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Abstract. Local H0 determinations currently fall in a window between H0 ∼ 70 km/s/Mpc (TRGB)
and H0 ∼ 76 km/s/Mpc (Tully-Fisher). In contrast, BAO data calibrated in an early ΛCDM universe
are largely consistent with Planck-ΛCDM, H0 ∼ 67.5 km/s/Mpc. Employing a generic two param-
eter family of evolving equations of state (EoS) for dark energy (DE) wDE(z) and mock BAO data,
we demonstrate that if i) wDE(z = 0) < −1 and ii) integrated DE density less than ΛCDM, then H0
increases. EoS that violate these conditions at best lead to modest H0 increases within 1σ. Tellingly,
Quintessence and K-essence satisfy neither condition, whereas coupled Quintessence can only satisfy
ii). Beyond these seminal DE Effective Field Theories (EFTs), we turn to explicit examples. Working
model agnostically in an expansion in powers of redshift z, we show that Brans-Dicke/ f (R) and Ki-
netic Gravity Braiding models within the Horndeski class can lead to marginal and modest increases
in H0, respectively. We confirm that as far as increasing H0 is concerned, no DE EFT model can out-
perform the phenomenological two parameter family of the DE models. Evidently, the late universe
may no longer be large enough to accommodate H0, BAO and DE described by EFT.
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1 Introduction

Field theory has emerged as the leading framework to formulate physics, from early universe cos-
mology and particle physics to condensed matter and biophysics. Not only is this true classically,
whether one considers Maxwell’s electromagnetism or Einstein’s General Theory of Relativity (GR),
but Quantum Electrodynamics (QED) has been stringently tested.1 In contrast, the concordance
ΛCDM model is a phenomenological model in which about 95% of the energy budget of the universe
is in the dark sector. While there are various field theory models to describe the dark matter sector, the
remaining 69% in the dark energy (DE) sector is described by the cosmological constant Λ, which is
simply a placeholder for missing physics. Common lore states that Λ not only suffers from cosmolog-
ical constant problems [2], but also a “coincidence problem” [3, 4]. These problems have historically
served as the motivation to replace Λ with an Effective Field Theory (EFT) description, typically
captured by additional dynamical scalar fields. This has motivated the class of scalar-tensor field the-
ories, which govern the gravity and DE sector of the cosmological model, most notably Quintessence
[5, 6] and K-essence models [7–9]. However, the cosmological constant problem remains.

In recent years local determinations of H0 across different distance indicators, including Cepheids
[10], Tip of the Red Giant Branch (TRB) [11], water megamasers [12], Tully-Fisher relation [13]
and surface brightness fluctuations (SBF) [14] have all returned values larger than Planck-ΛCDM
[15]. While it is true that some determinations of H0 in the late universe recover values consistent
with Planck-ΛCDM, notably strong lensing time delay [16] and gravitational waves [17] (see more
recently [18]), strictly speaking, these are not local determinations, since they must assume a cos-
mological model. Furthermore, they typically have larger errors than direct local measurements and
that of Planck-ΛCDM. There are ongoing debates about whether a tension exists, and even if it does,
whether it is of significance or not, but it is difficult to imagine local H0 values converging to a value
below Planck-ΛCDM.2 The current state of the art is encapsulated in Fig. 1, where we have only
highlighted some indicative local determinations across observables. For a comprehensive overview

1The fine structure constant α is known to a precision of better than a part in a billion or a relative uncertainty of
7.2 × 10−10 [1]. In contrast, the relative uncertainty in Newton’s constant G is 2.2 × 10−5 according to CODATA 2018.

2Observe also that the base Planck-ΛCDM model has fixed (unrealistic) values for the neutrino masses. Relaxing this
constraint, the central value of H0 is even lower.
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of recent results, we refer to the reader to Fig. 1 of [19], where it is clear that TRGB at H0 ∼ 70
km/s/Mpc and Tully-Fisher at H0 ∼ 76 km/s/Mpc constitute outliers.3

This biasing of local H0 determinations to larger values can be a game changer for the traditional
DE paradigm. Recall that in the traditional setup, dark matter and DE do not talk to each other.
Nevertheless, in this minimal setting, one can replace Λ and its equation of state (EoS), wDE = −1,
with a constant parameter, wDE = w, or the two parameter family wDE = w0 + w1 f (z) where f (z) is
an arbitrary function of the redshift z such that f (0) = 0 and f (z � 1) remains finite. See [20] for
more discussion and analysis. Within this setting, the prevailing Chevallier-Polarski-Linder (CPL)
model [21, 22] corresponds to f (z) = z/(1 + z). For the CPL parametrisation it has been shown that
restricting to the wDE > −1 range of parameter space lowers H0 [23–25]. This precipitates the notion
that DE models satisfying the Null Energy Condition, 1 + wDE ≥ 0, which encompass a large class of
Effective Field Theories (EFTs) (but, by no means all!), cannot perform better than Λ when it comes
to recovering local H0 determinations. In other words, if one is left chasing a higher local H0 within
EFT, it may be best to do it with a scalar fixed in the minimum of a potential in the late universe and
having a dynamical DE EFT with redshift dependent EoS does not help to considerably increase H0.
Of course, one may even worry that this makes DE EFT redundant, and if so, then how should one
interpret the placeholder Λ?

Figure 1. The Planck H0 determination alongside local determinations based on Cepheids [10], TRGB [11],
Miras [12], Masers [12], Tully-Fisher [13] and SBF [14]. TRGB and Tully-Fisher determinations more or less
bound local determinations. The coloured regions document a ∼ 5σ disagreement.

However, it would be hasty to base conclusions solely on the CPL parametrisation, as it only
covers a specific class of Quintessence potentials [26] and is quantifiably less well tailored to the low
redshifts where DE is most relevant [20]. One can tackle the more general problem for Quintessence
by expanding the dynamical scalar in redshift z below z = 1. Since z is a small parameter, perturbation
is a valid tool. Then, provided any displacement ∆φ = φ − φ0 in the scalar from its value today φ0 is
small, i. e. ∆φ < 1 in some units, one has further computational control to expand the Quintessence
potential, V(φ) = V0 + V1(∆φ) + V2(∆φ)2 + . . . . Thus, at low redshift, one can solve the background
equations for the Quintessence model in terms of a finite number of constant parameters, scan over
those parameters and make statements that hold for models “close to” flat ΛCDM. Adopting this
approach, Ref. [27] constructed a large class of Quintessence models, showing that for representative
Type Ia supernovae [28], cosmic chronometer [29] and BAO data [30–32], only models that lower

3Some recent obsession with outliers in the literature reminds us that science is an endeavour pursued by humans.
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H0 are preferred by data.4 This generalised an earlier statement [34] beyond specific Quintessence
potentials. Thus, intuition gained from wCDM and w0waCDM models, in particular CPL, transfers
over wholesale to Quintessence, at least perturbatively. Throughout the advantage of this perturbative
approach is simply that one can work in a model agnostic fashion, albeit in a class of models close
to flat ΛCDM.5 While resorting to perturbation may sound like a disadvantage, we may have already
reached the precision where deviations from flat ΛCDM can no longer be large and perturbative
expansion around it allows us to probe a very large class of models within DE EFT.

Our primary goal here is to extend the analysis of Ref. [27] to more general DE EFTs, such as
the Horndeski class [38–40] of scalar-tensor theories. The motivation comes from the fact that scalar-
tensor theories, and more general modified gravity theories, are routinely touted to have cosmological
applications (see [41] for a review). Moreover, within Horndeski theories, one can prima facie con-
struct models where wDE < −1 [42, 43], a possibility which does not exist within the Quintessence
family. The class is defined by four arbitrary functions of a scalar φ and its kinetic term, and Taylor
expansion once again allows one to treat any unknown functions in an agnostic fashion. Our mis-
sion is greatly helped by the fact that post GW170817 [44] and the associated gamma-ray burst GRB
170817A [45, 46], one can justify restricting attention to theories where gravitational waves propa-
gate at the speed of light [47–51].6 This allows one to focus on the simpler class of Lagrangians,

L = G2(φ, X) + G3(φ, X)�φ + G4(φ)R, X := −
1
2
∂µφ∂

µφ, (1.1)

which already include some interesting subcases, as illustrated in Table 1. Here we adopt a (−,+,+,+)
signature for the FLRW metric so that X = 1

2 φ̇
2 ≥ 0, where dot denotes derivative w.r.t comoving

time t. See [53] for a review of these solutions in the aftermath of GW170817.

Class Gi(φ, X)

Quintessence [5, 6] G2 = X − V(φ),G3 = 0,G4 = 1
2 M2

pl

K-essence [7–9] G2 = G2(φ, X),G3 = 0,G4 = 1
2 M2

pl

Brans-Dicke/ f (R) gravity [54, 55] G2 = G2(φ, X),G3 = 0,G4 = G4(φ)

Kinetic Gravity Braiding [56] G2 = G2(φ, X),G3 = G3(φ, X),G4 = 1
2 M2

pl

Table 1. Various subcases of the Lagrangian (1.1) in the literature.

As we show in section 2, using mock BAO data based on Planck-ΛCDM, one can quickly
confirm that replacing the cosmological constant Λ with either Quintessence or K-essence is expected
to result in a lower cosmological inference of H0. Concretely, we show for (w0,wa) parametrisations
of the EoS that, if wDE(z = 0) = w0 < −1 and the integrated DE density is less than the analogous
ΛCDM quantity through to the deceleration-acceleration transition redshift, z∗, then H0 increases, and

4There are concrete Quintessence models that increase H0 while worsening fits through a demonstratable larger χ2

compared to ΛCDM [33].
5The same can be done through direct data reconstructions [35, 36], but one requires a theory prior if one probes BAO

data with correlations below a certain redshift length scale, otherwise wiggly reconstructions ensue, e. g. [37]. The reason
being that one can always enhance the fit to H(zi) and DA(zi) BAO constraints at separated zi by deviating from strictly
increasing functions, such as flat ΛCDM. In contrast, in Taylor expansion, the analyticity properties of field theories are
built in from the outset. See further discussion in [20].

6Obviously, this can be relaxed, since the source for GW170817 is at ∼ 40 Mpc, or redshift z ∼ 0.009. Thus, any
constraints only hold in the local universe, but as further events are observed, the window for viable Horndeski models
should narrow. Nevertheless, one can find models evading the current bounds [52].
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vice versa. An immediate corollary of this analysis is that any DE model that significantly increases
H0 must satisfy both of these conditions. On the flip side, any model with wDE(z = 0) > −1, but
allows wDE(z) < −1 at larger z, for example coupled Quintessence [57, 58], is going to have less
success in closing the H0 gap evident in Fig. 1. Tellingly, current constraints limit H0 inferences
within coupled Quintessence below H0 = 70 km/s/Mpc [59], even with a local H0 prior. Two recent
papers [60, 61] analytically prove that alleviating H0 tension requires wDE(z) < −1. Our analysis in
section 2 shows that wDE(z = 0) is the strongest indicator of H0 behaviour, so one can expect models
that lower wDE at z = 0 to perform best.

Having highlighted the obvious H0 problem for Quintessence, K-essence and essentially any
DE EFT with wDE > −1 at all redshifts (see also [60, 61]), in the latter part of this work we turn
our attention to more general models in the Horndeski class, which permit wDE(z) < −1 [42, 43].
This allows us to test the intuition gained in section 2 that wDE(z = 0) is most relevant. Throughout,
one is always conscious that (w0,wa) parametrisations are not truly general [26, 62], but that being
said, if one works suitably close to z = 0, one expects little difference. To that end, introducing
a non-minimal coupling places one in the Brans-Dicke/ f (R) gravity class [54, 55] (see Table 1).
However, evidence for evolution in the Newton’s constant, and therefore G4(φ), is weak, and on the
contrary, one has strong solar system [63] and BBN constraints [64] (see also [65–67] and [68–70]
and references therein for an alternative view). On the minimal assumption that the coupling G4(φ)
evolves linearly with cosmic time, while employing model agnostic techniques for the Quintessence
sector, G2(φ, X) = X−V(φ), we show in section 3 that any increase in H0 is expected to be negligible.
In other words, despite ongoing debate about whether non-minimal couplings can alleviate H0 tension
[71–73], in line with [67, 74], we find that a non-minimal coupling can only marginally alleviate H0
tension, at least within reasonable assumptions. Concretely, we observe that the class of models
largely fails to penetrate into the phantom regime wDE < −1 at z = 0, so it is consistent with our
(w0,wa) expectations. In contrast, in section 4, we find that Kinetic Gravity Braiding (KGB) models
[56] can alleviate H0 tension in a more meaningful way and trace the higher inferred values of H0 to
wDE(z = 0). Nevertheless, it should be stressed that KGB is a minimally coupled model, so final H0
inferences are expected to be in line with [75], where it was demonstrated that purely late universe
resolutions to H0 tension will struggle to exceed H0 = 70 km/s/Mpc. A like-for-like comparison
between KGB and (w0,wa) parametrisations demonstrates that H0 displacements are considerably
smaller for KGB, so if the latter cannot resolve H0 tension [76], then neither can KGB.

Finally, we remark that at each stage of the analysis, we make a direct comparison with the flat
ΛCDM model. In other words, our statements are relative statements. One can contemplate altering
the BAO scale through Early Dark Energy (EDE) [77, 78] or equivalent early universe physics, but
this does not change relative statements. This of course presents an intriguing avenue to resurrect
Quintessence etc. as viable DE models. That being said, the age of both the universe and astrophysical
objects within it bound H0 . 73 at 2σ confidence interval within FLRW cosmology [75, 79], so even
if EDE works which at present this is far from clear [80–89], it is plausible that local H0 may still be
biased high.7

Note added: While we were in the final stages of preparation for the arXiv submission, two papers
[60, 61] appeared that have good overlap, and of course are compatible with our main results and
statements.

7One can allow for late-time evolving DE with EDE, but late universe observations are largely consistent with Λ [90].
Interestingly, EDE may also be consistent with a scale invariant spectral index, ns ≈ 1 [91].
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2 Comparison of H0 from wDE(z) models and ΛCDM based on mock data

Here we make the case that H0 must always decrease in K-essence models because wDE(z) > −1.
Our observation includes Quintessence as a special case, where this fact has already been established
[27]. Let us start with a simple hand waving argument before quantifying later through mock data.
Recall that in Einstein frame, the general form for the Hubble parameter of a late universe cosmology
comprising a matter and DE sector is

H(z)2 = H2
0

[
(1 −Ωm)X(z) + Ωm(1 + z)3

]
, (2.1)

where Ωm is matter density and X(z), the normalised DE density X(z) := ρDE(z)/ρDE(0), may be
expressed in terms of the EoS,

X(z) = exp
(
3
∫ z

0

1 + wDE(z′)
1 + z′

dz′
)
. (2.2)

While in the flat ΛCDM model X(z) = 1 for all z, it should be clear that X(z) varies with wDE(z), and
in particular, wDE(z) > −1 (wDE(z) < −1) for all z implies X(z) > 1 (X(z) < 1). Between these two
extremes, one may consider more general functions wDE(z) that cross the phantom divide, wDE = −1.8

Obviously, data only cares about z dependence. Thus, given the Hubble parameter (2.1), high
redshift data - CMB or equivalent - effectively constrains the combination H2

0Ωm, since DE is tradi-
tionally assumed to be effective at low redshifts and X(z) cannot grow appreciably with redshift. For
this reason, this combination is for all extensive purposes a constant κ ≈ H2

0Ωm. In practice, it is not
a constant, but there is a finite window in which it varies. This allows us to rewrite (2.1) as

H(z)2 ≈ H2
0 X(z) − κX(z) + κ(1 + z)3. (2.3)

H(z) is fixed by the data, while X(z) can be raised or lowered through model selection. It should be
clear from (2.3) that once the high redshift data fixes κ to the allowed window, the only freedom left
is in H0. For this reason, one expects X(z) and H0 to be correlated. However, since X(z) is not a
constant parameter, but rather a function, one expects this correlation to hold over a redshift range.
Thus, it is reasonable to integrate the (normalised) DE density X(z) over a redshift range and check
for correlations with H0. That being said, the redshift range is ambiguous, but there is a deceleration-
acceleration transition redshift z∗ that is universal to all DE models. This corresponds to the redshift
where acceleration vanishes, i.e.

− (1 + z)H′(z) + H(z) = 0 ⇒ Ωm(1 + z∗)3 + (1 −Ωm)X(z∗) [1 + 3wDE(z∗)] = 0. (2.4)

For data consistent with Planck-ΛCDM, Ωm ≈ 0.3, one can expect z∗ ≈ 0.6. Nevertheless, for any
DE model in the class (2.1) a distinct value exists and one can extract it by solving (2.4). This allows
us to define Y(z∗) =

∫ z∗
0 X(z′)dz′ and any difference relative to flat ΛCDM in the same range:

∆Y(z∗) :=
∫ z∗

0
[X(z′) − XΛCDM(z′)]dz′ = Y(z∗) − z∗. (2.5)

8See [92] for a recent study dedicated to this direction.
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Figure 2. Differences in H0 in km/s/Mpc versus integrated DE density Y(z∗) for the CPL [21, 22] and flat
ΛCDM model. Each dot represents best fits to a mock realisation of data consistent with Planck-ΛCDM,
namely forecasted DESI BAO in the redshift range 0 < z ≤ 3.55 and a high redshift CMB prior on Ωmh2. Blue
points are consistent with anti-correlated H0 and Y(z∗), red points represent violations and green dots represent
CPL models with wDE(z) > −1 for all z.

Mock data. Having explained why X(z), or its integrated quantity Y(z), and H0 should be corre-
lated, let us turn to the mock data, so that we can substantiate the correlation. In performing fits
to mock data, we make a number of assumptions. First, we assume observational data consistent
with ΛCDM, more accurately Planck-ΛCDM, drawn from a DESI BAO forecast [93] and a Gaussian
CMB prior on the combination Ωmh2 = 0.141 ± 0.006, h := H0/100 (see appendix of [75]). For our
purposes the former simply serves as a basis to construct mock Hubble parameter H(z) and angular
diameter distance DA(z) data in the redshift range 0 < z ≤ 3.55, while the latter represents a generous
prior that comes from removing the low ` < 30 multiples from CMB data [94–97]. Note that relative
to Planck-ΛCDM [15], this inflates the error considerably, thus allowing us to reduce the sensitivity
of CMB data to the specifics of the DE model [94–97]. The key point here is that we have some input
from CMB at high redshift and some representative low redshift data, both of which are consistent
with Planck-ΛCDM. Since we are using BAO forecasts, the reader may complain that it is overly
presumptive to assume future DESI data releases will agree with Planck-ΛCDM. In light of the fact
that Lyman-α BAO is already discrepant with Planck-ΛCDM [98, 99], this is true. However, we can
address this point by later limiting the redshift range below z = 1, where neglecting a recent DES
result [100], findings are largely consistent with Planck-ΛCDM. Finally, observe that since we are
mainly interested in relative differences in H0, one is free to shift H0 up and down in the mocking
procedure and the conclusions will not change.

On a related note, mocks ultimately teach us very little about absolute differences in parameters,
e. g. H0, since it is the assumptions in the mocking, namely the mean value of the Hubble parameter
and the quality of the data that determine displacements. In other words, the errors are put in by hand.
Thus, in our work, absolute displacements in H0 or ∆H0 are not meaningful and they should not be
compared to existing discrepancies in real data. Instead, once one uses a fixed mocking procedure
throughout, one can look for general trends and make comparisons between cosmological models.
Thus, we will not be able to say if a DE model can fully resolve H0 tension or not, but based on our
mocks, we can identify the models that perform better.

In Fig. 2 we show the correlations between ∆Y(z∗) and ∆H0 := HCPL
0 − HΛCDM

0 for approx-
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imately 10, 000 mock realisations of data based on the flat ΛCDM model.9 Concretely, we adopt
forecasted DESI redshifts and errors for H(z) and DA(z) assuming the redshift range 0 < z ≤ 3.55
and sky coverage of 14,000 deg2 [93], which we reproduce in appendix A. We also adopt the CPL
parametrisation, w(z) = w0 + waz/(1 + z) [21, 22], and mock up on the Planck-ΛCDM values [15],
H0 = 67.36,Ωm = 0.3153,w0 = −1,wa = 0, while allowing the Gaussian prior Ωmh2 = 0.141±0.006.
In Fig. 2 each point or dot represents the difference in H0 and Y(z∗) between CPL and flat ΛCDM
for a different mock realisation. In blue we record mocks where ∆H0 and ∆Y(z∗) are anti-correlated.
The green dots represent a subset of the blue dots where we demand w0 > −1 and w0 + wa > −1 [23],
thereby ensuring that wDE(z) > −1 for all redshifts. Unfortunately, the anti-correlation between ∆H0
and ∆Y(z∗) is not a strict one and the red dots correspond to a few hundred mocks where increases
(decreases) in Y(z∗) are correlated with increases (decreases) in H0. These exceptions ultimately un-
dermine the utility of integrated DE density on its own as a diagnostic for higher or lower values of
H0. Nonetheless, the above analysis already provides good intuition.

Figure 3. The output of best-fits of the CPL model and flat ΛCDM to ∼ 10, 000 mock realisations of BAO data.
Blue dots and red dots denote mocks where H0 increases and decreases, respectively, relative to flat ΛCDM.

However, from an analysis of the remaining red dots, one identifies an anti-correlation between
w0 and H0. More concretely, for the red dots where H0 increases, it is always the case that w0 < −1,
and vice versa. In Fig. 3, we plot the same mocks but in the ∆Y(z∗) and ∆w0 ≡ w0 + 1 plane, where
blue dots and red dots distinguish mocks where H0 increases and decreases, respectively. As we have
just noted, if ∆H0 > 0, one can separate the (blue) points into ∆Y(z∗) < 0 and ∆w0 < 0. That being
said, what one would like is simply the opposite, namely to infer ∆H0 from wDE(z). It should be clear
that neither ∆w0 < 0 nor ∆Y(z∗) < 0 is strong enough on its own to leave one with only points where
H0 increases, but if both ∆w0 < 0 and ∆Y(z∗) < 0, then H0 is guaranteed to increase. On the flip
side, if ∆w0 > 0 and ∆Y(z∗) > 0, then H0 must decrease. As is clear from Fig. 3, the criteria do not
cover all the mocks, but it is easy to check that mocks where ∆w0 and ∆Y(z∗) have different signs,
i. e. ∆w0 · ∆Y(z∗) < 0, any displacements in H0 are well within 1σ. We have marginalised over the
parameters (H0,Ωm,w0,wa) for a number of the mocks using Markov Chain Monte Carlo (MCMC)
and found that the 1σ confidence interval for H0 is σH0 & 1.3 km/s/Mpc. In contrast for mocks where
∆w0 · ∆Y(z∗) < 0 in Fig. 3, we find the maximum and minimum values of ∆H0 are ∆H0 = 0.56 and
∆H0 = −0.78, respectively. As stated, these displacements are well within representative H0 errors.

9In a number of mocks we find a deceleration-acceleration transition followed by a later acceleration-deceleration
transition and (2.4) has multiple roots. Removing such possibilities reduces the number of mocks below 10, 000.
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The key point is that if one wants to have an increase or decrease in H0, then ∆w0 and ∆Y(z∗) must
possess the same sign.

Figure 4. Left plot: we distinguish mocks in cyan where both ∆w0 < 0 and ∆Y(z∗) < 0 from the remaining
mocks in magenta. Evidently, unless both conditions are satisfied, any increase in inferred H0 is marginal at
best. Right plot: we show differences in H0 values as given by the color-coding of the legend in the right of the
plot, in the more familiar (w0,wa)-plane. Once again, larger increases in H0 (yellow) are driven by w0, whereas
wa simply compensates, since mock data are consistent with flat ΛCDM. Note that the difference between the
SH0ES H0 determination [10] and Planck [15] is about 5.5 km/s/Mpc.

Moving along, in Fig. 4, Left plot, we show CPL models that increase H0 the most not only
have ∆w0 < 0 but also ∆Y(z∗) < 0. In the Right plot of Fig. 4 we show the same mocks in the more
familiar 1+w0 and wa plane to demonstrate that significant increases in H0 (yellow) are driven by w0.
There is one other take home message from the plot. One can clearly see that the data is consistent
with flat ΛCDM, since fits with w0 < −1 are correlated with wa > 0. Note that if wa > 0, this marks
an increasing trend in wDE(z). In short, one cannot deviate far from the ΛCDM EoS, wDE(z) = −1.
We will come back to this point later when we study EFTs in the Horndeski class. Let us simply
remark that for this reason, coupled Quintessence models [57] are less effective at alleviating H0
tension precisely because wDE(z = 0) > −1 [58]. More precisely, the value of the coupling at z = 0 is
degenerate with matter density Ωm, so one can always rescale Ωm to remove the coupling at z = 0, in
which case one is in the wDE > −1 regime close to z = 0 [58]. As a result, one expects any increase
in H0 within a coupled Quintessence model to be within 1σ. Note, we have not imposed a local H0
prior and the H0 inferences we make are simply driven by cosmological mock data.

Obviously, our findings rest exclusively on the CPL model over an extended redshift range 0 <
z ≤ 3.55. Given that Lyman-α BAO is discrepant with Planck-ΛCDM at z ∼ 2.3 [98, 99], it is prudent
to restrict the redshift range below z = 1 and make sure that this does not change the result. The main
point is that current BAO results below z = 1 are largely consistent with Planck-ΛCDM (however,
see [100]), whereas we should be open to deviations occuring at higher redshifts. Moreover, we
should also change the DE parametrisation and document any changes, since as stressed in [20],
each (w0,wa) parametrisation represents an arbitrary choice and one should check if the statements
are robust across parametrisations, e g. [76]. To that end, we consider the Taylor expansion in z,
wDE(z) = w0 + waz [101, 102]. This redshift model is arguably even simpler than CPL, but represents
a dubious expansion beyond z = 1, since z is no longer a small parameter. The results of the exercises
are shown in Fig. 5. Once again, we find that the more significant displacements in H0 are driven by
EoS where ∆w0 and ∆Y(z∗) have the same sign. Unsurprisingly, as we restrict the data below z = 1,
we see that it is less constraining, so displacements in H0 can become larger, otherwise Fig. 5 is in
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line with our expectations from Fig. 4.

Figure 5. Same as Fig. 4, but with the restricted redshift range z < 1 for mock data. On the left we present
results for the CPL model, and on the right, for a Taylor expansion in redshift. Compared to Fig. 4, we see that
∆H0 has understandably increased, since the data below z = 1 is less restrictive.

Let us summarise. Based on our analysis of (w0,wa) parametrisations for evolving DE, we have
noted for a large number of mocks consistent with flat ΛCDM that H0 always increases relative to
Λ if both ∆Y(z∗) < 0 and 1 + w0 < 0. The former quantity allows one to incorporate evolution. On
the flip side, if ∆Y(z∗) > 0 and 1 + w0 > 0, then H0 is guaranteed to decrease. For configurations
where differences in w0 and Y(z∗) have the opposite sign, one can expect any displacements in H0 to
be marginal and within 1σ. Given that H0 tension may be anything up to a ∼ 5 − 6σ discrepancy,
this should preclude models with ∆w0 · ∆Y(z∗) < 0. It should be clear that there is some redundancy
in ∆w0 and ∆Y(z∗) as w0 dictates the behaviour of wDE(z) in a window around z = 0, however the
integrated quantity, Y(z∗), is important when one has evolution. It is now easy to infer that H0 must
decrease if one replaces Λ with a K-essence model [7–9]. To appreciate this, recall that the DE EoS
is

1 + wDE =
2XG2,X

2XG2,X −G2
. (2.6)

The absence of ghost and instabilities of scalar perturbations implies G2,X > 0, (ρDE),X = 2XG2,XX +

G2,X > 0 where ρDE = 2XG2,X − G2 is the DE density (see discussion in [53]). Assuming the weak
energy condition ρDE ≥ 0, we have wDE(z) > −1, implying that H0 must decrease when the model
is fitted to any data consistent with flat ΛCDM. This has already been explicitly established for the
Quintessence class by analysing the dynamics of the field theory [27]. A secondary lesson is that
models where ∆w0 · ∆Y(z∗) < 0 can only marginally alleviate H0 tension. The reason being that one
can always absorb a coupling in the matter density at z = 0, so that wDE > −1 near z = 0. This
highlights an obvious H0 problem for coupled Quintessence [57, 58].

3 Non-minimal coupling

Having warmed up in the last section by discussing Quintessence and K-essence, we turn our attention
to the next simplest Horndeski models by permitting a non-minimal coupling to gravity. Concretely,
we restrict our attention to the Quintessence sector, G2(φ, X) = X − V(φ), redefine F(φ) = 2G4(φ),
which allows us to connect to other works in the literature [103, 104], and set Mpl = 1 (G4 =
1
2 ). Throughout we will be assuming that F(φ) is an analytic function, otherwise one may have to
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physically explain an abrupt jump in G, e. g. [68–70, 105].10 See [108] for a potential explanation in
f (R) gravity. It is worth stressing that any evolution in F(φ) translates into an evolution in Newton’s
constant G. Currently, observations are largely consistent with no evolution, whether it be constraints
in the solar system from lunar laser ranging Ġ/G0 = (7.1± 7.6)× 10−14 yr−1 [63], or constraints from
the Big Bang nucleosynthesis (BBN), GBBN/G0 = 0.98 ± 0.06 [64], where G0 denotes the value of
Newton’s constant today and the quoted errors in the latter are at the 2σ level. Nevertheless, within
these constraints, one is always free to speculate.

Our goal here is to recycle the analysis in [27], which allowed us to treat Quintessence models in
a model agnostic fashion through Taylor expansions in the late universe. There, expanding the scalar
φ in redshift z - a “small” parameter below z = 1 - about its value today φ0, one can also expand the
Quintessence potential provided the displacement in the scalar is also small, |φ − φ0| < 1. Imposing
the Quintessence equations of motion order by order in z, the parameters in the potential are fixed in
terms of scalar parameters, the Hubble constant H0 and matter density Ωm. This is the basic picture,
however, here we have an extra scalar function, F(φ), in addition to the potential V(φ), which leads
to additional unconstrained parameters when expanded in z. That being said, as explained above, we
have a tight constraint from BBN [64], which once translated into F, becomes

FBBN/F0 = 1.02 ± 0.06, (3.1)

where F0 is the value of F(φ) today and once again the constraint is at the 2σ level. Here, it is
interesting to note that one can analyse CMB data while allowing G to vary, but apart from inflating
errors, it does not greatly affect the central values [109], so the prior can be justified. As discussed, we
need to make some assumption about the evolution in F(φ), but since there is no compelling evidence
for evolution, we follow [64] and make the simplest assumption that F evolves linearly in time. While
instabilities can arise if F < 0 [43], the strong constraint (3.1) coupled with linear evolution safely
precludes this possibility. Once this is done, one can immediately write down an expression for F(z):

F(z) = F0 + Ḟ τ(z), τ(z) =
977.8

H0

∫ z

0

dz′

(1 + z′)E(z′)
Gyr, (3.2)

where E(z) = H(z)/H0 is the normalised Hubble parameter. In addition, we have introduced the
look-back time τ(z) in units of Gyr [110] and Ḟ is simply the slope or derivative of F with respect to
look-back time. Noting that τ(z = ∞) ≈ 13.8 Gyr in the Planck-ΛCDM Universe [15], this allows us
to infer a constraint on the slope so that F(zBBN) = FBBN,

F1 := 977.8Ḟ = (0.02 ± 0.06)H0. (3.3)

As one can see, the rescaled slope F1 is less than 8% of the value of H0 at 2σ. Evidently, when
compared to H0 this is not negligible, and as we will see, even linear temporal evolution in F(φ)
can alter the conclusions from the previous section. The reader will note that we started with an
additional function F(φ), but through the above linear assumption, it is reduced to a single constant
parameter F1. As a result, any change to our perturbative analysis within Quintessence following
[27] is minimal, since we have only introduced an additional constant.

Returning to the perturbative, low redshift analysis, if we expand the Hubble parameter to cubic
order in redshift,

H(z) = H0(1 + h1z + h2z2 + h3z3 + . . . ), (3.4)

10The mocking procedure in this work makes use of BAO. It is fitting to note that variations in Newton’s constant have
interesting implications for Type Ia supernovae as standard candles [106, 107], but this does not concern us.
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it is easy to write down a perturbative expression for F(z) that is expected to be valid at redshifts
z . 1:

F(z) = 1 +
F1

H0

(
z −

1
2

(1 + h1)z2 +
1
3

(1 + h1 + h2
1 − h2)z3

−
1
4

(1 + h2
1 + h3

1 − h2 + h1 − 2h1h2 + h3)z4 + . . .
)
, (3.5)

where we have set F0 = 1 without any loss of generality, since one can always absorb a constant
contribution to F(z) in the Newton constant today G0. This expression effectively determines F(z) in
terms of the expanded Hubble parameter H(z) and the slope F1, subject to the requirement that the
latter satisfies (3.3) at 2σ. Since we have expanded the Hubble parameter, it should be noted that our
expression for F(z) is an approximation. Nevertheless, any error introduced by this approximation is
expected to be negligible, because despite the approximation we have used for the integral, only being
accurate to 20% through to z = 1 for Ωm ≈ 0.3, relative to the leading term in (3.5), any discrepancy
is small. Indeed, one can check that the error inherent in the approximation for the Planck-ΛCDM
cosmology, where h1 ≈ 0.45, h2 ≈ 0.35, h3 ≈ −0.007, is less than 1% through to z = 1. It should
also be stressed that by imposing the Gaussian constraint (3.3) on F1 we can access variations in F(z)
where F increases and decreases with redshift, of course consistent with the BBN constraints [64].
It is worth noting that since the central value of FBBN > 1, our setup has a preference for increasing
values of F(z), or alternatively decreasing values of F(t), where t is cosmological comoving time.

Having set the problem up, we can now turn our attention to the equations [103, 104],

3FH2 =ρm +
1
2
φ̇2 + V − 3HḞ, (3.6a)

−2FḢ =ρm + φ̇2 + F̈ − HḞ, (3.6b)

0 =φ̈ + 3Hφ̇ + ∂φV − 3(Ḣ + 2H2)∂φF, (3.6c)

where dot denotes derivative w.r.t the comoving time t. Recalling that ρ̇m + 3Hρm = 0, only two of
the three equations are independent. We can now make a simple hand waving observation relating
our analysis to [60, 61], where it is found that variations in Newton’s constant G alleviate H0 tension
provided δG < 0. For slowly evolving F ∝ G−1, one can rewrite (3.6a) in the same form as (2.1),
where it should be noted that increasing F (decreasing G) leads to a decrease in the DE density X(z).
Therefore, just at the level of the equations of motion, the conclusions in [60, 61] are in line with
expectations given the above equations of motion. A larger local H0 necessitates Ḟ > 0.

Our choice for linear evolution of F with time means that F̈ = 0 and that Ḟ follows from the
choice of the constant F1, Ḟ = −F1. A difference in time can be attributed to the fact that when one
solves equations one is implicitly integrating forwards in time, whereas τ (3.2) denotes the reverse or
look-back time. We can now replace derivates d

dt → −H(1 + z) d
dz and rewrite ρm = 3H2

0Ωm(1 + z)3 to
bring the equations to the simpler form:

3FH2 =3H2
0Ωm(1 + z)3 +

1
2

(1 + z)2H2(φ′)2 + V(φ) + 3HF1,

2FH(1 + z)H′ =3H2
0Ωm(1 + z)3 + (1 + z)2H2(φ′)2 + HF1,

(3.7)

where prime now denotes derivative w.r.t z and an explicit expression for F(z) was given in equation
(3.5).

We can now solve these equations perturbatively at lower redshifts z < 1. The advantage of this
approach is that one can treat the potential V(φ) in a model agnostic fashion [27]. The basic idea is

– 11 –



to expand φ(z) in terms of z about its value today φ(z = 0) = φ0, on the assumption that z is small
(z < 1), while at the same time expanding the potential in terms of φ − φ0:11

φ =φ0 + αz + βz2 + γz3 + . . . ,

V(φ) =V0 + V1(φ − φ0) + V2(φ − φ0)2 + . . . ,
(3.8)

where the triplet of constants (α, β, γ) allow the scalar to be dynamical and the V(φ) expansion is
valid provided |φ − φ0| < 1. Solving order by order in z, we find

V0

H2
0

=3(1 −Ωm) −
1
2
α2 − 3

F1

H0
,

V1

H2
0

= −
1
2
α3 − 2β + 2α −

3
2
αΩm +

1
2α

F1

H0
(12 − 4α2 − 9Ωm) −

3
2α

F2
1

H2
0

,

V2

H2
0

= −
1
4
α4 +

1
4
α2(1 − 3Ωm) −

5
2
αβ + 1 −

3
2α

(3βΩm + 2γ)

+

(
−

1
2
α2 − 3

β

α
+

3
8

(4 + Ωm) −
3β
2α3 (4 − 3Ωm) −

3
8α2 (8 − 9Ω2

m)
)

F1

H0

+

(
9

4α2 +
1
2

+
3β
2α3 +

27
8α2 Ωm

)
F2

1

H2
0

+
3

4α2

F3
1

H3
0

,

(3.9)

and

h1 =
1
2
α2 +

3
2

Ωm +
1
2

F1

H0
,

h2 =
1
8
α4 +

1
4
α2 + αβ +

3
8

Ωm(4 − 3Ωm) −
1
8

F1

H0
(2 + α2 + 9Ωm) −

1
4

F2
1

H2
0

,

h3 =
α6

48
+
α4

16
(Ωm + 2) + αγ +

α2

16
Ωm(9Ωm − 2) +

αβ

2
(α2 + Ωm +

4
3

) +
2
3
β2

+
1
16

Ωm(8 − 36Ωm + 27Ω2
m) +

1
48

(
8 − 3α4 − 16αβ − 54Ωm

+117Ω2
m + 2α2(9Ωm − 1)

) F1

H0
+

1
8

(
2 + α2 + 10Ωm

) F2
1

H2
0

+
5
24

F3
1

H3
0

.

(3.10)

As a consistency check, one can check that when F1 = 0 we recover the expressions in Ref. [27].
Observe also that without the coupling, F1 = 0, the potential is fixed by the equations of motion in
terms of (α, β, γ) and the observational parameters, (H0,Ωm). In solving these equations, we made
sure to solve to one order higher by also incorporating expressions for V3 and h4, which are lengthy,
so we have omitted them. In the process of solving perturbatively, one can eliminate the constant
parameters describing the potential in terms of the constant parameters in the scalar. Thus, the free
parameters are H0,Ωm from the original flat ΛCDM model and an additional α, β, γ describing the
DE sector. In addition, we would have many other parameters associated to the coupling function
F(φ), but we have judiciously reduced this to a single parameter F1, which simply allows for linear
evolution.

Indeed, the constraints on F1 are such that F1/H0 . 0.1 beyond 2σ. This means that higher
powers of F1/H0 are going to be small, and if one wants, this allows one to simplify the expansion

11One can perform the expansion in powers of ∆φ := φ−φ0, instead of powers of z. Physically this corresponds to taking
φ as the cosmic clock.
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of the Hubble parameter. However, this does not greatly simplify expressions, so we work with the
original expressions for hi above. However, even at this stage, one point should be clear. Since F1
enters with opposite signs in h1 and h2, it is obvious from the analytic expressions that if F1 lowers
the slope of H(z) at O(z), then it will inevitably increase the slope at O(z2). This means that any
flattening of the Hubble parameter in the immediate vicinity of z ≈ 0 tends to steepen it at larger z.
We can also see this in the DE EoS. Within our assumptions, namely linear evolution of F with time,
implying constant Ḟ and F̈ = 0, the EoS of DE becomes,

wDE(z) = −1 +
(α2 + F1H−1

0 )
3Ωφ0

+
z

Ω2
φ0

[
α4

3
(Ωφ0 − 1) +

α2

3
Ωφ0(5 − 3Ωφ0) +

4
3
αβΩφ0

−

(
α2

6
(4 −Ωφ0) +

1
2

Ωφ0(1 −Ωφ0)
)

F1

H0
−

(2 + Ωφ0)
6

F2
1

H2
0

]
+ O(z2) (3.11)

where following [27] we have introduced Ωφ0 := 1 − Ωm and we have expanded in z. From the
expressions, it is once again obvious that if F1 has the right (negative) sign to decrease wDE(z) at low
z, then it must increase wDE(z) at higher z since Ωφ0 < 1. In essence, any linear evolution of F(φ) with
time introduces competing signs at leading and subleading orders. Even at this stage we can see that
a non-minimal coupling may not work as well as the CPL model in the sense that it will be difficult
to orchestrate both ∆w0 < 0 and ∆Y(z∗) < 0 in order to maximise an increase in H0 (see Fig. 4). We
will comment further on this later. We can determine the preferred sign for F1 by resorting to mock
data fits.

Before getting into the mock data analysis, it is timely to review our setup as it differs from the
data fitting of exact models in section 2. Here, any given (α, β, γ) define a valid perturbative scalar
profile provided they satisfy the following conditions [27],

|α| & zmax|β|, |β| & zmax|γ|, |φ − φ0| . 1,

|V0| & |V1 · (φ − φ0)|, |V1| & |V2 · (φ − φ0)|,
(3.12)

where we choose zmax = 1. In appendix B we show that the approximation is under control through
to z = 1. It was noted in [27] that any finite (α, β, γ) leads to lower H0 values than its flat ΛCDM
counterpart, (α, β, γ) = (0, 0, 0). This claim can be substantiated by probing the parameter space
through randomly generated large number of triples (α, β, γ) in a normal distribution about (0, 0, 0)
with suitable standard deviations 12, throwing away configurations that violate (3.12), while for the
remaining (α, β, γ) fitting the Hubble parameter defined by (3.4) and (3.10) to mock data below z = 1
to determine the best-fit values of the cosmological parameters (H0,Ωm). Throughout, we adopt the
flat priors 0 < H0 < 100 km/s/Mpc and 0 < Ωm < 1. In practice, one does this with each generated
(α, β, γ) and their flat ΛCDM counterpart (α, β, γ) = (0, 0, 0) for each iteration of mock data and
compares. Throughout, we impose the same high redshift prior as section 2, Ωmh2 = 0.141 ± 0.006.

While Ref. [27] performed analysis using a single realisation of real data, including BAO, Su-
pernovae (SN) and cosmic chronometers, and without the CMB prior, so it was simply a low redshift
result, here we provide a different realisation of BAO data for each (α, β, γ). Repeating the same ex-
ercise, we find that over 19, 075 mock iterations satisfying (3.12), one encounters larger values of H0,
with yet a better fit to the data (lower χ2) a total of 16 times. Thus, the probability of encountering
such configurations is 0.08% and any increase in H0 is negligible ∆H0 < 0.03 km/s/Mpc. In other
words, there appear to be some exceptional perturbative Quintessence models within our assump-
tions, but the chance of encountering them is low. This may be an artifact of the least squares fitting

12Concretely, we adopt the choice (σα, σβ, σγ) = (0.18, 0.12, 0.06), where we have staggered so that the first line of
(3.12) is more easily satisfied by the generated configurations.
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procedure, but since we use the same methodology throughout, this is not expected to change results.
Interestingly, we have checked that the 16 exceptional configurations satisfy weff > −1 from equation
(10) of [27] for uncoupled Quintessence with C = 0, so these exceptions do not have an explanation
in a phantom EoS. It should be stressed that the mock data is based on flat ΛCDM (see section 2), but
as we explain in appendix B, the approximation should be under control. Finally, as explained earlier,
each triple (α, β, γ) should be viewed as a distinct Quintessence model, since the scalar profile fixes
the potential through (3.9) (F1 = 0) once Ωm is determined.

The goal now is to repeat the exercise while also fitting F1 subject to the Gaussian prior (3.3) and
the new high redshift constraint Ωmh2/FBBN = 0.141 ± 0.006.13 However, even before performing
the exercise, we have a good idea what to expect from the analytic expressions (3.10) and (3.11).
Any scalar profile leads to a finite value of α, which tends to steepen the slope of H(z) at z = 0.
This explains why Quintessence models with F1 = 0 lower H0. As the reader will observe, one can
reduce Ωm to compensate, but this is counteracted by any high redshift constraint on Ωmh2. However,
beyond Ωm, the scalar can now be compensated by a negative F1 provided it is tolerated by the BBN
prior (3.3). In Fig. 6 we show the output of mock fits that lower the χ2 relative to flat ΛCDM,
which is defined by (α, β, γ, F1) = (0, 0, 0, 0). Concretely, we repeat the same steps as outlined for
Quintessence with the newly added F1 parameter that is subject to a Gaussian prior (3.3). It also
contributes to the χ2 of the flat ΛCDM model when F1 = 0. From 19,999 mocks, we find that
roughly half, or 9,675 mocks, lead to a better fit to data. From these, we can identify 29 mocks where
H0 increases, while χ2 decreases. In Fig. 6, we separate the mocks with ∆χ2 < 0 into those with
∆H0 > 0 (blue) and the remainder (red). One can see a strong correlation between ∆H0 and the value
of wDE(z = 0), a feature that is largely inherited from the uncoupled Quintessence model, but is in line
with our analysis from section 2. Comparing to the Quintessence mocks, we see that the probability
of finding ∆H0 > 0 marginally increases to 0.15%. This shows the effect of the coupling F1, but it
is clear that it is a small effect and throughout ∆H0 < 0.14 km/s/Mpc. As should be evident from
Fig. 6 with a coupling one can be in the phantom regime at z = 0, but we find that this only happens
for smaller values of α where |α| < σα, so non-minimally coupled models that are pretty close to the
cosmological constant Λ. For this reason, any increase in H0 driven by F1 < 0 is truly negligible.

Our findings show that it is possible to alleviate a discrepancy with local H0 values by employing
a non-minimal coupling, but any effect is expected to be small. Throughout, our analysis has been
conservative on a number of fronts, so the outcome may be expected. First, on the basis of a strong
BBN constraint (3.3), which is needless to say consistent with no evolution in Newton’s constant,
we chose linear in time evolution for the non-minimal coupling function F(φ). Obviously, one could
choose another functional form for F(φ), but given there is no convincing evidence for evolution in G,
our choice is justified. Once this simple coupling is assumed, the dynamics of the theory essentially
preclude large decreases in wDE(z) as is evident from (3.11), since F1 makes opposing contributions at
leading and subleading order in z. So, even at the level of the analytic expressions, one starts to see a
limitation. Of course, one can alleviate H0 tension marginally with respect to Quintessence, but since
Quintessence is expected to generically worsen any discrepancy, this does not say much. Finally, we
have not introduced a local prior on H0, which means that increases in H0 have to arise naturally
within data that is consistent with flat ΛCDM and are not pushed by the choice of higher local H0
prior. While this clearly happens for the (w0,wa) parametrisations in section 2, DE EFTs, even those
that permit wDE < −1, are evidently more rigid, and as we have seen, the scope is limited, at least
within our assumptions. In that sense, our analysis agrees with [67, 74] that a varying Newton’s
constant may be a viable approach to alleviating H0 tension, but this window can be expected to be

13Once again, we note that allowing G to vary in CMB analysis does not greatly effect results other than increasing errors
[109] and our high redshift prior is already generous, but of course the error may be underestimated.

– 14 –



Figure 6. 9,675 fits to mock data and the resulting ∆H0 between the non-minimally coupled model and flat
ΛCDM versus wDE(z = 0) for the non-minimally coupled model. Blue separates models with ∆H0 > 0 from
models with ∆H0 < 0 in red.

severely restricted as observational constraints improve.

It is interesting to see how our results compare with existing models in the literature. The model
in [73], F(φ) = 1 + β(φ/Mpl)2 alleviates H0 tension, but as is clear from the quoted results therein,
any improvement in χ2 versus flat ΛCDM is attributable to a H0 prior. The relation of our work to
[72] is less clear cut. Concretely, the authors consider the generalisation F(φ) = 1 + β(φ/Mpl)n with
a focus on n = 2 and n = 4. Naturally, as one increases n, any variation in F is suppressed, since φ
cannot be large |φ| < Mpl, so one expects less of an effect on H0. While the n = 2 model leads to a
poorer fit to CMB, an observation consistent with [73], the n = 4 model surprisingly improves the fit
to CMB. This seems reasonable in the sense that n = 4 represents a smaller variation in F between
the early and late Universe. The authors of [72] once again find a reduction in χ2 when a H0 prior is
introduced. Notably, any reductions in χ2 for the n = 4 model are less than the n = 2 model, which
probably implies that a local H0 prior is driving the final result, since the same analysis shows that
CMB prefers the n = 4 model versus the n = 2 model. The results of [72] are also interesting for
another aspect. From Table I, II and III it is clear that the radius of the sound horizon does not change
much from its Planck value rd ≈ 147 Mpc. This tells us that the BAO scale has not changed and that
increases in H0 are largely down to variations in F. Although, rd does not feature in our analysis,
since we mock up H(z) and DA(z) data on the Planck-ΛCDM cosmology, it is implicit that our rd

also adopts a Planck value. The fact that we see such small displacements in H0 in Fig. 6 is largely
down to the better quality forecasted DESI BAO data and the absence of a H0 prior, since there is
no conflict between variations in the Newton constant G and our assumed BBN prior. The models
considered in Ref. [71] allow for F0 , 1, so they fall outside of our assumptions, but otherwise they
lead to a lower χ2. Clearly, there is still a window for non-minimally coupled Quintessence models to
alleviate any discrepancy in H0, but to be effective the coupling has to coherently contribute at O(z)
and O(z2) in the Hubble parameter so that the slope decreases. Our analysis makes it clear that from
the outset, any F(φ) with close to linear evolution with time is doomed to fail to significantly increase
H0 and that it is unlikely there are models in this class which can do this.

– 15 –



4 Kinetic Gravity Braiding

A lot of the discussion of H0 tension within the Horndeski class has focused on non-minimal cou-
plings [71–73]. The reason being that it is easy to satisfy the stability conditions once F(φ) > 0.
This is no longer the case when one moves to more involved models and care is required when fitting
data to ensure that one stays in a permitted range of parameter space. This is most easily done by
employing MCMC and removing configurations with instabilities, see e. g. [111, 112]. However,
this opens up the possibility that there is a minimum for the χ2 that is not accessible to the model. Al-
ternatively, as we do here, one can work with mock data, perform fits and simply discard any mocks
that lead to violations of the stability conditions. This has the upshot that one gets an indication of
how difficult the constraints are to satisfy. Nevertheless, the main point we wish to stress is that there
is a large class of steadily more involved Horndeski theories, but with each generalising step, data
analysis becomes steadily more complicated as the stability conditions become more involved.

In this section we turn our attention to the Kinetic Gravity Braiding (KGB) Lagrangian [56],

L =
1
2

R + K(φ, X) + G(φ, X)�φ, (4.1)

where relative to (1.1) we have redefined G2(φ, X) → K(φ, X) and G3(φ, X) → G(φ, X) to remove
unsightly subscripts. In addition, we have set Mpl = 1, so that G4 = 1

2 .14 When G(φ, X) = 0,
we recover K-essence. As we have seen in section 2, if one wants to raise H0 it is imperative that
wDE(z) < −1 in some redshift range below the deceleration-acceleration transition redshift z∗ ≈ 0.6.
For the KGB theory, the relevant equations of motion may be expressed as,

3H2 =ρm +
1
2
φ̇2 + V(φ) − φ̇2(3Hφ̇G,X −G,φ),

−2Ḣ =ρm + φ̇2(1 + 2G,φ + G,X(φ̈ − 3Hφ̇)),
(4.2)

where we have restricted the K-essence term to Quintessence, K(φ, X) = X − V(φ), which is more
tractable and intuitive, but we do not expect this simplification to greatly change our conclusions. We
can see the importance of G(φ, X) being a function of X by first setting derivatives with respect to X
to zero, G,X = 0. Doing so, one observes that one can simply redefine the kinetic term,(

1
2

+ G,φ

)
φ̇2 →

1
2
ϕ̇2. (4.3)

In other words, when G,X = 0, the KGB model is simply a Quintessence or K-essence model in
disguise and this explains the observation in [43] that wDE < −1 is precluded when G,X = 0 15.
Therefore, in order for the KGB Lagrangian to alleviate H0 tension when confronted with observa-
tional data consistent with ΛCDM, we need to consider the general case. Once again, we will expand
the Quintessence subsector perturbatively at low redshifts, which will allow us to treat it in a model
agnostic fashion.

Despite expanding φ and V(φ) following (3.8), one sees from the equations of motion (4.2)
that we are still confronted with a single unknown, G(φ, X). In contrast to section 3, the remaining

14In the EFT viewpoint where we define actions up to a given (UV) scale Λ, one can be more explicit and define a
dimensionless X = −(∂φ)2/Λ4.

15It is argued in [113] that the interacting holographic dark energy model (HDE) permits a phantom regime, but this is
countered here [114]. Nevertheless, the minimal HDE model [115] leads to a turning point in the Hubble parameter when
confronted with observational data [116]. This signals a violation of the Null Energy Condition, so minimal HDE is clearly
at odds with EFT.

– 16 –



function is no longer just a function of φ. Furthermore, we do not have a BBN constraint that justifies
reducing it to a single constant parameter. Ideally, we would also like to expand G(φ, X), but X is
not guaranteed to be small. To put this comment in context, observe that X|z=0 = 1

2 H2
0α

2, which is
only less than unity if α is much smaller than unity, α � 1. Demanding that X < 1 would amount to
choosing (α, β, γ) so that one is very close to flat ΛCDM. For this reason, we will simply fix a model:

G(φ, X) = g1X + g2(φ − φ0)X + g3X2, (4.4)

where gi denote constant parameters. We have dropped any expansion solely in terms of φ−φ0, since
as explained above, this can be absorbed into a redefinition of the kinetic term. Thus, the choice (4.4)
represents some minimal model that allows us to quantify how higher order and terms mixing (φ−φ0)
and X affect the dynamics. Alternatively, one could try to instead expand in X/V(φ), which is small
and allows one to perform a bona fide expansion in a small parameter, but this makes the resulting
algebraic equations difficult to solve, since one starts to encounter higher order algebraic equations
for V0 etc. Therefore, we simply fix G(φ, X) as in (4.4). Even at this stage, one may imagine that the
g2 term is less relevant than the g1 term, since the leading term in φ− φ0 starts at linear order in z and
z is small. This will indeed turn out to be true, as we will soon see.

For any given G(φ, X) the KGB class of Horndeski theories is free of instabilities if two con-
ditions are met [53] (see also [43]). For K(φ, X) = X − V(φ) and G(φ, X) as in equation (4.4) the
stability conditions take the form 16,

1 + 2G,φ − H2(1 + z)2(φ′)2G,φX − 2H(1 + z)[H′(1 + z)φ′ + Hφ′ + H(1 + z)φ′′]G,X

+4H2(1 + z)φ′G,X −
1
2

H4(1 + z)4(φ′)4G2
,X > 0, (4.5)

1 + 2G,φ + H2(1 + z)2(φ′)2G,φX + 6H2(1 + z)φ′G,X +
3
2

H4(1 + z)4(φ′)4G2
,X > 0, (4.6)

When G,X = 0, these conditions are satisfied if 1 + 2G,φ > 0. This is the requirement that the field
redefinition (4.3), which takes us to a Quintessence model, is well-defined; Quintessence models
trivially satisfy these conditions.17 This means that it is easy to fit Quintessence to data, but fitting
KGB to observational data requires negotiating the conditions. In principle, this can be done by
imposing the constraints in MCMC marginalisation [111, 112], but since here we generate a large
number of mocks and fit each mock in turn, we will simply throw away configurations at the end that
do not satisfy these conditions. As explained, this has the upshot that one gains an insight into how
easy it is with mock flat ΛCDM data to evade the constraints.

Once again, we begin by recasting (4.2) in terms of redshift:

3H2 = 3H2
0Ωm(1 + z)3 +

1
2

H2(1 + z)2(φ′)2 + V + 3H4(1 + z)3(φ′)3G,X + H2(1 + z)2(φ′)2G,φ,

2HH′ = 3H2
0Ωm(1 + z)2 + H2(1 + z)(φ′)2

(
1 + 2G,φ + H(1 + z)

[
H′(1 + z)φ′ + 4Hφ′ + H(1 + z)φ′′

]
G,X

)
,

where ρm = 3H2
0Ωm(1 + z)3. One now proceeds to solve order by order. At leading order, one can

solve for the constant component of the potential V0 and the linear in z term in the Hubble parameter:

V0H−2
0 = 3(1 −Ωm) −

1
2
α2(1 + g2H2

0α
2) − 6(1 − ∆),

h1 =
1
2
α2(1 + g2H2

0α
2) +

3
2

Ωm +
(1 − ∆)

2∆

(
α2(1 + g2H2

0α
2) + 4

β

α
+ 8 + 3Ωm

)
, (4.7)

16In [117] an attempt is made to rewrite Brans-Dicke in terms of K-essence, but one encounters a regime where the speed
of sound squared is negative, c2

s < 0. Naturally, this violates stability conditions.
17Flipping the sign of the Quintessence kinetic term yields ghosts, irrespective of the sign of V(φ).
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where ∆ := 1 − 1
2 g1H2

0α
3 − 1

2 g3H4
0α

5. The first observation is that setting gi = 0 we recover the
expressions in Ref. [27]. Next, we see that despite the scalar increasing the slope of H(z) for fixed
Ωm, this can be counteracted by ∆ > 1 (g1α < 0) and g2 < 0. Interestingly, the linear and quadratic
X terms in (4.4) enter h1 through ∆, which means that they play more or less the same role, at least
at linear order, and as we have seen in section 2, it is the lowest order terms that are most relevant.
Moreover, it is easy to check that for any higher order power of Xn, n ∈ N in (4.4) that they can all be
absorbed into a single ∆, thereby underscoring the redundancy at leading order. Given the redundancy
between g1 and g3, it is enough to set one of them to zero, so we set g3 = 0 and focus exclusively on
g1 and g2.

Unfortunately, beyond this order expressions quickly become unwieldy even with g3 = 0, so
further simplifications are in order. Thus, we terminate our expansion at second order in the Hubble
parameter in contrast to third order in Ref. [27] and section 3. With a focus on the flat ΛCDM model,
we illustrate how much of an approximation this entails in appendix B. At second order, we find the
expressions,

V1H−2
0 = −

1
2
α3 − 2β + 2α −

3
2
αΩm −

1
2

g2α
2H2

0

(
3α3 + α(6Ωm+4) + 8β + 2g2α

5H2
0

)
−

(1 − ∆)
2α2∆

[
α3(3Ωm + 26) + 4α2β − 6α(26∆ − 9Ωm − 24) − 24β(∆ − 3) + 2α9g2

2H4
0 + 3α7g2H2

0

+ α5[1 + 2g2H2
0(3Ωm + 17)] + 8α4βg2H2

0

]
,

h2 =
1
8
α4 +

1
4
α2 + αβ +

3
8

Ωm(4 − 3Ωm) +
g2H2

0α
3

8
[5α3 + 4g2H2

0α
5 + 20β + α(14 + 9Ωm)]

+
(1 − ∆)
8α2∆3

[
2α4

(
∆2 + 3∆ + 6Ωm + 16

)
+ 4α3β

(
2∆2 + 3∆ + 4

)
+ 32β2

(
−∆2 + ∆ + 1

)
+ α2

[
∆2

(
−9Ω2

m + 12Ωm − 80
)
− ∆

(
9Ω2

m + 30Ωm + 16
)

+ 2(3Ωm + 8)2
]

+ 4α
[
β
(
−16∆2 + 3∆Ωm + 14∆ + 12Ωm + 32

)
+ 6γ∆2

]
+ 2α10

(
2∆2 + 2∆ + 1

)
g2

2H4
0

+ α8
(
5∆2 + 5∆ + 4

)
g2H2

0 + 4α5β
(
5∆2 + 6∆ + 4

)
g2H2

0

+ α6
(
∆2 + ∆ + 2 + g2H2

0

(
∆2(9Ωm + 14) + ∆(9Ωm + 30) + 4(3Ωm + 8)

))]
.

Clearly, when g1 = g2 = 0 we recover earlier expressions [27]. Now, we could proceed to determine
V3 and h3, but the expressions are already pretty intimidating, at least relative to the non-minimal
coupling case, so as explained, we simply terminate at second order in z. Finally, just as in [27], it is
instructive to record the DE EoS,

wDE = −1 +
φ̇2

(
1 + 2G,φ + [φ̈ − 3Hφ̇]G,X

)
φ̇2

2 + V − φ̇2(3Hφ̇G,X −G,φ)
, (4.8)

= −1 +
1

3(1 −Ωm)

[
α2(1 + g2H2

0α
2) +

(1 − ∆)
∆

(
α2(1 + g2H2

0α
2) + 4

β

α
+ 8 + 3Ωm

)]
+ O(z).

Unsurprisingly, this expression also becomes intractable and not very insightful beyond leading or-
der. That being said, even at leading order, there is a nugget of information to be gained. The first
observation is that a profile for the scalar, i. e. α, will always lead to an increase in wDE(z) at z = 0,
however as noted above with h1, mock ΛCDM data can attempt to counter this through g2 < 0 and
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Figure 7. These plots depict how much one can increase H0 as we move in the parameter space of perturbative
KGB model.

∆ > 1. That being said, at this stage it is not immediately clear which mechanism the data will exploit
to do this, so we defer any discussion until after we have performed some mock fits.

Let us now turn our attention to the mocks, which we perform in an analogous fashion to section
2. In particular, we employ the same high redshift constraint on the combination Ωmh2, we generate
random scalar profiles with standard deviations (σα, σβ, σγ) = (0.18, 0.12, 0.06) subject to (3.12),
while fixing flat priors for gi, namely −0.05 < g1 < 0.05 and −0.2 < g2 < 0.2. Over a large number
of mocks, we find that a number of best fits saturate our bounds, but on the whole the bounds do not
impact the results. We run and fit 20,214 mocks, from which we identify 19,443 mocks where the two
additional parameters g1 and g2 succeed in compensating the scalar profile defined by (α, β, γ) enough
to improve the fit to the data by lowering the χ2. However, once we impose the constraints ensuring
stability (4.5) and (4.6), this reduces the number of valid mocks and corresponding best fits to 646.
This represents 3.2% of the original mocks, which increases to 3.3% if we neglect mocks where
the KGB model fails to fit the data well. This serves to highlight the restrictions that the stability
conditions place on parameter space. It should be noted that we are only imposing the constraints
(4.5) and (4.6) where data exists in the range 0.05 ≤ z ≤ 0.95 in line with Table 2. In Fig. 7, we show
that increases in H0 relative to flat ΛCDM are primarily driven by ∆. Moreover, we find that g2 plays
a limited role, and contrary to our initial expectations, increases in H0, i. e. ∆H0 > 0 are correlated
with increases in g2, and vice versa. This shows the clear preference for the g1 term in (4.4), since
analytically g2 > 0 cannot reduce the slope of the Hubble parameter, thereby increasing H0.

Finally, given our results in section 2, it is interesting to see how increases in H0 are correlated
with wDE(z = 0) < −1. In Fig. 8 we show that tangible increases in H0 involve sizable excursions into
the phantom regime at z = 0. Moreover, as is clear from the plot, the stability conditions (4.5) and
(4.6), which ensure absence of ghosts and speed of sound c2

s > 0, do not allow 1 + wDE and ∆Y(z∗) to
become too negative. It is worth noting that the earlier phenomenological (w0,wa) parametrisations
from section 2 can access these points in parameter space and this serves to underscore the limitation
of typical DE EFTs, when increases in H0 are required. In essence, DE EFTs are not only analytic, as
(w0,wa) parametrisations are, but they are also restricted by stability conditions. It is these additional
conditions that reduces the parameter space.
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Figure 8. Increases in H0 versus wDE(z = 0) for the KGB model. The stable configurations in magenta explore
a restricted parameter space leading to less pronounced increases in H0.

5 Discussion

We introduced our study by emphasising that Λ is a phenomenological parameter that simply quan-
tifies our ignorance of the DE sector. Since EFT is the language of physics, ultimately one would
expect Λ to be absorbed in an EFT description. However, this expectation seems to run contrary to
the observation that local H0 determinations are universally biased larger than Planck-ΛCDM. In par-
ticular, as has been demonstrated [23–25, 27], DE models in the Quintessence regime, wDE(z) > −1,
notably the traditional EFT regime, are expected to lower H0, thereby exacerbating any H0 discrep-
ancy/tension. Naively, there seems to be some apparent conflict between observed higher local H0
determinations and DE EFT, at least in the traditional XCDM paradigm, where X is a generic late
DE model described by a healthy EFT. Clearly this has far-reaching consequences, since some exper-
imental proposals for dark energy implicitly rest on the assumptions of a space pervading scalar field
[118, 119].

Section 2 picks up this thread within simple parametrisations for an evolving DE EoS, wDE(z) =

w0 + wa f (z), where f (z) is a function satisfying f (z = 0) = 0, while still being finite at high redshifts.
Within this setting, once one has evolution, there is little to preclude an EoS that crosses the phantom
divide wDE(z) = −1, and an obvious implication of the observation that wDE(z) > −1 lowers H0
relative to the cosmological constant Λ [23–25, 27] is that models with wDE(z) < −1 can raise H0.
Indeed, recent papers [60, 61] give an analytic proof that wDE(z) < −1 is a prerequisite for alleviating
H0 tension. However, this still leaves open the question what is the most relevant redshift z where
wDE(z) < −1? Our analysis in section 2 provides an answer within (w0,wa) parametrisations of the
EoS. Concretely, we introduced an integrated (normalised) DE density, Y(z), defined through to the
deceleration-acceleration transition z∗, and showed over a large number of flat ΛCDM mocks that
H0 is guaranteed to increase, thereby alleviating tension, if both ∆w0 = w0 + 1 < 0 and Y(z∗) < z∗.
These conditions imply wDE(z) < −1 must hold somewhere between z = 0 and the transition redshift
z∗ ≈ 0.6. In contrast, DE models satisfying ∆w0 > 0 and Y(z∗) > z∗ lower H0. Finally, one has
models where ∆w0 ·∆Y(z∗) < 0, which either lead to small increases or decreases within 1σ, whereas
the most pronounced displacements in H0 are reserved for models with ∆w0 ·∆Y(z∗) > 0. In addition,
our analysis based on flat ΛCDM mocks clearly demonstrates that w0 is the most relevant parameter
(see Fig. 4). Naturally, w0 < −1 guarantees wDE(z) < −1 in some vicinity of z = 0, but it only implies
Y(z∗) < z∗ when wa = 0 (no evolution). It is also worth noting that w0 and wa are anti-correlated (Fig.

– 20 –



4), since the mock data is consistent with flat ΛCDM by construction.
Throughout we have employed BAO mocks based on DESI forecasts [93]. Obviously, one is

free to combine with other data sets, but our conclusions are not expected to change. The rationale
for employing BAO is that BAO leads to strong constraints on H(z) and DA(z) at effective redshifts.
In short, not only is one averaging or coarse graining over redshifts, but one is extracting quantities
that are largely only sensitive to the combination ΩmH2

0 , e. g. H(z),DA(z), in line with equation
(2.1). For this reason, any evolution of H0 with redshift [120–124],18 which it should be stressed is a
necessary condition for H0 tension to have a resolution within FLRW [125, 126] (see also [127]), is
expected to be washed out. In this sense, BAO represents a conservative data set that is more likely
to recover results consistent with Planck-ΛCDM. Nevertheless, discrepancies have been reported in
the literature [98–100] and this motivated us to check the results in section 2 were robust by limiting
redshift ranges. Moreover, as demonstrated in [20], (w0,wa) EoS parametrisations suffer from a
degree of arbitrariness, so it is imperative to make sure that statements hold across different models
(see [76]), which we have done.

As explained in the text, our analysis in section 2 provides another perspective on the fact that
Quintessence models [5, 6] and K-essence models [7–9] predict lower values of H0 relative to Λ. This
places them at odds with local H0 determinations, which should be enough to rule out these models,
and indeed any DE EFT with wDE(z) > −1 (see also [60, 61]), as viable late-time DE EFTs. Going
further, the fact that the largest increases in H0 are driven by models with wDE(z = 0) < −1 suggests
that coupled Quintessence [57], where wDE(z = 0) > −1 [58], will be less effective in inducing the
significant increases in H0 required if local H0 determinations converge to the higher values permitted
within the FLRW paradigm, namely H0 . 73 km/s/Mpc at 2σ [75, 79]. The restriction is already
evident from recent analysis [59]. Of course, all of these models can be resurrected as EDE models
[77, 78], but this does not alter the conclusion that, even in such a scenario, Λ is expected to maximise
H0 over the simplest EFTs in the Horndeski class. In summary, the survival of DE EFT now hangs
by an early universe thread, which already constitutes a paradigm shift in DE EFT. 19

However, Quintessence and K-essence are simply the tip of the Horndeski iceberg, and since
one can find EFTs that cross the phantom divide [42, 43], the latter part of our paper conducted a
preliminary, yet reasonably general investigation by employing a model agnostic approach for the
Quintessence subsector. One relevant question is whether a non-minimal coupling to gravity can
help alleviating H0 tension? Concretely, section 3 addresses this question within the assumption that
the non-minimal coupling F(φ) varies linearly with cosmic time subject to a recent BBN constraint
[64]. As we have seen, the slope F1 contributes to the Hubble parameter in a conflicted manner; if
F1 flattens the slope of the Hubble parameter at leading order in redshift z, it increases the slope at
subleading order. For this reason, one would expect increases in H0 due to linear evolution of F(φ)
with cosmic time to be marginal, and this is indeed what we found. Even though the outlook may
not be good [67, 74], at a technical level it is imperative to identify models that increase H0 without
relying heavily on a local H0 prior, e. g. [72, 73]. Finally, we note that increasing H0 requires Ḟ > 0
(F1 < 0), which implies the Newton’s constant must decrease in the late universe in line with the
findings of Ref. [60, 61]. This can also be seen from the equations of motion (3.6) and (2.1), once
one appreciates that increases in F(φ) reduce the DE density X(z) and thus lowering H0 in line with
section 2.

18This evolution, if real, could be driven by increases in Ωm within the flat ΛCDM model. Concretely, when one fits
Pantheon SN [28] with a low redshift cutoff zmin so that SN below zmin are removed, one finds that the central value of H0

decreases in line with Ref. [123], while Ωm increases, with increasing zmin. The statistical significance of the feature is
approximately 1σ.

19See Ref. [128] for a recent Quintessence study where new early universe physics is invoked as physical motivation.
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In the final section 4, we looked at Kinetic Gravity Braiding models [56]. As late-time DE
models, these are expected to fall under the analysis of Ref. [75, 130], which shows that cosmological
data including BAO restricts late universe modifications within Einstein gravity to central values
below H0 = 70 km/s/Mpc. Naturally, this still places them in tension with the recent SH0ES result
[10]. Concretely, we found that X-dependent contributions to the braiding function G(φ, X) alleviate
H0 tension in a meaningful way compared to models with non-minimal coupling. This difference
can be traced analytically to the fact that any Xn, n > 0 ∈ N, contribution to G(φ, X) can coherently
flatten H(z) at both leading and subleading order in z for a sizable class of Quintessence models.
As we have shown, this leads to tangible increases in H0 that correlate well with a phantom EoS
at z = 0, wDE(z = 0) < −1. We have employed the same mocking procedure throughout, so one
is free to compare Fig. 8 with Fig. 5, since we have used data in the same redshift range. Doing
so, one is comparing the output of ∼ 20, 000 mocks, including unstable configurations, in Fig. 8
with ∼ 10, 000 mocks in Fig. 5. One notes that ∆H0 is less for the EFT and this gets worse as one
restricts attention to stable mocks, admittedly with greatly decreased numbers, so comparison is less
meaningful. Ultimately, EFT is more structured than (w0,wa) parametrisations, since one is not only
constrained by analyticity, but also stability conditions, so smaller displacements in H0 are expected.
As a result, if one can resolve H0 tension within a given (w0,wa) parametrisation, only then does it
make sense to study the problem within EFT.

Finally, while still less significant than the H0 tension, there are many papers trying to address
S 8 and the H0 tensions, see e.g. [129] and references therein. The lore is that late DE models which
alleviate H0 typically exacerbate S 8. The recent papers [60, 61] explicitly verify this lore in a general
setting. Based on these results, it is reasonable to expect that the S 8 considerations should only
strengthen our results here that the DE EFT framework is less likely to hold the answer to the cosmic
tensions, but one is always free to venture theoretically beyond EFT, e. g. [131–133]. In the big
picture, if attempts to alter the BAO scale through EDE or equivalent are discredited [80–89], one is
confronted with a Λ that does not appear to admit an EFT description. If confirmed, this in itself is
an extremely profound insight into the cosmological constant Λ.
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A DESI BAO forecasts

We reproduce the forecasted DESI errors for H(z) and DA(z) in Table 2.

z σH/H (%) σDA/DA (%)
0.05 12.10 6.12
0.15 4.66 2.35
0.25 2.97 1.51
0.35 2.44 1.32
0.45 3.69 2.39
0.65 1.50 0.82
0.75 1.27 0.69
0.85 1.22 0.69
0.95 1.22 0.73
1.05 1.37 0.89
1.15 1.39 0.94
1.25 1.39 0.96
1.35 2.02 1.50
1.45 2.13 1.59
1.55 2.52 1.90
1.65 3.80 2.88
1.75 6.30 4.64
1.85 6.39 4.71
1.96 3.42 3.35
2.12 2.48 2.43
2.28 2.63 2.72
2.43 2.82 3.07
2.59 3.08 3.57
2.75 3.44 4.24
2.91 3.96 5.26
3.07 4.62 6.60
3.23 5.70 8.86
3.39 7.72 13.05
3.55 11.09 19.85

Table 2. Forecasted DESI percentage errors for H(z) and DA(z) assuming 14,000 deg2 sky coverage [93]. We
will primarily be interested in the entries below z = 1.

B Analytic Approximations

Here we demonstrate that the approximations used in sections 4 and 3 are under control. To do so,
we define the fractional error in H(z) and DA(z) as

∆H(z) = 1 − H(z)approx/H(z)exact, ∆DA(z) = 1 − DA(z)approx/DA(z)exact, (B.1)

where the exact expressions for H(z) and DA(z) read

H(z)exact = H0
√

1 −Ωm + Ωm(1 + z)3, DA(z)exact =
c

(1 + z)

∫ z

0

1
H(z′)exact

dz′ (B.2)
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Expanding H(z)exact to third order, one has

H(z)approx = H0

(
1 +

3
2

Ωmz +
3
8

Ωm(4 − 3Ωm)z2 +
1
16

Ωm(8 − 36Ωm + 27Ω2
m)z3 + O(z4)

)
. (B.3)

One then defines DA(z)approx in an analogous fashion to above, but one should perform the integral nu-
merically without first expanding 1/H(z)approx in z. Note, it is common for one to expand DA(z)approx
in the literature, e. g. [134], but in inverting H(z)approx one makes the approximation unnecessarily
worse. This can be avoided by simply numerically integrating. We illustrate the approximations for
expansions that terminate at second and third order in Fig. 9 and Fig. 10, respectively. One can see
that any error in DA(z) is negligible. This is expected since even if the error in H(z) grows with in-
creasing z, these terms make a smaller contribution to the integral. The error in H(z) is more serious,
but is never more than 2% and 3% for values of Ωm close to the Planck value.

Figure 9. Fractional error in H(z) and DA(z) approximations at third order. Dashed lines denote the highest
redshift in our sample.

Figure 10. Fractional error in H(z) and DA(z) approximations at second order. Dashed lines denote the highest
redshift in our sample.
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