correlation between gold and USD/CAD exchange rate. g Time

scales varying cross-correlation between gold and USD/AUD exchange rate
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as

p = Prob
(∣

∣ρsur
q−DMC A(s) − ρsur

q−DMC A(s)
∣

∣ >
∣

∣ρq−DMC A(s) − ρsur
q−DMC A(s)

∣

∣

)

(22)

If the null hypothesis cannot be rejected, this implies that gold is a weak hedge (safe-haven)

financial instrument.

The results of the bootstrap test are presented in Tables 7 and 8 for the medium and high

fluctuations, respectively. Conversely we deduce that gold can act as a significant hedge and

safe haven against USD depreciation with differences at different time scales, (Table 7).

For the gold–oil relationship, we cannot reject the null hypothesis for average dependence,

which leads us to conclude that the two markets are independent in calm periods, (Table 7).

Contrarily, there is negative and significant tail dependence between gold and oil for short

time scales (Table 8). Our results reveal that gold can hedge against oil price movements

weakly but can act as an effective short-term safe haven against extreme oil price movements.

Regarding the currency markets, we put out evidence the gold’s capability to act as a strong

hedge as well as a safe haven against currency market movements (Table 8). This result has

implications for currency investors operating at different time horizons, who want to hedge

their exposure to currency swings and with downside risks for those horizons.

5.2.2 Evidence from time-varying cross-correlation measure

In addition to the developed measure “time scale” described in the previous subsection, we

propose a time-varying of our correlation measure generalized for the qth-order based on

the rolling windows method. Taking this into consideration provided an empirical basis for

building non-linear models rather than the traditional models with a constant coefficient (as

discussed in the introduction), which are not suitable for capturing the nature and dynamics

of the relationship that exist between gold and oil markets and between the gold market and

USD exchange rates.

The time-varying dependence results11 are presented in Fig. 4. First, we observe a large

variation in the correlation of all pairs of series over time. Concerning the time-varying

gold–oil correlation, Fig. 4a shows independence behavior for medium fluctuations (q = 2),

except for July–August 2018. These results confirm the previous results of gold’s hedging

ability against oil price movements. For large fluctuations or -extreme movement (q = 4), the

correlation between oil and gold is sometimes close to zero (July 2017 to February 2018; May

2018 to July 2018; and November 2018 to January 2019) and sometimes negative (February

2018 to July 2018 and October 2018). These results show the safe-haven capability of gold

against oil during extreme price movements in these periods.

Regarding the interdependence between gold and currencies markets, we confirm our

previous findings of the time-scale varying measure, as we cannot reject the hedging and

safe-haven behavior of gold against currency market movements. Figure 4b–g reveal many

interesting findings regarding the gold–currency correlations during calm and turmoil periods.

First, the time-varying dependence is not constant and differs among currencies. Second,

for all currencies, there are many periods with more marked negative values during calm

periods than during turmoil periods. Third, the cross-correlations for high fluctuations are

very volatile, which explains an investor’s risk in composing his or her portfolio in a turmoil

11 To optimize the clarity of the figures, we do not insert the time varying cross-correlations obtained from the

1000 surrogated data series (the outputs are in line with the test results of the previous subsection). However,

these are available upon request from the corresponding author.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4 Time-varying cross-correlation. a Gold and Oil. b Gold and USD/EUR exchange rate. c Gold and

USD/GBP exchange rate. d Gold and USD/JPY exchange rate. e Gold and USD/CHF exchange rate. f Gold

and USD/CAD exchange rate. g Gold and USD/AUD exchange rate

period. Overall, the dynamics of the cross-correlation between gold and currency markets

shows that gold can act as a hedge and safe haven against currency market movements.

5.3 Intraday portfolio diversification and hedging ratios

The study aims to determine the role of gold as a hedge and safe haven for the majority of

market participants, including traders, hedge funds, and policymakers. In this context, we

evaluate the attractiveness of gold in terms of risk management by taking into consideration

normal (q = 2) and turmoil (q = 4) movements derived from currency and oil prices at

different time scales (s). Following Kroner and Ng (1998), the optimal weight of gold in a 1

USD portfolio of gold/(currencies or oil) is given by

wg(s) =
F

q
c/o(s) − F

q
g,c/o(s)

F
q
g (s) − 2F

q
g,c/o(s) + F

q
c/o(s)

(23)
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wg(s) =

⎧

⎨

⎩

0 i f wg(s) < 0

wg(s) i f 0 ≤ wg(s) ≤ 1

1 i f wg(s) > 1

(24)

where g, o, and c denote gold, oil, and currency, respectively. F
q
c/o(s), F

q
g (s), and F

q
g,c/o(s)

refer to the q th-order detrended fluctuation function of the currency, oil, and gold and the

q th-order detrended cross-correlation function between different variables and gold for each

time scale, respectively. All these series are estimated by using the q-DMCA coefficient. We

note that the weight of the currencies (or oil) in the 1 USD gold/(currencies or oil) portfolio

for different time scales is (1 − wg). In addition to the optimal portfolio allocation, investors

and market participants seek to minimize the cost risk and the risk of the hedged portfolio.

The hedging strategy consists of holding a long spot position in one unit of currency or oil

futures market hedged by a short position of β(s) in the gold futures market (see, e.g., Kroner

& Sultan, 1993; Hull, 2011), given by

β(s) =
F

q
g,c/o(s)

F
q
g (s)

(25)

Tables 9 and 10 display portfolio weights and hedge ratios for calm and turmoil periods,

respectively. Beginning with the portfolio weights, in a 100 USD portfolio of gold and oil

futures, the optimal portfolio weight of gold futures for calm period varies from 0.8812 USD

(s = 398) to 0.9136 USD (s = 1000). We deduce that the weight of gold futures in gold

and oil futures portfolio remained important and stable as the time scale increased. For gold

futures and currency portfolios, weights vary substantially across exchange rates. They range

between 12.97% (s = 3162) and 24.64% (s = 20) for the Euro currency market; 30.17% (s =

1000) and 41.59% (s = 100) for the Pound currency market; 6.9% (s = 1995) and 15.62% (s

= 20) for the Yen currency market; 8.61% (s = 1585) and 22.09% (s = 3162) for the Swiss

Franc currency market; 24.43% (s = 631) and 30.27% (s = 100) for the Canadian dollar

currency market; and 26.98% (s = 398) and 40.39% (s = 1995) for the Australian dollar

currency market. These results suggest that i) the weight of gold futures is important in a

gold–exchange rate portfolio, especially for a short horizon and ii) the weight of gold futures

decreased as the time scale increased for the EUR, JPY, and CHF.

The hedge ratio regarding oil futures fall in the range of -0.0395 (s = 1995) and 0.2626

(s = 1000). This result suggests that to minimize risk for short hedgers in a 4-week trade, a

long position of 1 USD in the oil market should be hedged by a short position of 0.0395 USD

in the gold market. However, the hedge ratios for currencies are important; they vary from

-0.3036 (s = 20) to -0.3925 (s = 1000) for the Euro currency market; -0.2251 (s = 3162) to

-0.3371 (s = 1000) for the Pound currency market; -0.3280 (s = 20) to -0.4090 (s = 3162)

for the Yen currency market; -0.2876 (s = 3162) to -0.3544 (s = 1000) for the Swiss Franc

currency market; -0.2372 (s = 20) to -0.3157 (s = 1995) for the Canadian dollar currency

market; and -0.3088 (s = 50) to -0.4417 (s = 1585) for the Australian dollar currency market.

We deduce that i) the hedge ratio increased when the time scale increased and ii) investors

require more gold assets for intraday investments (s = 20) to minimize portfolio risk.

Similarly, the optimal portfolio weight and hedge ratio for turmoil periods are presented

in Table 10. The empirical results suggest that the weight of gold futures is also important in

gold/oil and gold/currency portfolios, except for the JPY. From the results of the hedge ratio,

we find that, contrary to calm periods, in turmoil periods, the hedge ratio decreased when the

time scale increased for the oil, EUR, GBP, and CAD. This finding implies that to minimize
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oil and exchange rate risk, especially in less than 1-week trade (for s < 631), investors should

hold more gold assets in turmoil periods in the case of oil and these three currencies.

The yellow metal is commonly considered as one of the most effective hedges or safe-

haven investment tools, as it has a very low correlation with other assets. Moreover, investing

in gold can yield certain commission and tax advantages; the front-end load or commission

for derivatives (mainly futures or options) is usually lower than the commission loaded on

spot markets and investing in gold futures offers eligibility for the well-known 60/40 tax

rule. In other words, regardless of the investment result on a gold futures contract, taxation

is treated as 60% long-term capital gains and 40% short-term capital gains, which provides

an effective tax rate lower than the ordinary income rate.

Based on the economic theories usually grounded on inverse relationships between

gold–oil and gold–US exchange rates, we aim to clarify the non-linearity that exists in these

relationships based on an original multifractal approach. This study is related to the litera-

ture which examines the role of gold as a hedge or safe-haven asset. Recently, Huynh et al.

(2020a) and Huynh et al. (2020b) employed the transfer entropy to analyze informational

linkage among cryptocurrency markets and gold (and oil), respectively. They argued that

investors should conduct portfolio rebalancing by including gold (cryptocurrency) to hedge

against the unexpected movement in the cryptocurrency (oil) market. Furthermore, Tham-

panya et al. (2020) used the linear and non-linear Autoregressive Distributed Lag (ARDL)

framework to investigate the hedging effectiveness of gold and bitcoin for equities. Their

results reveal that the effects of gold on the stock market are asymmetric in most of the cases.

Our approach outperforms the existing techniques employed previously and gives at least two

advantages by considering heterogeneity in the horizons of investors and by simultaneously

measuring the dependences across tranquil and turmoil market conditions.

Our empirical results yield some interesting implications for investors, financial institu-

tions, and policymakers. First, there is evidence of non-linear relationships among gold, oil,

and currencies, which are affected by long memory and fat-tailed distribution. These findings

provide comprehensive knowledge of integration among gold and the other two markets, and

a clearer view for investors to develop profitable strategies. Second, the linkage between gold

and oil prices is insignificant under normal market conditions. Nevertheless, there is a nega-

tive and significant relationship between gold and oil under exceptional market circumstances

but only in the short term, precisely during the last year of 2018 (see Fig. 4a); after US Pres-

ident Donald Trump’s threat of sanctions against Iran (OPEC’s third-largest oil producer),

the constantly increasing global demand, and the deteriorating situation in Venezuela. These

three reasons explain why the price of crude oil rose to USD 76.90. However, in the same

period, a trade war between the US and China led to the cessation of Chinese imports of US

oil. This deterioration in imports (less than BPD 500,000) hurt US oil producers and led to a

large increase in stocks in the US. This largely contributed to a large drop in crude oil below

USD 45 at the end of 2018. Thus, the direction of the linkage between gold and oil changes

in extreme conditions, resulting in profitable situations of holding gold and oil commodities

when performing portfolio diversification. Therefore, traders and portfolio managers should

carefully monitor their oil and gold portfolio in such situations. Finally, our results reveal

that there is a significant negative relationship between gold prices and the USD for all time

scales. Contrarily, this suggests, that when a loss is caused by a depreciating USD, traders

and investors could earn profits from the increase in the price of gold. However, investors of

origin other than those in the US should act with other hedging strategies so as not to take on

exchange rate risk and deterioration in the price of gold and consequently, destruction of their

portfolio. Some macro-prudential policies should be adopted by policymakers, particularly

in emerging countries, whose currencies are susceptible to shocks that affect international
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trade and capital flows due to the fragility of their economic and financial systems as well as

their significant external debt.

Overall, our results on the usefulness of gold as a hedge and safe haven at different invest-

ment horizons favor the benefits of including gold futures in oil futures and currency portfolios

for risk management purposes. However, the size of those benefits varies by investment hori-

zon according to specific kinds of portfolios, namely, those whose portfolio diversification

and hedging ratios were optimally determined.

6 Conclusion

We complete the previous studies dealing with gold’s role in the financial market, especially

with currency and oil markets. Our study offers valuable insights on the role played by the

gold market during calm and extreme periods by using intraday data and multifractal method

considering the heterogeneity of investors.

Our results provided evidence of negative and significant average and tail dependence

for all time scales between gold and USD exchange rates, which is consistent with the role

of gold as an effective hedge and safe-haven asset. Furthermore, the evidence of average

independence for all time scales and negative and significant tail dependence between gold

and oil for short time scales indicated that gold can be used by investors as a weak hedge

and as an effective short-term safe-haven asset under exceptional market circumstances. The

results of the time-varying dependence also show that gold offers intraday hedging and safe-

haven benefits to investors at specific periods of time. The role of gold as a hedge and safe

haven is pronounced for the case of currency market movements.

Extending our analysis to the optimal hedging strategies between gold, currency, and

oil markets, evidence shows that, to reduce risk for different investment horizons, investors

should add gold to their portfolios without lowering the anticipated returns of their portfolios.
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Appendix 1

See Fig. 5.
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Fig. 5 The cumulative sum of the return series
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Appendix 2

Proof of the specification of the q-DMCA coefficient.

Based on Kwapien et al. (2015), we present the proof of the specification of the q-DMCA

coefficient as follows.

For q ≥ 0, we have −1 ≤ ρq ≤ 1, according to the Cauchy–Schwarz-like inequality.

According to the relation 2aαbα ≤ a2α + b2α and for any two parts ν and μ,
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Thus,
[
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]2
≤ F

q
X X (s)F

q
Y Y (s), For q ≥ 0.

For q < 0, the implication |a| ≤ |b| ⇒ |a|q ≤ |b|q is false and the values of ρq(s) may

arbitrarily converge to large positive or large negative values: |ρq(s)| ≫ 1 for some scales s.

This case may be viewed as an indicator of a lack of cross-correlations. In other words, the

denominator in Eq. (11) may be arbitrarily small compared to the numerator modulus. This

situation can occur only when the two series are uncorrelated or weakly correlated.

One of the ways to overcome this problem, as discussed in Kwapien et al. (2015), is to

redefine Eq. (11) in the following way:

ρ∗
q (s) =

{

ρq(s) i f
∣

∣ρq(s)
∣

∣ ≤ 1
1

ρq (s)
i f |ρq(s)|

>1
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