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Abstract

Recent studies have revealed a number of pathologies of neural machine translation (NMT) sys-

tems. Hypotheses explaining these mostly suggest there is something fundamentally wrong with

NMT as a model or its training algorithm, maximum likelihood estimation (MLE). Most of this

evidence was gathered using maximum a posteriori (MAP) decoding, a decision rule aimed at

identifying the highest-scoring translation, i.e. the mode. We argue that the evidence corroborates

the inadequacy of MAP decoding more than casts doubt on the model and its training algorithm.

In this work, we show that translation distributions do reproduce various statistics of the data

well, but that beam search strays from such statistics. We show that some of the known patholo-

gies and biases of NMT are due to MAP decoding and not to NMT’s statistical assumptions nor

MLE. In particular, we show that the most likely translations under the model accumulate so little

probability mass that the mode can be considered essentially arbitrary. We therefore advocate for

the use of decision rules that take into account the translation distribution holistically. We show

that an approximation to minimum Bayes risk decoding gives competitive results confirming that

NMT models do capture important aspects of translation well in expectation.

1 Introduction

Recent findings in neural machine translation (NMT) suggest that modern translation systems have some

serious flaws. This is based on observations such as: i) translations produced via beam search typically

under-estimate sequence length (Sountsov and Sarawagi, 2016; Koehn and Knowles, 2017), the length

bias; ii) translation quality generally deteriorates with better approximate search (Koehn and Knowles,

2017; Murray and Chiang, 2018; Ott et al., 2018; Kumar and Sarawagi, 2019), the beam search curse;

iii) the true most likely translation under the model (i.e., the mode of the distribution) is empty in many

cases (Stahlberg and Byrne, 2019) and a general negative correlation exists between likelihood and qual-

ity beyond a certain likelihood value (Ott et al., 2018), we call this the inadequacy of the mode problem.

A number of hypotheses have been formulated to explain these observations. They mostly suggest

there is something fundamentally wrong with NMT as a model (i.e., its factorisation as a product of

locally normalised distributions) or its most popular training algorithm (i.e., regularised maximum likeli-

hood estimation, MLE for short). These explanations make an unspoken assumption, namely, that iden-

tifying the mode of the distribution, also referred to as maximum a posteriori (MAP) decoding (Smith,

2011), is in some sense the obvious decision rule for predictions. While this assumption makes intuitive

sense and works well in unstructured classification problems, it is less justified in NMT, where often-

times the most likely translations together account for very little probability mass, a claim we shall defend

conceptually and provide evidence for in experiments. Unless the translation distribution is extremely

peaked about the mode for every plausible input, criticising the model in terms of properties of its mode

can at best say something about the adequacy of MAP decoding. Unfortunately, as previous research

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://

creativecommons.org/licenses/by/4.0/.
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has pointed out, this is seldom the case (Ott et al., 2018). Thus, pathologies about the mode cannot be

unambiguously ascribed to NMT as a model nor to MLE, and inadequacies about the mode cannot rule

out the possibility that the model captures important aspects of translation well in expectation.

In this work, we criticise NMT models as probability distributions estimated via MLE in various

settings: varying language pairs, amount of training data, and test domain. We observe that the induced

probability distributions represent statistics of the data well in expectation, and that some length and

lexical biases are introduced by approximate MAP decoding. We demonstrate that beam search outputs

are rare events, particularly so when test data stray from the training domain. The empty string, shown

to often be the true mode (Stahlberg and Byrne, 2019), too is an infrequent event. Finally, we show that

samples obtained by following the model’s own generative story are of reasonable quality, which suggests

we should base decisions on statistics gathered from the distribution holistically. One such decision rule

is minimum Bayes risk (MBR) decoding (Goel and Byrne, 2000; Kumar and Byrne, 2004). We show

that an approximation to MBR performs rather well, especially so when models are more uncertain.

To summarise: we argue that i) MAP decoding is not well-suited as a decision rule for MLE-trained

NMT; we also show that ii) pathologies and biases observed in NMT are not necessarily inherent to

NMT as a model or its training objective, rather, MAP decoding is at least partially responsible for many

of these pathologies and biases; finally, we demonstrate that iii) a straight-forward approximation to

a sampling-based decision rule known as minimum Bayes risk decoding gives good results, showing

promise for research into decision rules that take into account the distribution holistically.

2 Observed Pathologies in NMT

Many studies have found that NMT suffers from a length bias: NMT underestimates length which hurts

the adequacy of translations. Cho et al. (2014a) already demonstrate that NMT systematically degrades

in performance for longer sequences. Sountsov and Sarawagi (2016) identify the same bias in a chat

suggestion task and argue that sequence to sequence models underestimate the margin between correct

and incorrect sequences due to local normalisation. Later studies have also confirmed the existence of

this bias in NMT (Koehn and Knowles, 2017; Stahlberg and Byrne, 2019; Kumar and Sarawagi, 2019).

Notably, all these studies employ beam search decoding. In fact, some studies link the length bias

to the beam search curse: the observation that large beam sizes hurt performance in NMT (Koehn and

Knowles, 2017). Sountsov and Sarawagi (2016) already note that larger beam sizes exacerbate the length

bias. Later studies have confirmed this connection (Blain et al., 2017; Murray and Chiang, 2018; Yang et

al., 2018; Kumar and Sarawagi, 2019). Murray and Chiang (2018) attribute both problems to local nor-

malisation which they claim introduces label bias (Lafferty et al., 2001) to NMT. Yang et al. (2018) show

that likelihood negatively correlates with translation length. These findings suggest that the mode might

suffer from length bias, likely thereby failing to sufficiently account for adequacy. In fact, Stahlberg and

Byrne (2019) show that oftentimes the true mode is the empty sequence.

The connection with the length bias is not the only reason for the beam search curse. Ott et al. (2018)

find that the presence of copies in the training data cause the model to assign too much probability mass

to copies of the input, and that with larger beam sizes this copying behaviour becomes more frequent.

Cohen and Beck (2019) show that translations obtained with larger beam sizes often consist of an unlikely

prefix with an almost deterministic suffix and are of lower quality. In open-ended generation, Zhang et al.

(2020) correlate model likelihood with human judgements for a fixed sequence length, thus eliminating

any possible length bias issues. They find that likelihood generally correlates positively with human

judgements, up until an inflection point, after which the correlation becomes negative. An observation

also made in translation with BLEU rather than human judgements (Ott et al., 2018). We call this general

failure of the mode to represent good translations in NMT the inadequacy of the mode problem.

3 NMT and its Many Biases

MT systems are trained on sentence pairs drawn from a parallel corpus. Each pair consists of a sequence

x in the source language and a sequence y in the target language. Most NMT models are conditional
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models (Cho et al., 2014b; Bahdanau et al., 2015; Vaswani et al., 2017),1 that is, only the target sentence

is given random treatment. Target words are drawn in sequence from a product of locally normalised

Categorical distributions without Markov assumptions: Yj |θ, x, y<j ∼ Cat(f(x, y<j ; θ)). At each step,

a neural network f(·; θ) maps from the source sequence x and the prefix sequence y<j to the parame-

ters of a Categorical distribution over the vocabulary of the target language. These models are typically

trained via regularised maximum likelihood estimation, MLE for short, where we search for the parame-

ter θMLE that assigns maximum (regularised) likelihood to a dataset of observations D. A local optimum

of the MLE objective can be found by stochastic gradient-based optimisation (Robbins and Monro, 1951;

Bottou and Cun, 2004).

For a trained model with parameters θMLE and a given input x, a translation is predicted by searching

for the mode of the distribution: the sequence y⋆ that maximises log p(y|x, θMLE). This is a decision

rule also known as maximum a posteriori (MAP) decoding (Smith, 2011).2 Exact MAP decoding is

intractable in NMT, and the beam search algorithm (Sutskever et al., 2014) is employed as a viable

approximation.

It has been said that due to certain design decisions NMT suffers from a number of biases. We review

those biases here and then discuss in Section 4 one bias that has received very little attention and which,

we argue, underlies many biases in NMT and explains some of the pathologies discussed in Section 2.

Exposure bias. MLE parameters are estimated conditioned on observations sampled from the training

data. Clearly, those are not available at test time, when we search through the learnt distribution. This

mismatch between training and test, known as exposure bias (Ranzato et al., 2016), has been linked to

many of the pathologies of NMT and motivated modifications or alternatives to MLE aimed at exposing

the model to its own predictions during training (Bengio et al., 2015; Ranzato et al., 2016; Shen et al.,

2016; Wiseman and Rush, 2016; Zhang et al., 2019). While exposure bias has been a point of critique

mostly against MLE, it has only been studied in the context of approximate MAP decoding. The use

of MAP decoding and its approximations shifts the distribution of the generated translations away from

data statistics (something we provide evidence for in later sections), thereby exacerbating exposure bias.

Non-admissible heuristic search bias. In beam search, partial translations are ranked in terms of log-

likelihood without regards to (or with crude approximations of) their future score, which may lead to

good translations being pruned too early. This corresponds to searching with a non-admissible heuristic

(Hart et al., 1968), that is, a heuristic that may underestimate the likelihood of completing a translation.

This biased search affects statistics of beam search outputs in unknown ways and may well account for

some of the pathologies of Section 2, and has motivated variants of the algorithm aimed at comparing

partial translations more fairly (Huang et al., 2017; Shu and Nakayama, 2018). This problem has also

been studied in parsing literature, where it’s known as imbalanced probability search bias (Stanojević

and Steedman, 2020).

Label bias. Where a conditional model makes independence assumptions about its inputs (i.e., vari-

ables the model does not generate), local normalisation prevents the model from revising its decisions,

a problem known as label bias (Bottou, 1991; Lafferty et al., 2001). This is a model specification prob-

lem which limits the distributions a model can represent (Andor et al., 2016). While this is the case in

incremental parsing (Stern et al., 2017) and simultaneous translation (Gu et al., 2017), where inputs are

incrementally available for conditioning, this is not the case in standard NMT (Sountsov and Sarawagi,

2016, Section 5), where inputs are available for conditioning in all generation steps. It is plausible that

local normalisation might affect the kind of local optima we find in NMT, but that is orthogonal to label

bias.

1Though fully generative accounts do exist (Shah and Barber, 2018; Eikema and Aziz, 2019).
2The term MAP decoding was coined in the context of generative classifiers and their structured counterparts, where the

posterior probability p(y|x, θ) ∝ p(y|θ)p(x|y, θ) updates our prior beliefs about y in light of x. This is not the case in NMT,
where we do not express a prior over target sentences, and p(y|x, θ) is a direct parameterisation of the likelihood, rather than a
posterior probability inferred via Bayes rule. Nonetheless, we stick to the conventions used in the MT literature.
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4 Biased Statistics and the Inadequacy of the Mode

In most NMT research, criticisms of the model are based on observations about the mode, or an ap-

proximation to it obtained using beam search. The mode, however, is not an unbiased summary of the

probability distribution that the model learnt. That is, properties of the mode say little about properties

of the learnt distribution (e.g., a short mode does not imply the model underestimates average sequence

length). MAP decoding algorithms and their approximations bias the statistics by which we criticise

NMT. They restrict our observations about the model to a single or a handful of outcomes which on their

own can be rather rare. To gain insight about the model as a distribution, it seems more natural to use all

of the information available to us, namely, all samples we can afford to collect, and search for frequent

patterns in these samples. Evidence found that way better represents the model and its beliefs.

On top of that, the sample space of NMT is high-dimensional and highly structured. NMT models must

distribute probability mass over a massive sample space (effectively unbounded). While most outcomes

ought to be assigned negligible mass, for the total mass sums to 1, the outcomes with non-negligible mass

might still be too many. The mode might only account for a tiny portion of the probability mass, and

can actually be extremely unlikely under the learnt distribution. Using the mode for predictions makes

intuitive sense in unstructured problems, where probability distributions are likely very peaked, and in

models trained with large margin methods (Vapnik, 1998), since those optimise a decision boundary

directly. With probability distributions that are very spread out, and where the mode represents only a

tiny bit of probability mass, targeting at the mode for predictions is much less obvious, an argument that

we shall reinforce with experimental results throughout this analysis.3

At the core of our analysis is the concept of an unbiased sample from the model, which we obtain

by ancestral sampling: iteratively sampling from distributions of the form Cat(f(x, y<j ; θ)), each time

extending the generated prefix y<j with an unbiased draw, until the end-of-sequence symbol is generated.

By drawing from the model’s probability distribution, unlike what happens in MAP decoding, we are

imitating the model’s training procedure. Only we replace samples from the data by samples from the

model, thus shedding light onto the model’s fit. That is, if these samples do not reproduce statistics of the

data, we have an instance of poor fit.4 Crucially, ancestral sampling is not a pathfinding algorithm, thus

the non-admissible heuristic search bias it not a concern. Ancestral sampling is not a decision rule either,

thus returning a single sample as a prediction is not expected to outperform MAP decoding (or any other

rule). Samples can be used to diagnose model fit, as we do in Section 6, and to approximate decision

rules, as we do in Section 7.4. In sum, we argue that MAP decoding is a source of various problems and

that it biases conclusions about NMT. Next, we provide empirical evidence for these claims.

5 Data & System

We train our systems on German-English (de-en), Sinhala-English (si-en), and Nepali-English (ne-en),

in both directions. For German-English we use all available WMT’18 (Bojar et al., 2018) parallel data,

except for Paracrawl, amounting to about 5.9 million sentence pairs, and train a Transformer base model

(Vaswani et al., 2017). For Sinhala and Nepali, for which very little parallel data are available, we mimic

the data and system setup of Guzmán et al. (2019). As we found that the data contained many duplicate

sentence pairs, we removed duplicates, but left in those where only one side (source or target) of the

data is duplicate to allow for paraphrases. For all language pairs, we do keep a portion of the training

data (6, 000 sentence pairs) separate as held-out data for the analysis. In this process we also removed

any sentence that corresponded exactly to either the source or target side of a held-out sentence from

the training data. To analyse performance outside the training domain, we use WMT’s newstest2018

for German-English, and the FLORES datasets collected by Guzmán et al. (2019) for the low-resource

pairs. Our analysis is focused on MLE-trained NMT systems. However, as Transformers are commonly

trained with label smoothing (LS) (Szegedy et al., 2016), we do additionally report automatic quality

assessments of beam search outputs on LS-trained systems.

3This perhaps non-intuitive notion that the most likely outcomes are rare and do not summarise a model’s beliefs well
enough is related to an information-theoretic concept, that of typicality (MacKay, 2003, Section 4.4).

4Where one uses (approximate) MAP decoding instead of ancestral sampling this is known as exposure bias.
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Figure 1: A comparison using hierarchical Bayesian models of statistics extracted from beam search

outputs, samples from the model and gold-standard references. We show the posterior density on the

y-axis, and the mean Poisson rate (length) and agreement with training data (unigrams, bigrams, skip-

bigrams) on the x-axis for each group and language pair.

6 Assessing the Fit of MLE-Trained NMT

We investigate the fit of the NMT models of Section 5 on a held-out portion of the training data. This

allows us to criticise MLE without confounders such as domain shift. We will turn to data in the test

domain (newstest2018, FLORES) in Section 7. We compare unbiased samples from the model to gold-

standard references and analyse statistics of several aspects of the data. If the MLE solution is good, we

would expect statistics of sampled data to closely match statistics of observed data.

We obtain statistics from reference translations, ancestral samples, and beam search outputs and model

them using hierarchical Bayesian models. For each type of statistic, we formulate a joint model over these

three groups and inspect the posterior distribution over the parameters of the analysis model. We also

include statistics extracted from the training data in our analysis, and model the three test groups as a

function of posterior inferences based on training data statistics. Our methodology follows that advocated

by Gelman et al. (2013) and Blei (2014). In particular, we formulate separate hierarchical models to

inspect length, lexical, and word order statistics: sequence length, unigram and bigram counts, and

skip-bigram counts, respectively.5 In Appendix A, we describe in detail all analysis models, inference

procedures, and predictive checks that confirm their fit.

For length statistics, we look at the expected posterior Poisson rate for each group, each rate can

be interpreted as that group’s average sequence length. Ideally, the expected Poisson rates of predicted

translations are close to those of gold-standard references. Figure 1 (top row) shows the inferred posterior

distributions for all language pairs. We observe that samples generated by NMT capture length statistics

reasonably well, overlapping a fair amount with the reference group. In almost all cases we observe that

beam search outputs stray away from data statistics, usually resulting in shorter translations.

For unigrams, bigrams, and skip-bigrams, we compare the posterior agreement with training data of

5Skip-bigrams are pairs of tokens drawn in the same order as they occur in a sentence, but without enforcing adjacency.
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Figure 2: Cumulative probability of the unique translations in 1,000 ancestral samples on the held-out

(top), and newstest2018 / FLORES (bottom) test sets. The dark blue line shows the average cumulative

probability over all test sentences, the shaded area represents 1 standard deviation away from the average.

The black dots to the right show the final cumulative probability for each individual test sentence.

each group (this is formalised in terms of a scalar concentration parameter whose posterior we can plot).

Higher values indicate a closer resemblance to training data statistics. For each statistic, the posterior

distribution for gold-standard references gives an indication of ideal values of this agreement variable.

Figure 1 (rows 2–4) show all posterior distributions. In most cases the gold-standard references agree

most with the training data, as expected, followed by samples from the model, followed by beam search

outputs. For nearly all statistics and language pairs beam search outputs show least agreement with

the training data, even when samples from the model show similar agreement as references do. Whereas

samples from the model do sometimes show less similarity than references, in most cases they are similar

and thus lexical and word order statistics are captured reasonably well by the NMT model. Beam search

on the other hand again strays from training data statistics, compared to samples from the model.

7 Examining the Translation Distribution

The NMT models of Section 5 specify complex distributions over an unbounded space of translations.

Here we examine properties of these distributions by inspecting translations in a large set of unbiased

samples. To gain further insight we also analyse our models in the test domain (newstest2018, FLORES).

7.1 Number of Likely Translations

NMT, by the nature of its model specification, assigns probability mass to each and every possible se-

quence consisting of tokens in its vocabulary. Ideally, however, a well-trained NMT model assigns the

bulk of its probability mass to good translations of the input sequence. We take 1, 000 unbiased samples

from the model for each input sequence and count the cumulative probability mass of the unique trans-

lations sampled. Figure 2 shows the average cumulative probability mass for all test sentences with 1
standard deviation around it, as well as the final cumulative probability values for each input sequence.

For the held-out data we observe that, on average, between 16.4% and 57.8% of the probability mass is

covered. The large variance around the mean shows that in all language pairs we can find test sentences

for which nearly all or barely any probability mass has been covered after 1, 000 samples. That is, even

after taking 1, 000 samples, only about half of the probability space has been explored. The situation is

much more extreme when translating data from the test domain (see bottom half of Figure 2).6 Naturally,

the NMT model is much more uncertain in this scenario, and this is very clear from the amount of prob-

ability mass that has been covered by 1, 000 samples: on average, only between 0.2% and 0.9% for the

low-resource pairs and between 6.9% and 9.1% for English-German of the probability space has been

explored. This shows that the set of likely translations under the model is very large and the probability

6For English-German and German-English the test domain would not be considered out-of-domain here, as both training
and test data concern newswire.
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Training Domain Test Domain

Task LS beam sample MBR Oracle LS beam sample MBR Oracle

en-de 19.5 19.5 15.3 19.2 22.7 35.2 34.9 20.5 31.5 35.7
de-en 26.6 26.8 21.9 26.2 29.4 39.6 39.4 26.6 37.3 41.0
en-ne 36.7 37.3 36.1 40.5 43.4 32.5 31.3 30.6 34.9 37.0
ne-en 30.6 29.8 26.7 30.2 35.4 19.2 17.2 12.8 16.6 20.1
en-si 34.2 34.3 31.0 36.3 41.5 31.8 30.3 30.3 34.8 36.8
si-en 29.1 28.9 24.3 29.1 36.2 20.0 18.4 13.7 17.7 21.6

High-resource 23.1 23.1 18.6 22.7 26.0 37.4 37.1 23.6 34.4 38.3

Low-resource 32.7 32.6 29.5 34.0 39.1 25.9 24.3 21.8 26.0 28.9

All 29.5 29.4 25.9 30.2 34.8 29.7 28.6 22.4 28.8 32.0

Table 1: METEOR scores under different strategies for prediction: beam search, single sample, MBR,

and an oracle rule. MBR and the oracle both use 30 ancestral samples and sentence-level METEOR as

utility, but the oracle has access to the reference. To show that our MLE-trained systems are competitive

with LS-trained systems, we list the LS column (using beam search). The sample columns show average

scores of 30 independent samples from the model. All standard deviations were below 0.2.

distribution over those sentences mostly quite flat, especially so in the test domain. In fact, if we look at

each input sequence individually, we see that for 37.0% (en-de), 35.5% (de-en), 18.5% (en-ne), 15.7%
(ne-en), 9.2% (en-si), and 3.3% (si-en) of them all 1, 000 samples are unique. On the test domain data

these numbers increase to 46.7% (en-de), 41.5% (de-en), 52.1% (en-ne), 86.8% (ne-en), 84.6% (en-si),

and 87.3% (si-en). For these input sequences, the translation distributions learnt are so flat that in these

1, 000 samples no single translation stands out over the others.

7.2 Sampling the Mode

As the predominant decision rule in NMT is MAP decoding, which we approximate via beam search, it

is natural to ask how frequently it is that the beam search output is observed amongst unbiased samples.

We find that the beam search output is contained within 1, 000 unbiased samples for between 54.3%
and 92.2% of input sequences on the held-out data. In the test domain, we find that on English-German

for between 44.3% and 49.3%, and in the low-resource setting for between 4.8% and 8.4% of the input

sequences the beam search output is contained in the set. This shows that for a large portion of the input

sequences, the beam search solution is thus quite a rare outcome under the model.

Recently, Stahlberg and Byrne (2019) showed that oftentimes the true mode of a trained NMT system

is the empty sequence. This is worrying since NMT decoding is based on mode-seeking search. We find

that for between 7.2% and 29.1% of input sequences for held-out data and between 2.8% and 33.3% of

input sequences in the test domain an empty sequence is sampled at least once in 1, 000 samples. When

an empty sequence is sampled it only occurs on average 1.2 ± 0.5 times. Even though it could well be,

as the evidence that Stahlberg and Byrne (2019) provide is strong, that often the true mode under our

models is the empty sequence, the empty string remains a rather unlikely outcome under the models.

7.3 Sample Quality

The number of translations that an NMT model assigns non-negligible mass to can be very large as

we have seen in Section 7.1. We now investigate what the average quality of these samples is. For

quality assessments, we compute METEOR (Denkowski and Lavie, 2011) using the mteval-v13a

tokeniser.7 We translate the test sets using a single ancestral sample per input sentence and repeat the

experiment 30 times to report the average in Table 1 (sample). We also report beam search scores (beam).

We see that, on average, samples of the model always perform worse than beam search translations.

7For our analysis, it is convenient to use a metric defined both at the corpus and at the segment level. We use METEOR,
rather than BLEU (Papineni et al., 2002), for it outperforms (smoothed) BLEU at the segment-level (Ma et al., 2018).
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Figure 3: METEOR scores for oracle-selected samples as a function of sample size on the held-out data

(top) and newstest2018 / FLORES (bottom) test sets. For each sample size we repeat the experiment 4
times and show a box plot per sample size. Dashed blue lines show beam search scores.

This is no surprise, of course, as ancestral sampling is not a fully fledged decision rule, but simply a

technique to unbiasedly explore the learnt distribution. Moreover, beam search itself does come with

some adjustments to perform well (such as a specific beam size and length penalty). The gap between

sampling and beam search is between 0 and 14.4 METEOR. The gap can thus be quite large, but overall

the quality of an average sample is reasonable compared to beam search. We also observe that the

variance of the sample scores is small with standard deviations below 0.2.

Next, we investigate the performance we would achieve if we could select the best sample from a

set. For that, we employ an oracle selection procedure using sentence-level METEOR with the reference

translation to select the best sample from a set of samples. We vary sample size from 5 to 30 samples

and repeat each experiment four times. Figure 3 plots the results in terms of corpus-level METEOR.

Average METEOR scores for oracle selection out of 30 samples are shown in Table 1. METEOR scores

steadily increase with sample size. For a given sample size we observe that variance is generally very

small. Only between 5 and 10 samples are required to outperform beam search in low-resource language

pairs and English-German in the training domain, but surprisingly 15 to 25 samples are necessary for

English-German in the test domain. Still, this experiment shows that samples are of reasonable and

consistent quality with respect to METEOR. For fewer than 30 random samples the model could meet or

outperform beam search performance in most cases, if we knew how to choose the best sample from the

set. This is a motivating result for looking into sampling-based decision rules.

7.4 Minimum Bayes Risk Decoding

We have seen that translation distributions spread mass over a large set of likely candidates, oftentimes

without any clear preference for particular translations within the set (Section 7.1). Yet, this set is not

arbitrary, it captures various statistics of the data well (Section 6) and holds potentially good translations

(Section 7.3). Even though the model does not single out one clear winner, the translations it does assign

non-negligible mass to share statistics that correlate with the reference translation. This motivates a

decision rule that exploits all information we have available about the distribution. In this section we

explore one such decision rule: minimum Bayes risk (MBR) decoding.

For a given utility function u(y, h), which assesses a hypothesis h against a reference y, statistical deci-

sion theory (Bickel and Doksum, 1977) prescribes that the optimum decision y⋆ is the one that maximises

expected utility (or minimises expected loss) under the model: y⋆ = argmaxh∈H(x) Ep(y|x,θ)[u(y, h)],
where the maximisation is over the entire set of possible translations H(x). Note that there is no need for

a human-annotated reference, expected utility is computed by having the model fill in reference trans-

lations. This decision rule, known as MBR decoding in the NLP literature (Goel and Byrne, 2000),

is especially suited where we trust a model in expectation but not its mode in particular (Smith, 2011,
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Section 5.3).8 MBR decoding, much like MAP decoding, is intractable. We can at best obtain unbiased

estimates of expected utility via Monte Carlo (MC) sampling, and we certainly cannot search over the en-

tirety of H(x). Still, a tractable approximation can be designed, albeit without any optimality guarantees.

We use MC both to approximate the support H(x) of the distribution and to estimate the expected utility

of a given hypothesis. In particular, we maximise over the support H̄(x) of the empirical distribution

obtained by ancestral sampling:

y⋆ = argmax
h∈H̄(x)

1

S

S∑

s=1

u(y(s), h) for y(s) ∼ p(y|x, θ) , (1)

which runs in time O(S2). Though approximate, this rule has interesting properties: MC improves with

sample size, occasional pathologies in the set pose no threat, and there is no need for incremental search.

Note that whereas our translation distribution might be very flat over a vast number of translations,

not showing a clear ordering in terms of relative frequency within a large set of samples, this need not be

the case under expected utility. For example, in Section 7.2 we found that for some input sequences the

empty sequence is contained within the 1,000 samples in our set and appears in there roughly once on

average. If all the 1,000 samples are unique (as we found to often be the case in Section 7.1), we cannot

distinguish the empty sequence from the other 999 samples in terms of relative frequency. However,

under most utilities the empty sequence is so unlike the other sampled translations that it would score

very low in terms of expected utility.

We chose METEOR as utility function for it, unlike BLEU, is well-defined at the sentence level.9 We

estimate expected utility using S = 30 ancestral samples, and use the translations we sample to make up

an approximation to H(x). Results are shown in Table 1. As expected, MBR considerably outperforms

the average single sample performance by a large margin and in many cases is on par with beam search,

consistently outperforming it in low-resource pairs. For English-German in the test domain, we may

need more samples to close the gap with beam search. Whereas an out-of-the-box solution based on

MBR requires further investigation, this experiment shows promising results. Crucially, it shows that

exploring the model as a probability distribution holds great potential.

8 Related Work

Some of our observations have been made in previous work. Ott et al. (2018) observe that unigram

statistics of beam search stray from those of the data, while random samples do a better job at repro-

ducing them. Holtzman et al. (2020) find that beam search outputs have disproportionately high token

probabilities compared to natural language under a sequence to sequence model. Our analysis is more ex-

tensive, we include richer statistics about the data, more language pairs, and vary the amount of training

resources, leading to new insights about MLE-trained NMT and the merits of mode-seeking predictions.

Ott et al. (2018) also observe that NMT learns flat distributions, they analyse a high-resource English-

French system trained on 35.5 million sentence pairs from WMT’14 and find that after drawing 10, 000
samples from the WMT’14 validation set less than 25% of the probability space has been explored.

Our analysis shows that even though NMT distributions do not reveal clear winners, they do emphasise

translations that share statistics with the reference, which motivates us to look into MBR.

MBR decoding is old news in machine translation (Kumar and Byrne, 2004; Tromble et al., 2008),

but it has received little attention in NMT. Previous approximations to MBR in NMT employ beam

search to define the support and to evaluate expected utility (with probabilities renormalised to sum to

1 in the beam), these studies report the need for very large beams (Stahlberg et al., 2017; Blain et al.,

2017; Shu and Nakayama, 2017). They claim the inability to directly score better translations higher is a

8MAP decoding is in fact MBR with a very strict utility function which evaluates to 1 if a translation exactly matches the
reference, and 0 otherwise. As a community, we acknowledge by means of our evaluation strategies (manual or automatic) that
exact matching is inadequate for translation, unlike many unstructured classification problems, admits multiple solutions.

9Even though one can alter BLEU such that it is defined at the sentence level (for example, by adding a small positive
constant to n-gram counts), this “smoothing” in effect biases BLEU’s sufficient statistics. Unbiased statistics are the key to
MBR, thus we opt for a metric that is already defined at the sentence level.



4515

deficiency of the model scoring function. We argue this is another piece of evidence for the inadequacy

of the mode: by using beam search, they emphasise statistics of high-scoring translations, potentially rare

and inadequate ones. Very recently, Borgeaud and Emerson (2020) present a voting-theory perspective

on decoding for image captioning and machine translation. Their proposal is closely-related to MBR,

but motivated differently. Their decision rule too is guided by beam search, which may emphasise

pathologies of highest-likelihood paths, but they also propose and investigate stronger utility functions

which lead to improvements w.r.t. length, diversity, and human judgements.

The only instance that we are aware of where unbiased samples from an NMT model support a decision

rule is the concurrent work by Naskar et al. (2020). The authors make the same observation that we make

in Section 7.3, namely that an oracle selection from a small set of samples of an NMT model shows great

potential, greatly outperforming beam search. Motivated by this observation, the authors propose a re-

ranking model that learns to rank sampled translations according to their oracle BLEU. Using the trained

model to re-rank a set of 100 samples from the NMT model they find strong improvements over beam

search of up to 3 BLEU points, again showing the potential of sampling-based decision rules.

9 Conclusion

In this work, we discuss the inadequacy of the mode in NMT and question the appropriateness of MAP

decoding. We show that for such a high dimensional problem as NMT, the probability distributions ob-

tained with MLE are spread out over many translations, and that the mode often does not represent any

significant amount of probability mass under the learnt distribution. We therefore argue that MAP decod-

ing is not suitable as a decision rule for NMT systems. Whereas beam search performs well in practice,

it suffers from biases of its own (i.e., non-admissible heuristic search bias), it shifts statistics away from

those of the data (i.e., exposure bias and other lexical and length biases), and in the limit of perfect search

it falls victim to the inadequacy of the mode. Instead, we advocate for research into decision rules that

take into account the probability distribution more holistically. Using ancestral sampling we can explore

the learnt distribution in an unbiased way and devise sampling-based decision rules. Ancestral sampling

does not suffer from non-admissibility, and, if the model fit is good, there is no distribution shift either.

We further argue that criticisms about properties of the mode of an NMT system are not representative

of the probability distributions obtained from MLE training. While this form of criticism is perfectly

reasonable where approximations to MAP decoding are the only viable alternative, there are scenarios

where we ought to criticise models as probability distributions. For example, where we seek to correlate

an observed pathology with a design decision, such as factorisation, or training algorithm. In fact, we

argue that many of the observed pathologies and biases of NMT are at least partially due to the use of

(approximate) MAP decoding, rather than inherent to the model or its training objective.

Even though NMT models spread mass over many translations, we find samples to be of decent quality

and contain translations that outperform beam search outputs even for small sample sizes, further moti-

vating the use of sampling-based decision rules. We show that an approximation to one such decision

rule, MBR decoding, shows competitive results. This confirms that while the set of likely translations

under the model is large, the translations in it share many statistics that correlate well with the reference.

MLE-trained NMT models admit probabilistic interpretation and an advantage of the probabilistic

framework is that a lot of methodology is already in place when it comes to model criticism as well as

making predictions. We therefore advocate for criticising NMT models as probability distributions and

making predictions using decision rules that take into account the distributions holistically. We hope

that our work paves the way for research into scalable sampling-based decision rules and motivates re-

searchers to assess model improvements to MLE-trained NMT systems from a probabilistic perspective.
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A Analysis Models

A.1 Length Analysis

We model length data from the training group using a hierarchical Gamma-Poisson model. Each target

sequence length is modelled as being a draw from a Poisson distribution with a Poisson rate param-

eter specific to that sequence. All Poisson rates share a common population-level Gamma prior with

population-level parameters α and β. The population-level parameters are given fixed Exponential pri-

ors set to allow for a wide but reasonable range of Poisson rates a priori.

α ∼ Exp(1) β ∼ Exp(10)

λi ∼ Gamma(α, β) yi ∼ Poisson(λi)

Here, i indexes one particular data point. This model is very flexible, because we allow the model to

assign each datapoint its own Poisson rate. We model test groups as an extension of the training group.

Test group data points are also modelled as draws from a Gamma-Poisson model, but parameterised

slightly differently.

µ = E [Gamma(α, β|DT )] η ∼ Exp(1.)

sg ∼ Exp(η) tg = 1/µ

λgi ∼ Gamma(sg, tg) ygi ∼ Poisson(λgi)

Here, i again indexes a particular data point, g a group in {reference, sampling, beam}, and DT denotes

the data of the training group. All Poisson rates are individual to each datapoint in each group. The

Poisson rates do share a group-level Gamma prior, whose parameters are sg and tg. sg shares a prior

among all test groups and therefore ties all test groups together. tg is derived from posterior inferences

on the training data by taking the expected posterior Poisson rate in the training data and inverting it. This

is done such that the mean Poisson rate for each test group is sg · µ, where sg can be seen as a parameter

that scales the expected posterior training rate for each test group individually. We infer Gamma posterior

approximations for all unknowns using stochastic variational inference (SVI). After inferring posteriors,

we compare predictive samples to the observed data in terms of first to fourth order moments to verify

that the model fits the observations well.

A.2 Lexical & Word Order Analyses

We model unigram and (skip-)bigram data from the training group using a hierarchical Dirichlet-

Multinomial model as shown below:

α ∼ Gamma(1, 1) β ∼ Gamma(1, 1)

θ ∼ Dir(α) ψu ∼ Dir(β)

u ∼ Multinomial(θ) b|u ∼ Multinomial(ψu)

Here, we have one Gamma-Dirichlet-Multinomial model to model unigram counts u, and a separate

Dirichlet-Multinomial model for each u (the first word of a bigram) that b (the second word of a bigram)

conditions on, sharing a common Gamma prior that ties all bigram models. This means that we effec-

tively have V + 1 Dirichlet-Multinomial models (where V is BPE vocabulary size) in total to model the

training group, where the V bigram models share a common prior.

We model the three test groups using the inferred posterior distributions on the data of the training

group DT . We compute the expected posterior concentration of the Dirichlets in the training group mod-

els and normalise it such that it sums to 1 over the entire vocabulary. The normalisation has the effect of
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spreading the unigram and bigram distributions. The test groups are modelled by scaling this normalised

concentration parameter using a scalar. In order for test-groups to recover the training distribution the

scaling variable needs to be large to undo the normalisation. This scalar, sg for unigrams or mg for

bigrams, can be interpreted as the amount of agreement of each test group with the training group. The

higher this scalar is, the more peaked the test group Multinomials will be about the training group lexical

distribution.

µ(α) = E [α|DT ] . µ(β) = E [β|DT ]

ηs ∼ Gamma(1, 0.2) ηm ∼ Gamma(1, 0.2)

sg ∼ Gamma(1, ηs) mg ∼ Gamma(1, ηm)

θg ∼ Dir(sg · µ(α)) ψg ∼ Dir(mg · µ(β))

ug ∼ Multinomial(θg) bg|ug ∼ Multinomial(ψg)

g ∈ {reference, sampling, beam}

We do collapsed inference for each Dirichlet-Multinomial (as we are not interested in assessing θg or

φg), and infer posteriors approximately using SVI with Gamma approximate posterior distributions. To

confirm the fit of the analysis model, we compare posterior predictive samples to the observed data in

terms of absolute frequency errors of unigrams and bigrams as well as ranking correlation.


