
Carleton University technical report SCE-04-15

1

Is Mutation an Appropriate Tool for Testing Experiments?

J. H. Andrews
Computer Science Department
University of Western Ontario

London, Canada
andrews@csd.uwo.ca

L. C. Briand, Y. Labiche
Software Quality Engineering Laboratory

Systems and Computer Engineering Department
Carleton University, 1125 Colonel By Drive

Ottawa, ON K1S5B6, Canada
{briand, labiche}@sce.carleton.ca

Abstract

The empirical assessment of test techniques plays an
important role in software testing research. One common
practice is to instrument faults, either manually or by
using mutation operators. The latter allows the
systematic, repeatable seeding of large numbers of faults;
however, we do not know whether empirical results
obtained this way lead to valid, representative
conclusions. This paper investigates this important
question based on a number of programs with
comprehensive pools of test cases and known faults. It is
concluded that, based on the data available thus far, the
use of mutation operators is yielding trustworthy results.

1. Introduction

Experimentation is an essential part of research in
software testing. Typically, experiments are used to
determine which of two or more methods is superior for
performing some testing-related activity. For instance,
one may be interested in comparing the fault detection
effectiveness of several testing criteria used to derive test
cases, and one resorts to experiments to that aim. Testing
experiments often require a set of subject programs with
known faults. These subject programs should be big
enough to be realistic, but not so big as to make
experimentation infeasible. As for the faults, the ability of
a technique to deal with the given faults should be an
accurate predictor of the performance of the technique on
real programs.

One problem in the design of testing experiments is
that real programs of appropriate size with real faults are
hard to find, and hard to prepare appropriately (for
instance, by preparing correct and faulty versions). Even
when actual programs with actual faults are available,
often these faults are not numerous enough to allow the
experimental results to achieve statistical significance.
Many researchers therefore have taken the approach of
introducing faults into correct programs to produce faulty
versions.

These faults can be introduced by hand (the
experimenter can for instance ask experienced engineers
to do that), or by automatically generating variants of the
code. Generally we view an automatically-generated
variant as the result of applying an operator to the code.

The operators used in this way are called mutation
operators, the resulting faulty versions are called mutants,
and the general technique is called mutation or mutant
generation.

The main potential advantage of mutant generation is
that the mutation operators can be described precisely and
thus provide a well-defined, fault-seeding process. This
helps researchers replicate others’ experiments, a
necessary condition for good experimental science. While
hand-introduced faults can be argued to be more realistic,
ultimately it is a subjective judgment whether a given
fault is realistic or not. Another important advantage of
mutant generation is that a potentially large number of
mutants can be generated, increasing the statistical
significance of results obtained.

However, an important question remains. How do we
know whether the ability to detect (or “kill”) mutants is an
accurate predictor of actual performance; that is, what is
the external validity of mutants in assessing the fault
detection effectiveness of testing techniques? An answer
to this question would have important consequences on
how we perform testing experiments and therefore on the
validity of experimental results.

The main contribution of this paper is to compare the
fault detection ability of test suites on hand-seeded,
automatically-generated, and real-world faults. Our
subject programs are a widely-used set of programs with
hand-seeded faults, and a widely-used program with real
faults. We generated mutants from the subject programs
using a set of standard mutation operators from the
literature on mutation testing. Our results suggest that the
generated mutants were similar to the real faults but
different from the hand-seeded faults, and that the hand-
seeded faults are harder to detect than the real faults.

2. Related Work
The idea of using mutants to measure test suite adequacy
was originally proposed by DeMillo et al. [4] and Hamlet
[9], and explored extensively by Offutt and others [17].
Offutt [14] showed empirical support for one of the basic
premises of mutation testing, that a test data set that
detects simple faults (such as those introduced by
mutation) will detect complex faults.

Carleton University technical report SCE-04-15

2

Experiments using faulty variants of programs have
been carried out by Frankl and Weiss [7], Thévenod-
Fosse et al. [20], and Hutchins et al. [11], and since then
by many researchers. Frankl and Weiss used nine Pascal
programs with one existing fault each, whereas Hutchins
et al. hand-seeded 130 faults over the seven programs
used. Thévenod-Fosse et al. automatically seeded faults in
four small C programs using mutation operators.
Generally, these experiments follow the pattern of
generating a large “test pool” of test cases, running all the
faulty versions on all the test cases in the test pool,
observing which test cases detected which faults, and
using that data to deduce the fault detection abilities of
given test suites drawn from the pool (e.g., test suites that
satisfy specific coverage criteria).

Although mutant generation was originally proposed
as part of a testing strategy, note that Thévenod-Fosse et
al. used it instead as a method for generating faulty
versions for experiments. Other researchers who have
done this include Kim et al. [12], Memon et al. [13],
Andrews and Zhang [1] and Briand and Labiche [2].

Finally, Chen et al. [3] used both hand-seeded faults
and generated mutants in their experiments. They point
out that the hand-seeded faults are only a subset of the
possible faults, and raise the issue of whether the faults
were representative, but as this was not the focus of their
research they do not explore it further.

To conclude, as far as we are aware there has been no
empirical study that has directly assessed the use of
mutants or hand-seeded faults by comparing them with
results obtained on real faults.

3. Experiment Material and Procedure

In this section, we describe the experiment we performed,
the subject programs and the artifacts (faulty versions and
test cases) with which they are associated, and the
mutation operators that we used to produce mutants.

In the remainder of this article, we use the terms
hand-seeded faults (e.g., produced by an experienced
engineer) and real faults (e.g., discovered during software
development), or simply faults when there is no
ambiguity, as opposed to faults generated from mutation

operators that are referred to as mutants.
A summary of the properties of the subject programs

is found in Table 1. “NLOC” here is the net lines of code,
i.e., lines of code which are nonblank after comments
have been removed. “# conditionals” is the number of C
conditional constructs (if, while, case, etc.) and binary
logical operators (&& and ||), included as a rough
indicator of the complexity of the code.

3.1. Definition of the Experiment

To achieve the objectives stated in the Introduction, we
analyze the detection rates of test suites. We use eight
subject programs (Table 1) for which faults and large
pools of test cases are available (Section 3.2). Test suites
are then formed by random sampling of the large test
pools for each subject program. We then create mutant
versions of those programs and execute those test suites
on available faulty versions and mutants, recording faults
that are killed, in order to compute the fault detection
ratios of the test suites. Those rates are compared between
mutants and faults in order to determine whether they are
similar. Because each test suite may yield a different
detection ratio, we obtain two distributions for each
subject program, for faults and mu tants respectively. The
central tendencies of these distributions are compared
through statistical inference testing. Differences across
fault and mutant distributions have to be explained based
on the data available and possible differences of results
across subject programs also need to be investigated.

3.2. Subject Programs

We used a set of eight well-known subject programs
written in C (Table 1). The first is the program usually
referred to as Space, developed at the European Space
Agency and first used by Vokolos and Frankl [21] to
evaluate a regression testing technique. The last seven are
the so-called Siemens suite of programs with hand-seeded
faults, first used by Hutchins et al. [11] to compare
control flow-based and dataflow-based coverage criteria.
The artifacts (including faulty versions and test cases) of
all eight programs have subsequently been modified and
extended by other researchers, notably Rothermel and

Table 1. Description of Subject Programs
 Subject Programs
Criterion Space Printtokens Printtokens2 Replace Schedule Schedule2 Tcas Totinfo
NLOC 5905 343 355 513 296 263 137 281
conditionals 635 94 81 99 37 51 25 46
Test Pool Size (# test
cases)

13585 4130 4115 5542 2650 2710 1608 1052

Number of faults
(Versions)

38 7 10 32 9 10 41 23

Number of compiled
mutants

11379 582 375 666 253 299 291 516

Carleton University technical report SCE-04-15

3

Harrold [19] and Graves et al. [8]. We chose these
programs because of the maturity of the associated
artifacts, and because of their historical significance: Do
et al. [6] report that over the last ten years, 17 high-profile
experimental software engineering papers have used the
Siemens suite and/or Space.

Space is associated with 38 faulty versions (real
faults), 33 from the original Vokolos and Frankl research
and 5 detected later by other researchers. Each faulty
version corresponds to a fault that was corrected “during
testing and the operative use of the program” [21]. The
"gold" version with all faults corrected is taken as
producing correct output. In contrast, the faulty versions
of the Siemens suite programs were produced by hand,
"by ten different people, mostly without knowledge of
each other's work; their goal was to produce faults that
were as realistic as possible" [11].

The test pool (set of all test cases) for each subject
program was constructed by the original researchers and
by subsequent researchers following various functional
(black-box) testing techniques and structural test coverage
criteria. Harder et al. [10] give a comprehensive history of
the construction of these tes t pools.

3.3. Mutation Operators

To generate mutants of the subject programs, we used a
mutant generation program first used by Andrews and
Zhang [1] to generate mutants for code written in C. To
generate mutants from a source file, each of four classes
of "mutation operators" was applied to every line of code.
Every valid application of a mutation operator to a line of
code resulted in another mutant being generated. The four
classes of mutation operators were:

• Replace an integer constant C by 0, 1, -1, ((C)+1),
or ((C)-1).

• Replace an arithmetic, relational, logical, bitwise
logical, increment/decrement, or arithmetic -
assignment operator by another operator from the
same class.

• Negate the decision in an if or while statement.
• Delete a statement.
The first three operator classes were taken from Offutt

et al.'s research [15] on identifying a set of "sufficient"
mutation operators, i.e., a set S of operators such that test
suites that kill mutants formed by S tend to kill mutants
formed by a very broad class of operators. They were
adapted so that they would work on C programs rather
than the Fortran of the original research. The fourth
operator, which also appears in [15], was added because
the subject programs of the original study [1], during
which the mutant generation program was first used,
contained a large number of pointer-manipulation and
field-assignment statements that would not be vulnerable
to any of the sufficient mutation operators.

About 8.4% of the resulting mutants did not compile.
The numbers of mutants of each subject program that
compiled appear in Table 1. For the Space program, there
were so many mutants generated that it was infeasible to
run them all on the test suite. We therefore ran the test
suite on every 10th mutant generated. Because the number
of mutants generated per line did not follow any pattern
that would interact with the selection of every 10th mutant,
this amounted to a random selection of 10% of the
mutants, taken from a uniform distribution over all the
possible mutants.

3.4. Analysis Procedure

We provide in this section a brief description and
justification of the analysis procedure that we used. More
details will be presented in the next section as we report
on the results.

The first step was to generate and compile the mutants,
and to run all mutants and faulty versions on the entire
test pool. All mutants that were not killed by any test case
were then deemed to be equivalent. Though this may not
be the case for every mutant, it was thought to be a good
enough approximation and it is in any case the only
option when dealing with large numbers of mutants, since
automatically identifying equivalent mutants is an
undecidable problem [19].

For each subject program, 5000 test suites were
randomly formed by randomly sampling (without
duplication) the available test pool. We needed to
generate a large number of test suites to obtain sample
distributions of fault/mutant detection rates that would
approximate well the underlying theoretical distributions.
Large samples also increase the power of statistical tests
and facilitate their usage as further described below. One
decision to be made was related to the size of the test
suites. We wanted this to be a constant in our analysis so
as not to blur the trends we were analyzing. We
performed our analysis with different sizes to determine
how it would affect the results, ranging from 10 to 100
test cases. We then determined which test case in the pool
detected which mutant and fault. Next we computed the
fault detection ratios of all test suites, plotted the detection
ratio distributions of mutants and faults for each subject
program, and then compared their central tendencies.

To summarize, for each test suite S, the procedure
yielded two pieces of summary data: Dm(S), the number
of mutants detected by S, and Df(S), the number of
original faults detected by S. Given the number Nm of
non-equivalent mutants and Nf of non-equivalent original
faults of the subject program, we calculated the mutation
adequacy ratio Am(S) of each test suite S as Dm(S)/Nm,
and the fault adequacy ratio Af(S) as Df(S)/Nf.

Carleton University technical report SCE-04-15

4

To compare the means of the Am and Af distributions,
we employed a standard statistical test: the Matched Pairs
t-test [18], for reasons that will be further detailed in
Section 41. If the difference in means between the fault
and mutant distributions is statistically and practically2
significant, then the next question that arises is why?
Moreover, if the results are not consistent across
programs we also need to identify what the most plausible
explanations are. There are many possible reasons
including differences in characteristics of the subject
programs, the test suites, and the way faults were seeded.
The only thing that is common to all subject programs is
the way we generated mutants.

To explain our results, and for reasons further
explained in Section 4, we have also looked at the
percentage of test cases that killed each fault and mutant.
For each mutant M and faulty version F we calculated
K(M) (resp. K(F)), the number of test cases that killed it.
We then calculated, for each mutant M, the ease E(M) of
killing the mutant as the ratio E(M) = K(M)/T, where T is
the total number of test cases for the program. (We
calculated E(F) for each faulty version similarly.) For
each of them we then obtained a distribution where each
observation corresponds to a mutant or fault, and we
could compare the means of those distributions across
subject programs.

In terms of analysis, we first performed an Analysis of
Variance (ANOVA) to assess the overall statistical
significance of differences among program means. If
significant, we then proceeded to compare the distribution
means for each program pair using a t-test for
independent samples. To do so we resort to the
Bonferroni procedure to ensure a low risk of type I error
when performing a large number of comparisons (28 in
our case) [18]. Because we deal here with smaller samples
(sample sizes are determined by the number of mutants
and faults, as opposed to test suites above), we need to
check non-significant results with an equivalent non-
parametric test, the Mann-Whitney test [17, 18]. Indeed,

1 When dealing with large data sets (as a rule of thumb, more than 100
observations), this test is very robust to departures from the normality
assumption underlying the matched-pairs t-test (differences between
pairs are assumed to be normally distributed), even in situations showing
extreme distribution skewness. This is important as such violations of
assumptions are common in real-world datasets. Note also that in our
case we will not have extreme outliers among our observations as we
will be dealing with ratios between 0 and 1 and that we will have 5000
observations at our disposal. However, to be on the safe side, another
equivalent, non-parametric test was used (Wilcoxon Matched-Pairs
Signed Ranks Test) to double-check the results. In general, when using
large samples, the matched pairs t-test is also particularly well suited
since it takes into account the magnitude of the differences and is
therefore more powerful than the equivalent non-parametric tests.
2 When dealing with large samples, even small differences in means can
lead to statistically significant results. However, it is also important to
determine whether a statistically significant result would have any
practical implication, that is if the difference in means is large enough to
be worth considering. This is what is typically referred to as “practical”
significance, sometimes also denoted as “clinical” significance.

on small samples, violations of the t-test assumptions can
lead to increases in type II errors, that is to wrongly
deduce that a difference in means is not significant.

In all our statistical tests we used as a level of
significance α = 0.05, thus implying a 5% chance of
committing a type I error or, in other words, a 5% risk to
identify a difference as statistically significant when it is
not.

3.5. Threats to validity

The programs, test pools, and faults we are using were not
selected based on any particular criteria, except that they
were well-prepared and historically important. However,
we have no guarantee that test pools have the same
detection power and coverage, though the literature
reporting on them seems to suggest they were generated
in a similar way and are rather comprehensive since they
cover some of the main structural and black-box coverage
criteria, as reported in Section 3.2.

We have actual faults for Space, but for the others we
have simply “realistic” faults hand-seeded by experienced
engineers. We also cannot expect the programs to be of
similar complexity, regardless of how we define and
measure it. They actually widely vary in size (Table 1)
and control flow complexity. It is also expected that the
results of our study would vary depending on the
mutation operators selected; the ones we used, as
discussed in Section 3.3, were selected based on the
literature available so as to be a minimal but sufficient set.

Our analysis and interpretations will have to account
for all the abovementioned factors so as to ensure that all
plausible explanations are considered.

4. Analysis Results
Following the procedure described in Section 3.4, we first
compare the adequacy ratios of test suites in terms of
mutant and fault (Section 4.1). In Section 4.2, we identify
possible phenomena which could explain the trends
observed in Section 4.1. To investigate the most plausible
explanations, we then compare the percentages of test
cases that kill faults and mutants across programs, thus
looking at their detectability (Sections 4.3 and 4.4). We
end the section with a discussion of the implications of
our results (Section 4.5).

4.1. Comparing Detection Distributions of
Mutant and Faults

The first step of our analysis is to compare, for each
subject program, the distributions of mutant and fault
adequacy ratios Am and Af. The objective is to determine
whether there are statistically and practically significant
differences among them. We provide in Table 2
descriptive statistics of those distributions for each subject
program (with a two-decimal precision). Note that those
are the results we obtain when the selected test suite size

Carleton University technical report SCE-04-15

5

is 100. Similar results were obtained with other test suite
sizes (10, 20, 50) and are therefore not reported here.

From Table 2, we can easily observe that, in general,
mutants tend to be easier to detect than faults. The only
exception to this trend is Space where no practically
significant difference can be observed between mutant
and fault distributions (e.g., their medians are 0.75 and
0.76, respectively). Though due to space constraints not
all distributions can be shown here, Figures 1a and 1b
display the distribution histograms for the Space and
Replace programs along with standard quantile box plot
to visualize the distribution’s main descriptive statistics.
The box plot shows the median, average, various
quantiles (1%, 10%, 25%, 75%, 90%, 99%), and the
minimum and maximum.

We now have to check whether differences are
statistically significant. To do that, we perform a Matched
Pairs t-test [5, 18]. Recall that in these distributions, we
compare mutant (Am) and fault (Af) adequacy ratios for
5000 test suites. In each distribution, observations are
likely to correlate as they are paired, i.e., one observation
in each of the Am and Af distributions corresponds to the
same test suite. This is why such a matched pairs test is
needed as opposed to an independent samples test.

Figure 1a. Subject Program Space:
Distributions of Adequacy Ratios:
test suite size = 100

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

.03 .05 .08 .10

Probability Axis

0.6

0.7

0.8

0.9

.20 .40 .60 .80

Probability Axis

 Mutant Adequacy – Am(S) Fault Adequacy – Af(S)

Table 2. Descriptive Statistics – Adequacy Ratios for Mutants and Faults (test suite size 100)

Subject Programs
Statistic Space Replace Printtokens Printtokens2 Schedule Schedule2 Tcas Totinfo

Mutants – Am(S)
Median 0.75 0.93 0.98 0.99 0.96 0.96 0.91 0.99
Mean 0.75 0.93 0.97 0.99 0.96 0.96 0.90 0.99
90% 0.78 0.95 0.99 0.99 0.98 0.97 0.94 0.99
75% 0.77 0.94 0.98 0.99 0.97 0.97 0.93 0.99
25% 0.74 0.93 0.97 0.98 0.94 0.95 0.89 0.98
10% 0.72 0.92 0.96 0.98 0.93 0.95 0.86 0.98
Min 0.65 0.88 0.94 0.93 0.91 0.91 0.77 0.94
Max 0.82 0.98 1 1 0.99 0.99 0.97 1

Faults – Af(S)
Median 0.76 0.68 0.57 0.90 0.67 0.67 0.76 0.65
Mean 0.77 0.67 0.63 0.93 0.66 0.63 0.79 0.89
90% 0.82 0.77 0.86 1 0.78 0.78 1 0.96
75% 0.79 0.74 0.71 1 0.78 0.78 0.95 0.91
25% 0.74 0.61 0.57 0.90 0.56 0.56 0.68 0.87
10% 0.71 0.55 0.29 0.80 0.44 0.44 0.61 0.83
Min 0.53 0.35 0.14 0.60 0.33 0 0.34 0.65
Max 0.97 0.93 1 1 1 1 1 1

Carleton University technical report SCE-04-15

6

Figure 1b. Subject Program Replace:
Distributions of Adequacy Ratios:
test suite size = 100

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

.05 .10 .15

Probability Axis

0.4

0.5

0.6

0.7

0.8

0.9

.10 .20 .30 .40

Probability Axis

 Mutant Adequacy – Am(S) Fault Adequacy – Af(S)

Table 3 shows, for each subject program, the results of

the t-test, that is the average difference in fault/mutant
adequacy ratios among pairs, the t-ratios, and p-values
(this is a two-way test as we could not beforehand
determine the direction of differences). Results show that
all differences are statistically significant as all p-values
are close or equal to 0. This is even the case of Space
though with a mean difference of 1%, this is not
practically significant as no test technique assessment
would lead to different conclusions based on such small
differences. For the remaining subject programs, average
differences range from 6% to 34%, with an average of
22%. As opposed to Space, this is practically significant
as, based on such ranges, if one has used mutants to
assess a test technique, it will likely look more effective at
detecting faults than if one has used the seeded faults.

Table 3. Matched Pairs t-test Results – test suite
size = 100

 Matched Pairs Results
Subject
Programs

Mean
Af(S) – Am(S)

t-ratio p-value

Space 0.014 16.87 < 0.0001
Replace -0.266 -233.96 0.0000
Printtokens -0.344 -158.2 0.0000
Printtokens2 -0.061 -59.39 0.0000
Schedule -0.298 -161.33 0.0000
Schedule2 -0.327 -152.19 0.0000
Tcas -0.1128 -57.56 0.0000
Totinfo -0.1037 -145.78 0.0000

However, it is important to remember that only the

Space faults are real faults detected during testing and
operation. So one plausible reason for the differences
observed between Space and the other programs would be
that the faults seeded in the latter are more difficult to

detect than the real faults of Space. If this is deemed the
most plausible reason, then the results of testing on the
Space faults are therefore more credible and conclusions
should be drawn based on this program’s results only.

4.2. Alternative Explanations

Besides the relative detectability of real and seeded faults,
several other factors could explain the data presented in
the previous section: The test pool, the program inner
characteristics (e.g., size), the test size suite compared to
the size of the test pool and program, and the mutation
process. It is important to consider each of them in turn to
assess whether our first explanation is indeed the most
plausible.

Test pools can contain test cases that have, on average,
different detection abilities. The literature about these
programs [10], however, suggests the pools were formed
following a similar process and identical criteria.
Furthermore, to explain our results this would mean that
the average test case detection ability would vary
depending on whether one consider mutants or faults as
Space, when compared to the Siemens programs, has an
intermediate-ranking adequacy ratio for faults and a low
one for mutants.

Another possibility is that the difference between Am
and Af increases as the test suite size increases compared
to the size of the test pool or the size of the program.
(Space is much bigger and has a larger test pool size than
the other programs.) If this were the case, then we should
see a smaller Am-Af for the Siemens programs as test
suite sizes decrease. However, the results turned out to be
similar for smaller test suite sizes of 10, 20, and 50:
mean(Am-Af) remained similar for Space and tended to
even increase for the other programs as smaller test suite
sizes we used. The graphs in the Appendix compare Am
and Af for the four test suite sizes, for Space and for
Replace; the graphs for the other Siemens programs were
similar.

The mutation process could somehow be biased so that
mutants are harder to kill on Space than on the Siemens
programs. However, we followed the exact same mutation
process for Space and there is no clear reason why the
result should be different. Therefore, the fact that Space is
much larger than the Siemens programs is a more likely
explanation for the lower mutation adequacy ratio as
larger programs are known to be more difficult to test.
This explanation is however neither confirmable nor
falsifiable with the small number of subject programs we
have, since all the Siemens programs are small and of
similar size and we do not have observations in a
continuous range of sizes up to that of Space.

A higher detectability of faults for Space than for the
Siemens programs is the factor we already discussed
above and the last to consider. To investigate further
whether this is the most plausible explanation, we look
next at the detectability of faults and mutants in terms of

Carleton University technical report SCE-04-15

7

their likelihood of being detected by test cases randomly
drawn from the test pools across programs.

Assuming that the Siemens hand-seeded faults are
harder to detect than the real Space faults—and that this is
not due to variations in the detection ability of test cases
across test pools —we should observe the following
trends: (1) Space faults should be easier for any individual
test case to detect than the Siemens faults, (2) Space
mutants should not be easier for any individual test case
to kill than the Siemens program mutants. We explore
these predictions in turn in the next two sections.

4.3. Comparing the Detectability of Faults across
programs

Figure 2 shows the distributions of the ratios E(F) of test
cases that detected each fault, for each subject program.
The Y-Axis is the computed ratio for each mutant
whereas the X-Axis is simply the subject program. The
horizontal extent for each subject program on the X-Axis
is proportional to its relative mutant sample size. We can
see, for example, that the sample size is larger for Space
and Replace, and rather small for Schedule and Schedule
2 (Table 1). These unequal sample sizes will need to be
accounted for in our analysis. Moreover, the figure shows
the observations for each program, the overall average
(horizontal line across programs), and each program
specific average (line across each diamond) as well as
their 95% confidence interval for the average (the vertical
span of each diamond).
Figure 2 clearly shows that Space ratios tend to be higher
than for other programs , as we expected. A one-way
Analysis of Variance (ANOVA) [5, 18] shows that,
overall, there are statistically significant differences (F-
test, p-value < 0.0001) across program means. The E(F)
means of the Siemens programs and of Space faults are
0.035 and 0.14, respectively, thus clearly showing a
significant difference.

Further statistical testing comparing each Siemens
program with Space (using the Bonferroni procedure3 for
multiple comparisons of means using t-tests [18]) shows
that Space is only significantly different from Tcas and
Replace (at α = 0.05), though differences are graphically
visible between Space and all the other programs 4. A
likely cause for the lack of statistical significance with the
other Siemens programs is that we deal with small
samples, as the number of faults ranges from seven
(Printtokens) to 23 (Totinfo). It may also be due to the
Bonferroni procedure which tends to be conservative [5].
This increases the probability of a Type II error, and
makes it likely that legitimately significant results will fail

3 This requires to use as significance threshold the ratio α divided by the
number of mean comparisons, that is 28 in our case.
4 An equivalent, non-parametric Mann-Whitney Test [5, 18] yields the
same results. Other procedures for multiple mean comparisons, such as
Tukey’s method, can’t be used as we have unequal sample sizes across
programs [18].

to be detected. In other words, it guarantees that the type I
error rate is at most α (0.05 in our case) but it may be
much less in reality.

Figure 2. Distribution of Ease of Detection of
Faults – E(F)

E
(F

)

-0.1

0

0.1
0.2
0.3

0.4
0.5

0.6

0.7
0.8

0.9
1

printtokens
printtokens2

replace schedule
schedule2

space tcas totinfo

Program

4.4. Comparing the Detectability of Mutants
Across Programs

Figure 3 shows the distributions of E(M), the ratio of test
cases that killed each mutant, for each subject program. It
has the same structure as Figure 2, except for the fact that
it is looking at mutants rather than faults.

As for faults in the previous section, ANOVA shows
that the differences across programs are overall
statis tically significant (F-test, p-value < 0.0001).

Figure 3. Distribution of Ease of Detection of
Mutants – E(M)

E
(M

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

printtokens
printtokens2

replace schedule
schedule2

space tcas totinfo

Program

When looking more closely at each program pair using

again the Bonferroni procedure and t-tests, we observe
that the mean for Space is significantly lower than that of
all programs but Tcas (at α = 0.05), confirming what is
visible in Figure 3. We can therefore conclude that, not
only are mutants not easier to kill, but the individual test
cases show more difficulty to detect mutants in Space

Carleton University technical report SCE-04-15

8

and, to a lesser extent, Tcas than in Siemens programs.
For Space, as discussed above, this is likely due to the
much larger size of this program (see Table 1).

These reverse trends for mutants and faults supports
our interpretation that the differences across programs are
not due to different test case detection abilities, as this
would instead show consistent trends for both mutants
and faults, i.e., Space test cases detecting more mutants
and faults. Figures 2 and 3 as well their associated
statistical test results therefore support our conjecture that
the most plausible interpretation for the trends in Section
4.1 is that faults seeded in Space tend to be easier to
detect because they are real faults, as opposed to faults
being devised by humans as is the case for the Siemens
programs.

4.5. Discussion

Based on the above results we can deduce that the fact
that the test suite mutant adequacy ratios are comparable
to fault adequacy ratios in Space, whereas they are very
different for other programs , is due to the fact that the
faults seeded in the other programs are probably not
representative in terms of ease of detection. After all, they
are not real faults and it is likely difficult for humans to
gauge the detectability of seeded faults.

The paper in which these programs were reported for
the first time [11] actually contains corroboration of this
conclusion. Hutchins et al. clearly state that, from an
initial large set of faults suggested by developers, faults
that were detected by 350 or more test cases (from their
original test pool) were discarded6. This supports our
conjecture above that the results for Space are the ones
that should be given more credibility. If this is the case,
then we can conclude that mutants, based on the mutation
operators presented here, do provide test effectiveness
results that are representative of real faults.

It also implies that any research done on human-
seeded faults should be carefully interpreted, since we see
that by using the example programs used here—which
have been widely used in previous research [6]—one
would obtain conservative results when assessing the fault
detection rates of test techniques. In other words, this
would lead to underestimating the effectiveness of test
techniques . This is especially important in situations in
which one is measuring the cost-effectiveness of different
testing techniques. If technique A detects a greater
proportion of the hard-to-detect Siemens faults than does
technique B, but A is more expensive than B, we may not
actually have proven the relative cost-effectiveness of A.

6 They report that about 38% of the faults were discarded for that reason,
with 18% of the faults being discarded for the complementary reason
that they were too hard to detect.

5. Conclusions
The main contribution of the paper is a thorough
investigation of a fundamental assumption that has been
underlying much of experimental software testing
research to date: Faults generated by hand (e.g., by
experienced engineers) or from mutation operators are
representative of real faults. Indeed, most experimental
results rely on seeded mutants [1, 2, 12, 13, 20]—using
mutation operators—or faults selected by experienced
developers [7, 11]. Furthermore, this problem is not likely
to go away in future research as real faults are usually too
few to be amenable to experiments allowing statistical
analysis. So even when real faults are available for a
particular subject program, one is often forced to seed
additional faults.

Therefore, a fundamental question is whether mutants
or manually seeded faults are likely to yield results, for
example in terms of detection ability, that are
representative of what one would obtain on real faults.
Our analysis suggests that mutants, when using carefully
selected mutation operators and after removing equivalent
mutants, can provide a good indication of the fault
detection ability of a test suite. Furthermore, it shows the
danger of using faults selected by humans as, in the
systems studied in this article, it leads to underestimating
the fault detection ability of test suites. Another issue with
faults selected by humans is more related to the necessity
of building over time an experimental body of results
regarding test techniques’ efficiency. For this to be
possible, studies must be replicated by researchers. This is
very difficult to achieve when faults have been selected
based on a subjective, undefined process.

We should also note that, although our focus in this
paper has been to show that the mutants we generated
were not easier to detect than real faults, our data also
suggest that they were not harder to detect than real faults
to any practical degree. This fact lends support to the
“competent programmer assumption” that underlies the
theory of mutation testing; that is, the assumption that
programmers tend to make relatively small mistakes.

Future research requires of course to replicate the
study we report in this paper. We did so in such a way
that it should facilitate the precise replication of our
analysis and therefore the comparison of future results
with ours. It would also be important to perform similar
studies in the context of object-oriented systems, with
suitable mutation operators, as those systems represent an
increasing share of industrial systems. Finally, since the
results in this paper report only on randomly -selected test
suites, it will be important also to study whether they are
the same for test suites selected according to various
criteria, such as code coverage criteria.

Carleton University technical report SCE-04-15

9

6. Acknowledgements
Many thanks to Gregg Rothermel and Hyunsook Do for
valuable discussions and suggestions, and for sending us
the Siemens and Space programs and all the associated
artifacts. Thanks also to all the researchers who worked
on and improved these subject programs and artifacts over
the years. We would like to also thank Mike Sowka for
reviewing drafts of this paper. This work was partly
supported by a Canada Research Chair (CRC) grant.
Jamie Andrews, Lionel Briand and Yvan Labiche were
further supported by NSERC operational grants.

7. References
[1] Andrews, J.H. and Y. Zhang, General Test Result

Checking with Log File Analysis, IEEE Transactions
on Software Engineering, vol. 29 (7), pp. 634-648,
2003.

[2] Briand, L., Y. Labiche and Y. Wang, Using
Simulation to Empirically Investigate Test Coverage
Criteria, Proc. IEEE/ACM International Conference
on Software Engineering , pp. 86-95, 2004.

[3] Chen, W., R.H. Untch, G. Rothermel, S. Elbaum and
J. von Ronne, Can fault-exposure-potential estimates
improve the fault detection abilities of test suites? ,
Software Testing, Verification and Reliability, vol.
12 (4), pp. 197-218, 2002.

[4] DeMillo, R.A., R. J. Lipton and F. G. Sayward. Hints
on Test Data Selection: Help for the Practicing
Programmer, in IEEE Computer. 1978. p. 34-41.

[5] Devore, J.L., Probability and Statistics for
Engineering and the Sciences, 5th ed, Duxbury Press,
1999.

[6] Do, H., G. Rothermel and S. Elbaum, Infrastructure
support for controlled experimentation with software
testing and regression testing techniques, Oregon
State University, Corvallis, OR, USA, Technical
report 04-06-01, 2004.

[7] Frankl, P.G. and S.N. Weiss, An experimental
comparison of the effectiveness of the all-uses and
all-edges adequacy criteria, Proc. 4th Symposium on
Testing, Analysis, and Verification, pp. 154-164,
1991.

[8] Graves, T.L., M.J. Harrold, J.-M. Kim, A. Porter and
G. Rothermel, An Empirical Study of Regression Test
Selection Techniques, ACM Transactions on
Software Engineering and Methodology, vol. 10 (2),
pp. 184-208, 2001.

[9] Hamlet, R.G., Testing programs with the aid of a
compiler, IEEE Transactions on Software
Engineering, vol. 3 (4), pp. 279-290, 1977.

[10] Harder, M., J. Mellen and M.D. Ernst, Improving
Test Suites via Operational Abstraction, Proc. 25th
International Conference on Software Engineering,
pp. 60-71, 2003.

[11] Hutchins, M., H. Foster, T. Goradia and T. Ostrand,
Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria, Proc.
16th IEEE International Conference on Software
Engineering, pp. 191-200, 1994.

[12] Kim, S., J.A. Clark and J.A. McDermid, Investigating
the Effectiveness of Object-Oriented Testing
Strategies with the Mutation Method, Software
Testing, Verification and Reliability, vol. 11 (3), pp.
207-225, 2001.

[13] Memon, A.M., I. Banerjee and A. Nagarajan, What
Test Oracle Should I use for Effective GUI Testing?,
Proc. IEEE International Conference on Automated
Software Engineering (ASE'03) , pp. 164-173, 2003.

[14] Offutt, A.J., Investigations of the Software Testing
Coupling Effect, ACM Transactions on Software
Engineering and Methodology, vol. 1 (1), pp. 3-18,
1992.

[15] Offutt, A.J., A. Lee, G. Rothermel, R.H. Untch and
C. Zapf, An Experimental Determination of Sufficient
Mutation Operators, ACM Transactions on Software
Engineering and Methodology, vol. 5 (2), pp. 99-118,
1996.

[16] Offutt, A.J. and J. Pan, Detecting Equivalent Mutants
and the Feasible Path Problem, Software Testing,
Verification, and Reliability, vol. 7 (3), pp. 165-192,
1997.

[17] Offutt, A.J. and R.H. Untch, Mutation 2000: Uniting
the Orthogonal, Proc. Mutation, pp. 45-55, 2000.

[18] Rice, J., Mathematical Statistics and Data Analysis,
2nd ed, Duxbury press, 1995.

[19] Rothermel, G. and M.J. Harrold, Empirical Studies of
a Safe Regression Test Selection Technique, IEEE
Trans. on Software Engineering, vol. 24 (6), pp. 401-
419, 1998.

[20] Thévenod-Fosse, P., H. Waeselynck and Y. Crouzet,
An experimental study on software structural testing:
deterministic versus random input generation, Proc.
21st International Symposium on Fault-Tolerant
Computing , pp. 410-417, 1991.

[21] Vokolos, F.I. and P.G. Frankl, Empirical evaluation
of the textual differencing regression testing
technique, Proc. IEEE International Conference on
Software Maintenance, pp. 44-53, 1998.

Carleton University technical report SCE-04-15

10

8. Appendix
Figure 2 and Figure 3 show how the means of Am and Af
changes as a function of the test suite size. We can
observe that, regardless of size, Af and Am are very
similar for Space. However, for Replace, as for the
remaining programs, the difference is substantial and
tends to grow as test suite size decreases.

Figure 2. Mean(Am) and Mean(Af) versus test
suite size - Space

0.2

0.4

0.6

0.8

1

Y

0 50 100 150

size

Y Mean Am Mean Af

Figure 3. Mean(Am) and Mean(Af) versus test
suite size - Replace

0

0.25

0.5

0.75

1

1.25

Y

0 50 100 150

size

Y Mean Am Mean Af

