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Abstract Evidence from large-scale studies (Pexman,
Hargreaves, Siakaluk, Bodner, & Pope, 2008) suggests
that semantic richness, a multidimensional construct
reflecting the extent of variability in the information
associated with a word’s meaning, facilitates visual word
recognition. Specifically, recognition is better for words
that (1) have more semantic neighbors, (2) possess
referents with more features, and (3) are associated with
more contexts. The present study extends Pexman et al.
(2008) by examining how two additional measures of
semantic richness, number of senses and number of
associates (Pexman, Hargreaves, Edwards, Henry, &
Goodyear, 2007), influence lexical decision, speeded
pronunciation, and semantic classification performance,
after controlling for an array of lexical and semantic
variables. We found that number of features and contexts
consistently facilitated word recognition but that the
effects of semantic neighborhood density and number of
associates were less robust. Words with more senses also
elicited faster lexical decisions but less accurate semantic
classifications. These findings point to how the effects of
different semantic dimensions are selectively and adap-
tively modulated by task-specific demands.
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The majority of visual word recognition research has
examined how lexical-level properties such as word frequency
and number of letters influence performance,using tasks such
as lexical decision (word/nonword discrimination), speeded
pronunciation (naming words aloud), and semantic classifi-
cation (e.g., classifying a word as animate or inanimate).
However, there is substantial evidence that meaning-level
characteristics such as imageability also affect word recogni-
tion, even after correlated lexical variables are controlled for
(see Balota, Ferraro, & Connor, 1991, for a review). In the
present study, we focus on the effects of semantic richness,
the extent to which there is variability in the information
associated with a word’s meaning (Pexman, Hargreaves,
Siakaluk, Bodner, & Pope, 2008).

Measures of semantic richness

Pexman et al. (2008) defined semantic richness as a
multidimensional construct that encompasses a word’s
number of semantic neighbors (NSN), the number of
features (NF) associated with its referent, and its contex-
tual dispersion (CD). NSN refers to the number of
semantic neighbors within some specified radius in high-
dimensional semantic space (Buchanan, Westbury, &
Burgess, 2001) and is based on lexical co-occurrences
within a large corpus of words. NF indexes the number of
features listed by participants for different concepts
(McRae, Cree, Seidenberg, & McNorgan, 2005). Finally,
CD reflects the number of contexts in which a word has
been seen (Adelman, Brown, & Quesada, 2006). Words
possess richer, more highly activated semantic representa-
tions when NF, NSN, and CD are high, consistent with
empirical demonstrations of faster recognition for words
associated with more semantic neighbors (Buchanan et al.,
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2001), features (Pexman, Holyk, & Monfils, 2003), and
contexts (Adelman et al., 20006).

Task-specificity of semantic richness measures

Although described as semantic richness measures, NSN, NF,
and CD stem from disparate theoretical perspectives and may
not reflect a common underlying dimension or mechanism.
Pexman et al. (2008) explored this by simultaneously
comparing the effects of the three variables on lexical
decision and semantic classification performance, using
hierarchical regression analyses of 514 concrete words from
the McRae et al. (2005) feature norms. They found that the
three semantic variables were only modestly correlated and,
indeed, were able to account for unique variance in both
lexical decision and semantic classification performance,
suggesting that they are not simply alternative measures of
the same construct. More interestingly, the relative propor-
tion of word recognition variance accounted for by the three
measures varied across the two tasks, consistent with the
different demands of each task (Balota & Yap, 2006).
Specifically, meaning-level influences in lexical decision
emerge due to top-down feedback from semantic to
orthographic representations (Balota, 1990) and to the task’s
emphasis on stimulus familiarity/meaningfulness as a useful
dimension for word/nonword discrimination (Balota &
Chumbley, 1984). In contrast, the semantic classification
task, which requires participants to ascertain the meaning of
a word, is a more direct measure of semantic processing and
should be less affected by variables correlated with ortho-
graphic familiarity (e.g., word frequency).

Consistent with these task-specific demands, Pexman et al.
(2008) reported an interesting dissociation whereby measures
related to orthographic familiarity had less predictive power
in semantic classification (R* = .10) than in lexical decision
(R* = 44), while semantic richness measures had more
predictive power in semantic classification (AR? = .10) than
in lexical decision (AR? = .04). Furthermore, NF and CD
facilitated both lexical decision and semantic classification,
whereas NSN effects were limited to lexical decision.
According to Pexman et al. (2008), high-NF and high-CD
words possess more highly activated semantic representa-
tions, which produce stronger semantics—orthography feed-
back (yielding better lexical decision performance) and less
time needed to settle on a semantic code (yielding better
semantic classification performance). The NSN effect in
lexical decision can be explained by greater semantics—
orthography feedback when there are more semantic neigh-
bors, while the null NSN effect in semantic classification is
consistent with the opposing effects of close (facilitatory) and
distant (inhibitory) neighbors trading off against each other in
semantic processing (Mirman & Magnuson, 2006).

The present research

The analyses in Pexman et al. (2008) have provided
compelling evidence for the multidimensionality of seman-
tic richness and the interplay between these distinct
influences and the specific demands of different lexical-
processing tasks. Our aim was to replicate and extend that
work in the following ways.

One, semantic richness is not circumscribed by the
measures (i.e., NSN, NF, CD) described so far. It could also
be reflected by a word’s number of associates (NoA;
Duiiabeitia, Avilés, & Carreiras, 2008; Pexman, Har-
greaves, Edwards, Henry, & Goodyear, 2007), the number
of distinct first associates produced in a free-association
task (Nelson, McEvoy, & Schreiber, 1998). NoA has been
shown to facilitate performance across different lexical-
processing tasks (see Dufiabeitia et al., 2008, for a review).
Another theoretically intriguing variable is lexical ambigu-
ity, the extent to which a word (e.g., bank) possesses
multiple unrelated meanings. Ambiguous words elicit
shorter lexical decision (Borowsky & Masson, 1996) but
longer semantic classification (Hino, Pexman, & Lupker,
2006) latencies. In lexical decision, words with more
meanings receive more semantic feedback. However,
semantic classification relies on semantic processing, which
can be slowed down either by the one-to-many mappings
between orthography and semantics for ambiguous words
(Borowsky & Masson, 1996) or by the greater competition
between the multiple meanings activated for ambiguous
words (Grainger, Van Kang, & Segui, 2001). Thus far,
previous studies have examined NoA and ambiguity effects
separately from other richness effects. Our first goal was to
identify the unique effects of these variables and of other
measures of semantic richness across different tasks,
using regression analyses of behavioral responses to the
McRae et al. (2005) words. Importantly, word ambiguity
has usually been defined by subjective ratings (e.g.,
Hargreaves, Pexman, Pittman, & Goodyear, 2011). While
such ratings work well for clearly ambiguous items (e.g.,
bank), they are not so viable for less ambiguous words (e.g.,
blouse); the McRae et al. words mostly fall into the latter
category. Hence, in the present study, we defined the
ambiguity of a word by its number of senses in the WordNet
database (Miller, 1990).

Two, the effects of semantic richness measures on
speeded pronunciation performance were not studied.
Generally, semantic effects, although reliable, are relatively
modest in speeded pronunciation (Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004), since the task does not
place a premium on familiarity-based information or require
participants to identify the meaning of the word. However,
semantic effects on speeded pronunciation can still arise
through early activation of meaning by way of cascaded
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processing (Balota et al., 2004), leading to stronger
feedback activation from semantics to phonology (Siakaluk,
Pexman, Aguilera, Owen, & Sears, 2008). In the present
study, we explored the effects of semantic richness on lexical
decision, semantic classification, and speeded pronunciation,
after controlling for an extensive array of correlated lexical
variables.

Three, Pexman et al. (2008) explored semantic rich-
ness effects after controlling for word frequency, ortho-
graphic neighborhood density, and number of letters.
However, many other variables influence visual word
recognition (see Yap & Balota, 2009), and spurious effects
may emerge when these extraneous variables are not
controlled for (Gernsbacher, 1984). In addition, since
Pexman et al. (2008), updated and potentially superior
semantic richness measures have become available (see
Shaoul & Westbury, 2010). We used a neighborhood
measure called mean semantic similarity—5000 (MSS—
5000) (C. Westbury, personal communication, October 21,
2010), which is based on co-occurrence information from
a billion-word Wikipedia corpus. MSS—5000 reflects the
mean cosine similarity between a target word and its
closest 5,000 neighbors in high-dimensional semantic
space; words with higher MSS—5000 values are associated
with neighbors that are more similar to them, and should
therefore enjoy a processing advantage. Moreover, the raw
and CD frequency counts in Pexman et al. (2008) were
based on different norms, and the predictive power of CD
may have been inflated due to its being estimated with a
different corpus (see Brysbaert & New, 2009). In line with
Adelman et al. (2006), we used raw and CD counts from
Brysbaert and New’s SUBTL corpus, a 51-million-word
database comprising film and television subtitles. These
new norms outperform existing norms and include both
raw frequency (SUBTL-WF; frequency of occurrence) and
CD frequency (SUBTL-CD; number of films a word
appears in).

Method
Dependent measures

Lexical decision and speeded pronunciation data for the
regression analyses were obtained from the English
Lexicon Project (ELP; http://elexicon.wustl.edu), an online
repository of lexical characteristics and behavioral data for
40,481 words (Balota et al., 2007). Standardized lexical
decision and pronunciation latencies were used in the
present analyses (cf. Pexman et al.,, 2008), since these
minimize the influence of a participant’s processing speed
and variability (Faust, Balota, Spieler, & Ferraro, 1999).
Semantic classification data were obtained from Pexman
et al. (2008).

@ Springer

Predictors

The variables in the analyses were divided into three
clusters: surface, lexical, and semantic variables (see Table 1
for descriptive statistics of predictors and measures).
Tables 2 and 3 present the intercorrelations between the
predictors and dependent variables.

Surface variables Dichotomous variables were used to
code the initial phoneme of each word (1 = presence of
feature; 0 = absence of feature) on 13 features: affricative,
alveolar, bilabial, dental, fricative, glottal, labiodental,
liquid, nasal, palatal, stop, velar, and voiced (Balota et al.,
2004). These control for the variance associated with voice
key biases in speeded pronunciation.

Lexical variables These included word frequency, number
of morphemes, number of syllables, number of letters,
number of orthographic neighbors, number of phonological
neighbors, orthographic Levenshtein distance, and phono-
logical Levenshtein distance (Yarkoni, Balota, & Yap,
2008). The Levenshtein measures are particularly useful
for quantifying the orthographic and phonological distinc-
tiveness of longer, multisyllabic words.

Semantic richness variables Semantic richness measures
included NF (McRae et al., 2005), MSS—-5000 (Shaoul &
Westbury, 2010), log-transformed CD (Brysbaert & New,
2009), log-transformed number of senses (Miller, 1990),
and NoA (Pexman et al., 2007).

Results

From the original set of 514 words, analyses were
conducted on the 505' words that possessed values for
the relevant predictors and dependent measures. Hierar-
chical regression analyses were then conducted on the
lexical decision, speeded pronunciation, and semantic
classification response time (RT) and accuracy data
(Table 4). Surface variables® were entered in step I,
control lexical variables in step 2, and semantic richness
variables (NF, MSS-5000, SUBTL-CD, number of
senses) in step 3. Because NoA values were available
for only 389 items, we assessed NoA effects by conduct-
ing additional regression analyses for this subset of

"Four truly ambiguous words (bin, stool, plug, and card) were
dropped.

2 Although surface variables mainly capture variance associated with
voice key effects on speeded pronunciation times, we included them in
all three tasks to maintain parity.
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Table 1 Descriptive statistics

for stimulus characteristics and Variable (n = 505) M SD

behavioral data
Log frequency (Brysbaert & New, 2009) 242 0.64
No. of morphemes 1.24 0.48
No. of syllables 1.80 0.79
No. of letters (length) 5.94 1.93
No. of orthographic neighbors 3.55 4.90
No. of phonological neighbors (Yates, 2005) 7.66 9.62
Orthographic Levenshtein distance (Yarkoni et al., 2008) 2.23 0.91
Phonological Levenshtein distance (Yarkoni et al., 2008) 2.08 1.01
No. of features (McRae et al., 2005) 12.12 3.23
Mean semantic similarity-5000 (Shaoul & Westbury, 2010) 0.43 0.14
Log contextual dispersion (Brysbaert & New, 2009) 2.19 0.60
Log number of senses (Miller, 1990) 0.60 0.26
Number of associates (Nelson et al., 1998) 13.48 5.05
Lexical decision task RTs (Z-score) -0.40 0.30
Lexical decision task accuracy 0.94 0.09
Semantic classification task RTs 627.94 74.39
Semantic classification task accuracy 0.94 0.07
Speeded pronunciation RTs (Z-score) -0.37 0.28
Speeded pronunciation accuracy 0.98 0.04

words. For ease of exposition, only step 3 effects are
reported on Table 5.

The analyses yielded a number of noteworthy observa-
tions. First, as was expected, surface variables accounted
for a substantial proportion of variance only in speeded
pronunciation RTs. Second, as compared with Pexman et al.
(2008), the lexical variables accounted for substantially
more variance in all three tasks, due to the inclusion of
more control variables. Third, as can be seen in Table 4,
two semantic richness variables, NF and CD, accounted for
additional unique variance across all tasks. In contrast,
MSS-5000 influenced only lexical decision RTs, and
latencies were shorter for words with neighbors that are
more similar to them. In addition, number of senses had no
effect on speeded pronunciation performance. However,
there was a suggestive dissociation whereby words with
more senses elicited shorter lexical decision times but less
accurate semantic classification responses, although both
effects were only marginally significant. Intriguingly,
turning to NoA effects (Table 5), it is very clear that NoA
did not reliably predict word recognition performance on
any task. This cannot have been entirely due to attenuated
statistical power as a function of fewer observations.
Specifically, if one compares Tables 4 and 5, it is clear
that the effects of the other semantic richness variables were
broadly similar across both sets of analyses.

Although lexical-level variables collectively accounted
for a substantial proportion of variance, it was surprising
that some variables—notably, those capturing structural
properties such as number of letters and orthographic

distinctiveness (i.e., neighborhood and Levenshtein meas-
ures)—did not produce reliable effects in lexical decision
and speeded pronunciation, which is inconsistent with other
reports (e.g., Yap & Balota, 2009) based on large-scale
datasets. The intercorrelations between the predictors in our
dataset could be driving these discrepancies. For example,
correlations were very high (rs > .80) between letter and
syllable length, orthographic and phonological neighbor-
hood size, and orthographic and phonological Levenshtein
distance (see Tables 2 and 3). To address this multi-
collinearity, principal component analysis was used to
combine these variable pairs to create length, neighborhood,
and Levenshtein distance components, respectively. Although
principal components are less straightforward to interpret, this
is not a major issue for control variables (Baayen, Feldman, &
Schreuder, 2006). Notably, the significant lexical effects
observed in these principal component regression analyses
(see Table 6) are more consistent with the extant literature,
and critically, semantic richness effects were virtually
identical across the different sets of control variables
(compare Tables 4 and 6). NoA effects were also examined
with principal component control variables, and, as before,
they were not reliable on any measure (all ps > .38).

Discussion
The present study is the first to simultaneously examine
the effects of a large array of objectively defined

semantic richness measures on lexical decision, speeded
pronunciation, and semantic classification. Replicating

@ Springer
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Table 3 Correlations between predictor variables and dependent measures

Variable 11 12

13

14 18 19

. Log frequency (Brysbaert & New, 2009)
No.
No.
No.
No.
No.

. Orthographic Levenshtein distance

(Yarkoni et al., 2008)

8. Phonological Levenshtein distance
(Yarkoni et al., 2008)

9. No. of features (McRae et al., 2005)

10. Mean semantic similarity-5000
(Shaoul & Westbury, 2010)

11. Log contextual dispersion -
(Brysbaert & New, 2009)

12. Log number of senses (Miller, 1990)

13. No. of associates (Nelson et al., 1998)
14. Lexical decision task RTs (Z-score)

15.
16.
17.
18.
19.

of morphemes

of syllables

of letters (length)

of orthographic neighbors
of phonological neighbors

S

Sqrer
9%
SJ4kEk
_44%%*
4%
- 60%

14%*
_ 5%k
D7k
7
.05

- 40

Lexical decision task accuracy
Semantic classification task RTs
Semantic classification task accuracy
Speeded pronunciation RTs (Z-score)
Speeded pronunciation accuracy

.10%*

.06

.02

1 8%k

-.64%k** -
§3kEk _ 4O%k** -
Z33kk% Rk _76kF* -

12%*

1 ***

S39EEE L

wHx p < 0013 ** p < .01; % p<.05; 1 p<.10

and extending earlier work by Pexman et al. (2008), it
generated the following findings. First, as was previously
demonstrated, the control lexical variables accounted for
much more variance in lexical decision (AR? = 60%) and
speeded pronunciation (AR* = 40%), as compared with
semantic classification (AR? = 21%), while the semantic
variables accounted for more variance in semantic
classification (AR* = 7%), as compared with lexical
decision (AR?=2%) and speeded pronunciation
(AR? = 2%). This is consistent with semantic classifica-
tion’s emphasis on the word’s meaning and the other two
tasks’ emphasis on the word’s form. Second, two of the
semantic richness variables, NF and CD, facilitated
responses across lexical decision, speeded pronunciation,
and semantic classification, suggesting that they are not
simply driven by idiosyncratic task-specific demands.
Third, MSS-5000 affected only lexical decision times,
whereby RTs were shorter for words with neighbors that
were more similar to them. Fourth, words with many
senses elicited shorter lexical decision times but less
accurate semantic classification responses (although these
trends only approached significance). Fifth, after other
semantic richness measures were controlled for, NoA did
not account for any unique variance. Finally, the correla-
tions in Tables 2 and 3 show that the different measures of

richness are, for the most part, only modestly correlated
with each other.

Our results indicate that despite controlling for a
comprehensive array of correlated lexical variables, reliable
effects of semantic richness could be detected across a
variety of lexical-processing tasks®. Even in a task such as
speeded pronunciation, which ostensibly does not empha-
size orthographic familiarity or require meaning to be
computed, facilitatory effects of NF and CD were evident.
This is compatible with the view that feedback activation
from semantics to orthography and from semantics to
phonology (Siakaluk et al., 2008) is a general property of
visual word recognition and that the strength of semantic
representations can be more reliably tapped by NF and CD
than by MSS—5000, number of senses, and NoA. Indeed,

3 One potential limitation of the present analyses is that they were
based on a relatively small set of items (n = 505). To establish the
generality of some of our findings, we obtained ELP lexical decision
and speeded pronunciation latencies for 26,652 words that possessed
values for CD, number of senses, and number of semantic neighbors.
Using similar regression analyses, we found that in both tasks,
recognition was faster for words associated with more contexts,
senses, and neighbors (all ps < .01), broadly mirroring the reported
trends.
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Table 4 Standardized response

times (RTs) and accuracy re- Predictor Variable LDT Pronunciation SCT

gression coefficients from steps

1 to 3 of the item-level regres- RT Accuracy  RT Accuracy  RT Accuracy

sion analyses (n = 505) for

lexical decision, speeded pro- Step 1: Onsets

nunciation, and semantic classi- Adjusted R’ 017 00 14k .00 03%* 03%*

oo T e o iy 2 Lot v

asterisks. Note that the regres- Log frequency X ST - 43HEE 35k - 4THEH 28H*

sion coefficients reported reflect No. of morphemes -.09* 13%* - 15%F* .05 -.04 10+

the ftoefﬁcients entered in that No. of syllables 11* _15% 13* _.09 14+ -16%

particular step No. of letters (length) 11 22 13 03 AR 36w
No. of ortho. neighbors -.01 .00 -.10F -.06 -.08 .08
No. of phono. neighbors .02 .00 10+ -.03 147 -11
Ortho. Levenshtein distance .03 -.02 13 .02 - AGFH* 44
Phono. Levenshtein distance .09 .00 .00 .05 -.08 .09
Adjusted R’ .61 28 .54 .07 24 12
Change in R? 60 ** 28xHE A0 7 2]xx* L09F**
Step 3: Semantic variables
No. of features -.09%* 4 -.09%* .06 - 24H%% 9
Mean semantic similarity-5000  -.12%* .05 .05 .02 -.01 .01

#HE p < 001; ** p < 01, Log contextual dispersion -36%* .65%* - 45%* 25 -.68%* .60%**

*p<.05 1 p<.10 Log number of senses -07F .05 -.04 .05 .08 -.10f

LDT = lexical decision task; Adjusted R’ .63 31 .56 .07 31 .16

SCT = semantic classification Change in R® AR 03k 2%k 00 07%%* 04%**

task

we were surprised not to find reliable NoA effects on any
measure (cf. Dufabeitia et al., 2008), which suggests that
NoA effects may not be robust when one controls for other
lexical and semantic variables.

It is worth noting that Pexman et al. (2008) also reported
that denser semantic neighborhoods facilitated lexical
decision performance but had no effect on semantic
classification, consistent with the present analyses (see
Table 4). The null effect of MSS-5000 in semantic
classification could reflect the trade-off between close and
distant neighbors, which respectively facilitate and inhibit
semantic processing (Mirman & Magnuson, 2006). Future

work could examine this intriguing interplay between close
and distant semantic neighbors by parametrically manipu-
lating the number of closest neighbors (e.g., MSS-50 vs.

MSS-500 vs. MSS-5000).

Turning to multiple meanings, we found an intriguing
dissociation whereby words with more senses yielded
shorter lexical decision times but less accurate semantic
classification responses. These trends, which approached
statistical significance, are consistent with the idea that
multiple meanings lead to greater semantic activation,
which is beneficial in tasks that emphasize stimulus
familiarity but can hurt performance when participants

Table 5 Standardized response times (RTs) and accuracy regression coefficients from step 3 of the item-level regression analyses (n = 389) for
lexical decision, speeded pronunciation, and semantic classification, when number of associates is included in step 3

Predictor Variable LDT Pronunciation SCT

RT Accuracy RT Accuracy RT Accuracy
Step 3: Semantic variables
No. of features -.06F .07 -.09* .02 - 19%%* 16%*
Mean semantic similarity-5000 - 13* .01 .06 -.10 -.07 .06
Log contextual dispersion -.34% B7** - 57F* .05 -47% -11
Log number of senses -.04 A1 -.10% .08 107 -11
Number of associates .01 -.05 .00 .04 -.01 -.04

% p <.001; ** p <.01; * p<.05 Fp<.10
LDT = lexical decision task; SCT = semantic classification task
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Table 6 Standardized response ] ] o

times (RTs) and accuracy re- Predictor Variable LDT Pronunciation SCT

gression coefficients from steps

1 to 3 of the item-level regres- RT Accuracy  RT Accuracy  RT Accuracy

sion analyses (n = 505) for lex-

ical decision, speeded Step 1: Onsets

pronunciation, and semantic Adjusted R? 01F .00 4 .00 .03%* .03%*

clas51ﬁ2cat10n. The p-value for Step 2: Lexical variables

each R change is represented

with asterisks. Note that the Log frequency - O FH* ST - 43HEE 35k - 46HH* 2T7EEE

regression coefficients reported No. of morphemes -.09%* L T7EER - 16%** .06 .00 .08

reflect the coefficients entered in Length component IEL _03 PYELE _08 PYELE _ 43k

that particular step Neighborhood component .01 -.03 .00 -.09 .05 -.03
LD20 component 137 .08 A3F .09 - 46%** 46%**
Adjusted R’ .61 28 .54 .07 23 12
Change in R? 60 ** 28xx* A0 7 20%** L09F**
Step 3: Semantic variables
No. of features -.09%* 4 -.09%* .06 - 24%%% 9
Mean semantic similarity-5000  -.12%* .03 .05 .01 .00 .00

#% ) < 001; ** p < .01; Log contextual dispersion -35% 65%* -43% 25 -.65%* S5T7*

*p<.05tp<.10 Log number of senses -07f .06 -.05 .05 .08 - 111

LDT = lexical decision task; Adjusted R’ .63 31 .56 .07 .30 .16

SCl;f = semantic classification Change in R® 02%%* 03%** Q2% 00 7%k 4k

tas

need to resolve the specific meaning of a word. The
absence of a number-of-senses effect on semantic classifi-
cation RTs is interesting and is consistent with recent
demonstrations that although ambiguity effects may not be
reflected in semantic classification RTs (Pexman, Hino, &
Lupker, 2004), they can be detected using neuroimaging
techniques (Hargreaves et al., 2011). Of course, despite its
greater objectivity, number of senses is, at best, a crude
proxy for ambiguity, since it does not distinguish between
related and unrelated multiple definitions. Nonetheless, the
present results are intriguing and merit further investigation.

Conclusions and future directions

The present study further underscores the multidimension-
ality of word meaning and the task-generality and task-
specificity of semantic richness effects. Intriguingly, both
the strength and direction of a semantic effect can be
systematically modulated by the specific demands of a task,
consistent with a flexible lexical-processing system that
relies on attentional mechanisms to optimize information
processing for accomplishing the goals of any given
lexical-processing task (Balota & Yap, 2006).

An important methodological advantage of the present
work is that all semantic richness measures examined are
objectively defined metrics based on corpus statistics or
normative data derived from either feature listing or free
association tasks. For this reason, semantic variables such as
imageability and age of acquisition were excluded. Although
these have been well-studied in the literature, they are defined

by subjective ratings, and it is not entirely clear what
dimensions participants rely on to drive their ratings. However,
future work could more systematically tease apart the effects of
objectively and subjectively defined semantic measures.

In addition, we have suggested that semantic richness
can be captured by a number of dimensions, some of which
(e.g., number of features and neighborhood density) are
more unequivocally semantic. However, dimensions such
as CD may reflect both lexical-semantic representations
and episodic traces, indicating that the distinction between
“lexical” and “semantic” is better conceptualized as
continuous than as categorical. It is also noteworthy that
semantic richness measures accounted for relatively little
variance in the present study, particularly in lexical decision
and speeded pronunciation performance. One might argue
that these effects, although statistically reliable, are not
substantive. In response to this, semantic variables typically
explain far less variance than do lexical variables (see
Balota et al., 2004), and it is worth reiterating that these
effects were reliable after controlling for many lexical
variables, including an optimized word frequency measure.
More crucially, the theoretical importance of an effect
cannot be fully gauged by its magnitude. For example,
spelling-to-sound consistency typically accounts for very
little variance in word recognition performance, but this
variable imposes critical constraints on the mechanisms that
mediate print and speech in computational models. In the
same way, by highlighting the pervasiveness, adaptability,
and multidimensionality of semantic richness effects, we
hope to better characterize the dynamic contribution that
word meaning makes to visual word recognition.

@ Springer



750

Psychon Bull Rev (2011) 18:742—750

Acknowledgements This work was supported in part by a Natural
Sciences and Engineering Research Council (NSERC) of Canada
Discovery Grant to PM.P. We thank Chris Westbury and Cyrus
Shaoul for generously providing us with different measures of
semantic neighborhood density. We also thank Jon Dufiabeitia and
two anonymous reviewers for their very helpful comments on an
earlier version of the manuscript.

References

Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual
diversity, not word frequency, determines word-naming and
lexical decision times. Psychological Science, 17, 814—823.

Baayen, R. H., Feldman, L. F., & Schreuder, R. (2006). Morphological
influences on the recognition of monosyllabic monomorphemic
words. Journal of Memory and Language, 53, 496—512.

Balota, D. A. (1990). The role of meaning in word recognition. In D. A.
Balota, G. B. Flores d’Arcaise, & K. Rayner (Eds.), Comprehension
processes in reading (pp. 9-32). Hillsdale: Erlbaum.

Balota, D. A., & Chumbley, J. I. (1984). Are lexical decisions a good
measure of lexical access? The role of word frequency in the
neglected decision stage. Journal of Experimental Psychology.
Human Perception and Performance, 10, 340-357.

Balota, D. A., Cortese, M. J., Sergent-Marshall, S., Spieler, D. H., & Yap,
M. J. (2004). Visual word recognition of single-syllable words.
Journal of Experimental Psychology. General, 133, 336-345.

Balota, D. A., Ferraro, R. F., & Connor, L. T. (1991). On the early
influence of meaning in word recognition: A review of the
literature. In P. J. Schwanenflugel (Ed.), The psychology of word
meanings (pp. 187-222). Hillsdale: Erlbaum.

Balota, D. A., & Yap, M. J. (2006). Attentional control and flexible lexical
processing: Explorations of the magic moment of word recognition.
In S. Andrews (Ed.), From inkmarks to ideas: Current issues in
lexical processing (pp. 229—-258). New York: Psychology Press.

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler,
B., Loftis, B., et al. (2007). The English lexicon project.
Behavior Research Methods, 39, 445-459.

Borowsky, R., & Masson, M. E. J. (1996). Semantic ambiguity effects
in word identification. Journal of Experiment Psychology:
Learning, Memory, & Cognition, 22, 63—85.

Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: a
critical evaluation of current word frequency norms and the
introduction of a new and improved word frequency measure for
American English. Behavior Research Methods, 41, 977-990.

Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing
semantic space: Neighborhood effects in word recognition.
Psychonomic Bulletin & Review, 8, 531-544.

Dunabeitia, J. A., Avilés, A., & Carreiras, M. (2008). NoA’s ark:
Influence of the number of associates in visual word recognition.
Psychonomic Bulletin & Review, 15, 1072—1077.

Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999).
Individual differences in information-processing rate and amount:
Implications for group differences in response latency. Psycho-
logical Bulletin, 125, 777-799.

@ Springer

Gernsbacher, M. A. (1984). Resolving 20 years of inconsistent
interactions between lexical familiarity and orthography, con-
creteness, and polysemy. Journal of Experimental Psychology.
General, 113, 256-281.

Grainger, J., Van Kang, M., & Segui, J. (2001). Cross-modal priming
from heterographic homophones. Memory & Cognition, 29, 53—61.

Hargreaves, 1. S., Pexman, P. M., Pittman, D. J., & Goodyear, B. G.
(2011). Tolerating ambiguity: Ambiguous words recruit the left
inferior frontal gyrus in absence of a behavioral effect.
Experimental Psychology, 58, 19-30.

Hino, Y., Pexman, P., & Lupker, S. (2006). Ambiguity and relatedness
effects in semantic tasks: are they due to semantic coding?
Journal of Memory and Language, 55, 247-273.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005).
Semantic feature production norms for a large set of living and
nonliving things. Behavior Research Methods, 37, 547-559.

Miller, G. A. (1990). Word Net: An on-line lexical database.
International Journal of Lexicography, 3, 235-312.

Mirman, D., & Magnuson, J. S. (2006). The impact of semantic
neighborhood density on semantic access. In R. Sun & N.
Miyake (Eds.), Proceedings of the 28th annual conference of the
Cognitive Science Society (pp. 1823—1828). Mahwah: Erlbaum.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The
University of South Florida word association, rhyme, and word
fragment norms. Retrieved March 9, 2011, from http://www.usf.
edu/FreeAssociation/

Pexman, P. M., Hargreaves, 1. S., Edwards, J. D., Henry, L. C., &
Goodyear, B. G. (2007). The neural consequences of semantic
richness: when more comes to mind, less activation is observed.
Psychological Science, 18, 401-406.

Pexman, P. M., Hargreaves, 1. S., Siakaluk, P., Bodner, G., & Pope, J.
(2008). There are many ways to be rich: Effects of three
measures of semantic richness on word recognition. Psychonomic
Bulletin & Review, 15, 161-167.

Pexman, P. M., Hino, Y., & Lupker, S. J. (2004). Semantic ambiguity
and the process of generating meaning from print. Journal of
Experimental Psychology: Learning, Memory, & Cognition, 30,
1252-1270.

Pexman, P. M., Holyk, G. G., & Monfils, M. H. (2003). Number-of-
features effects and semantic processing. Memory & Cognition,
31, 842-855.

Shaoul, C., & Westbury, C. (2010). Exploring lexical co-occurrence
space using HiDEX. Behavior Research Methods, 42, 393—413.

Siakaluk, P. D., Pexman, P. M., Aguilera, L., Owen, W. J., & Sears, C.
R. (2008). Evidence for the activation of sensorimotor informa-
tion during visual word recognition: the body—object interaction
effect. Cognition, 106, 433—443.

Yap, M. J., & Balota, D. A. (2009). Visual word recognition of
multisyllabic words. Journal of Memory and Language, 60, 502—
529.

Yarkoni, T., Balota, D. A., & Yap, M. J. (2008). Moving beyond
Coltheart’s N: A new measure of orthographic similarity.
Psychonomic Bulletin & Review, 15, 971-979.

Yates, M. (2005). Phonological neighbors speed visual word process-
ing: Evidence from multiple tasks. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 31, 1385-1397.


http://www.usf.edu/FreeAssociation/
http://www.usf.edu/FreeAssociation/

	Is more always better? Effects of semantic richness on lexical decision, speeded pronunciation, and semantic classification
	Abstract
	Measures of semantic richness
	Task-specificity of semantic richness measures
	The present research
	Method
	Dependent measures
	Predictors

	Results
	Discussion

	Conclusions and future directions
	References


