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Abstract 

The empirical assessment of test techniques plays an 
important role in software testing research. One common 
practice is to instrument faults, either manually or by 
using mutation operators. The latter allows the 
systematic, repeatable seeding of large numbers of faults; 
however, we do not know whether empirical results 
obtained this way lead to valid, representative 
conclusions. This paper investigates this important 
question based on a number of programs with 
comprehensive pools of test cases and known faults. It is 
concluded that, based on the data available thus far, the 
use of mutation operators is yielding trustworthy results.  

1. Introduction 

Experimentation is an essential part of research in 
software testing. Typically, experiments are used to 
determine which of two or more methods is superior for 
performing some testing-related activity. For instance, 
one may be interested in comparing the fault detection 
effectiveness of several testing criteria used to derive test 
cases, and one resorts to experiments to that aim. Testing 
experiments often require a set of subject programs with 
known faults. These subject programs should be big 
enough to be realistic, but not so big as to make 
experimentation infeasible. As for the faults, the ability of 
a technique to deal with the given faults should be an 
accurate predictor of the performance of the technique on 
real programs. 

One problem in the design of testing experiments is 
that real programs of appropriate size with real faults are 
hard to find, and hard to prepare appropriately (for 
instance, by preparing correct and faulty versions). Even 
when actual programs with actual faults are available, 
often these faults are not numerous enough to allow the 
experimental results to achieve statistical significance. 
Many researchers therefore have taken the approach of 
introducing faults into correct programs to produce faulty 
versions.  

These faults can be introduced by hand (the 
experimenter can for instance ask experienced engineers 
to do that), or by automatically generating variants of the 
code. Generally we view an automatically-generated 
variant as the result of applying an operator to the code. 

The operators used in this way are called mutation 
operators, the resulting faulty versions are called mutants, 
and the general technique is called mutation or mutant 
generation.  

The main potential advantage of mutant generation is 
that the mutation operators can be described precisely and 
thus provide a well-defined, fault-seeding process. This 
helps researchers replicate others’ experiments, a 
necessary condition for good experimental science. While 
hand-introduced faults can be argued to be more realistic, 
ultimately it is a subjective judgment whether a given 
fault is realistic or not. Another important advantage of 
mutant generation is that a potentially large number of 
mutants can be generated, increasing the statistical 
significance of results obtained.  

However, an important question remains. How do we 
know whether the ability to detect (or “kill”) mutants is an 
accurate predictor of actual performance; that is, what is 
the external validity of mutants in assessing the fault 
detection effectiveness of testing techniques? An answer 
to this question would have important consequences on 
how we perform testing experiments and therefore on the 
validity of experimental results.  

The main contribution of this paper is to compare the 
fault detection ability of test suites on hand-seeded, 
automatically-generated, and real-world faults. Our 
subject programs are a widely-used set of programs with 
hand-seeded faults, and a widely-used program with real 
faults. We generated mutants from the subject programs 
using a set of standard mutation operators from the 
literature on mutation testing. Our results suggest that the 
generated mutants were similar to the real faults but 
different from the hand-seeded faults, and that the hand-
seeded faults are harder to detect than the real faults.  

2. Related Work 
The idea of using mutants to measure test suite adequacy 
was originally proposed by DeMillo et al. [4] and Hamlet 
[9], and explored extensively by Offutt and others [17]. 
Offutt [14] showed empirical support for one of the basic 
premises of mutation testing, that a test data set that 
detects simple faults (such as those introduced by 
mutation) will detect complex faults. 
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Experiments using faulty variants of programs have 
been carried out by Frankl and Weiss [7], Thévenod-
Fosse et al. [20], and Hutchins et al. [11], and since then 
by many researchers. Frankl and Weiss used nine Pascal 
programs with one existing fault each, whereas Hutchins 
et al. hand-seeded 130 faults over the seven programs 
used. Thévenod-Fosse et al. automatically seeded faults in 
four small C programs using mutation operators. 
Generally, these experiments follow the pattern of 
generating a large “test pool” of test cases, running all the 
faulty versions on all the test cases in the test pool, 
observing which test cases detected which faults, and 
using that data to deduce the fault detection abilities of 
given test suites drawn from the pool (e.g., test suites that 
satisfy specific coverage criteria). 

Although mutant generation was originally proposed 
as part of a testing strategy, note that Thévenod-Fosse et 
al. used it instead as a method for generating faulty 
versions for experiments. Other researchers who have 
done this include Kim et al. [12], Memon et al. [13], 
Andrews and Zhang [1] and Briand and Labiche [2]. 

Finally, Chen et al. [3] used both hand-seeded faults 
and generated mutants in their experiments. They point 
out that the hand-seeded faults are only a subset of the 
possible faults, and raise the issue of whether the faults 
were representative, but as this was not the focus of their 
research they do not explore it further. 

To conclude, as far as we are aware there has been no 
empirical study that has directly assessed the use of 
mutants or hand-seeded faults by comparing them with 
results obtained on real faults. 

3. Experiment Material and Procedure 

In this section, we describe the experiment we performed, 
the subject programs and the artifacts (faulty versions and 
test cases) with which they are associated, and the 
mutation operators that we used to produce mutants. 

In the remainder of this article, we use the terms 
hand-seeded faults (e.g., produced by an experienced 
engineer) and real faults (e.g., discovered during software 
development), or simply faults when there is no 
ambiguity, as opposed to faults generated from mutation 

operators that are referred to as mutants. 
A summary of the properties of the subject programs 

is found in Table 1. “NLOC” here is the net lines of code, 
i.e., lines of code which are nonblank after comments 
have been removed. “# conditionals” is the number of C 
conditional constructs (if, while, case, etc.) and binary 
logical operators (&& and ||), included as a rough 
indicator of the complexity of the code. 

3.1. Definition of the Experiment 

To achieve the objectives stated in the Introduction, we 
analyze the detection rates of test suites. We use eight 
subject programs (Table 1) for which faults and large 
pools of test cases are available (Section 3.2). Test suites 
are then formed by random sampling of the large test 
pools for each subject program. We then create mutant 
versions of those programs and execute those test suites 
on available faulty versions and mutants, recording faults 
that are killed, in order to compute the fault detection 
ratios of the test suites. Those rates are compared between 
mutants and faults in order to determine whether they are 
similar. Because each test suite may yield a different 
detection ratio, we obtain two distributions for each 
subject program, for faults and mu tants respectively. The 
central tendencies of these distributions are compared 
through statistical inference testing. Differences across 
fault and mutant distributions have to be explained based 
on the data available and possible differences of results 
across subject programs also need to be investigated.  

3.2. Subject Programs  

We used a set of eight well-known subject programs 
written in C (Table 1). The first is the program usually 
referred to as Space, developed at the European Space 
Agency and first used by Vokolos and Frankl [21] to 
evaluate a regression testing technique. The last seven are 
the so-called Siemens suite of programs with hand-seeded 
faults, first used by Hutchins et al. [11] to compare 
control flow-based and dataflow-based coverage criteria. 
The artifacts (including faulty versions and test cases) of 
all eight programs have subsequently been modified and 
extended by other researchers, notably Rothermel and 

Table 1. Description of Subject Programs  
  Subject Programs  
Criterion Space Printtokens Printtokens2 Replace Schedule Schedule2 Tcas Totinfo 
NLOC 5905 343 355 513 296 263 137 281 
# conditionals  635 94 81 99 37 51 25 46 
Test Pool Size (# test 
cases) 

13585 4130 4115 5542 2650 2710 1608 1052 

Number of faults 
(Versions) 

38 7 10 32 9 10 41 23 

Number of compiled 
mutants 

11379 582 375 666 253 299 291 516 
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Harrold [19] and Graves et al. [8]. We chose these 
programs because of the maturity of the associated 
artifacts, and because of their historical significance: Do 
et al. [6] report that over the last ten years, 17 high-profile 
experimental software engineering papers have used the 
Siemens suite and/or Space. 

Space is associated with 38 faulty versions (real 
faults), 33 from the original Vokolos and Frankl research 
and 5 detected later by other researchers. Each faulty 
version corresponds to a fault that was corrected “during 
testing and the operative use of the program” [21]. The 
"gold" version with all faults corrected is taken as 
producing correct output. In contrast, the faulty versions 
of the Siemens suite programs were produced by hand, 
"by ten different people, mostly without knowledge of 
each other's work; their goal was to produce faults that 
were as realistic as possible" [11]. 

The test pool (set of all test cases) for each subject 
program was constructed by the original researchers and 
by subsequent researchers following various functional 
(black-box) testing techniques and structural test coverage 
criteria. Harder et al. [10] give a comprehensive history of 
the construction of these tes t pools. 

3.3. Mutation Operators  

To generate mutants of the subject programs, we used a 
mutant generation program first used by Andrews and 
Zhang [1] to generate mutants for code written in C. To 
generate mutants from a source file, each of four classes 
of "mutation operators" was applied to every line of code. 
Every valid application of a mutation operator to a line of 
code resulted in another mutant being generated. The four 
classes of mutation operators were: 

• Replace an integer constant C by 0, 1, -1, ((C)+1), 
or ((C)-1). 

• Replace an arithmetic, relational, logical, bitwise 
logical, increment/decrement, or arithmetic -
assignment operator by another operator from the 
same class. 

• Negate the decision in an if or while statement. 
• Delete a statement. 
The first three operator classes were taken from Offutt 

et al.'s research [15] on identifying a set of "sufficient" 
mutation operators, i.e., a set S of operators such that test 
suites that kill mutants formed by S tend to kill mutants 
formed by a very broad class of operators. They were 
adapted so that they would work on C programs rather 
than the Fortran of the original research. The fourth 
operator, which also appears in [15], was added because 
the subject programs of the original study [1], during 
which the mutant generation program was first used, 
contained a large number of pointer-manipulation and 
field-assignment statements that would not be vulnerable 
to any of the sufficient mutation operators.  

About 8.4% of the resulting mutants did not compile. 
The numbers of mutants of each subject program that 
compiled appear in Table 1. For the Space program, there 
were so many mutants generated that it was infeasible to 
run them all on the test suite. We therefore ran the test 
suite on every 10th mutant generated. Because the number 
of mutants generated per line did not follow any pattern 
that would interact with the selection of every 10th mutant, 
this amounted to a random selection of 10% of the 
mutants, taken from a uniform distribution over all the 
possible mutants. 

3.4. Analysis Procedure  

We provide in this section a brief description and 
justification of the analysis procedure that we used. More 
details will be presented in the next section as we report 
on the results.  

The first step was to generate and compile the mutants, 
and to run all mutants and faulty versions on the entire 
test pool. All mutants that were not killed by any test case 
were then deemed to be equivalent. Though this may not 
be the case for every mutant, it was thought to be a good 
enough approximation and it is in any case the only 
option when dealing with large numbers of mutants, since 
automatically identifying equivalent mutants is an 
undecidable problem [19].  

For each subject program, 5000 test suites were 
randomly formed by randomly sampling (without 
duplication) the available test pool. We needed to 
generate a large number of test suites to obtain sample 
distributions of fault/mutant detection rates that would 
approximate well the underlying theoretical distributions. 
Large samples also increase the power of statistical tests 
and facilitate their usage as further described below. One 
decision to be made was related to the size of the test 
suites. We wanted this to be a constant in our analysis so 
as not to blur the trends we were analyzing. We 
performed our analysis with different sizes to determine 
how it would affect the results, ranging from 10 to 100 
test cases. We then determined which test case in the pool 
detected which mutant and fault. Next we computed the 
fault detection ratios of all test suites, plotted the detection 
ratio distributions of mutants and faults for each subject 
program, and then compared their central tendencies. 

To summarize, for each test suite S, the procedure 
yielded two pieces of summary data: Dm(S), the number 
of mutants detected by S, and Df(S), the number of 
original faults detected by S. Given the number Nm of 
non-equivalent mutants and Nf of non-equivalent original 
faults of the subject program, we calculated the mutation 
adequacy ratio  Am(S) of each test suite S as Dm(S)/Nm, 
and the fault adequacy ratio  Af(S) as Df(S)/Nf. 
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To compare the means of the Am and Af distributions, 
we employed a standard statistical test: the Matched Pairs 
t-test [18], for reasons that will be further detailed in 
Section 41. If the difference in means between the fault 
and mutant distributions is statistically and practically2 
significant, then the next question that arises is why? 
Moreover, if the results are not consistent across 
programs we also need to identify what the most plausible 
explanations are. There are many possible reasons 
including differences in characteristics of the subject 
programs, the test suites, and the way faults were seeded. 
The only thing that is common to all subject programs is 
the way we generated mutants. 

To explain our results, and for reasons further 
explained in Section 4, we have also looked at the 
percentage of test cases that killed each fault and mutant. 
For each mutant M and faulty version F we calculated 
K(M) (resp. K(F)), the number of test cases that killed it. 
We then calculated, for each mutant M, the ease E(M) of 
killing the mutant as the ratio E(M) = K(M)/T, where T is 
the total number of test cases for the program. (We 
calculated E(F) for each faulty version similarly.) For 
each of them we then obtained a distribution where each 
observation corresponds to a mutant or fault, and we 
could compare the means of those distributions across 
subject programs. 

In terms of analysis, we first performed an Analysis of 
Variance (ANOVA) to assess the overall statistical 
significance of differences among program means. If 
significant, we then proceeded to compare the distribution 
means for each program pair using a t-test for 
independent samples. To do so we resort to the 
Bonferroni procedure to ensure a low risk of type I error 
when performing a large number of comparisons (28 in 
our case) [18]. Because we deal here with smaller samples 
(sample sizes are determined by the number of mutants 
and faults, as opposed to test suites above), we need to 
check non-significant results with an equivalent non-
parametric test, the Mann-Whitney test [17, 18]. Indeed, 

                                                                 
1 When dealing with large data sets (as a rule of thumb, more than 100 
observations), this test is very robust to departures from the normality 
assumption underlying the matched-pairs t-test (differences between 
pairs are assumed to be normally distributed), even in situations showing 
extreme distribution skewness. This is important as such violations of 
assumptions are common in real-world datasets. Note also that in our 
case we will not have extreme outliers among our observations as we 
will be dealing with ratios between 0 and 1 and that we will have 5000 
observations at our disposal. However, to be on the safe side, another 
equivalent, non-parametric test was used (Wilcoxon Matched-Pairs 
Signed Ranks Test) to double-check the results. In general, when using 
large samples, the matched pairs t-test is also particularly well suited 
since it takes into account the magnitude of the differences and is 
therefore more powerful than the equivalent non-parametric tests. 
2 When dealing with large samples, even small differences in means can 
lead to statistically significant results. However, it is also important to 
determine whether a statistically significant result would have any 
practical implication, that is if the difference in means is large enough to 
be worth considering. This is what is typically referred to as “practical” 
significance, sometimes also denoted as “clinical” significance.  

on small samples, violations of the t-test assumptions can 
lead to increases in type II errors, that is to wrongly 
deduce that a difference in means is not significant. 

In all our statistical tests we used as a level of 
significance α = 0.05, thus implying a 5% chance of 
committing a type I error or, in other words, a 5% risk to 
identify a difference as statistically significant when it is 
not.  

3.5. Threats to validity 

The programs, test pools, and faults we are using were not 
selected based on any particular criteria, except that they 
were well-prepared and historically important. However, 
we have no guarantee that test pools have the same 
detection power and coverage, though the literature 
reporting on them seems to suggest they were generated 
in a similar way and are rather comprehensive since they 
cover some of the main structural and black-box coverage 
criteria, as reported in Section 3.2.  

We have actual faults for Space, but for the others we 
have simply “realistic” faults hand-seeded by experienced 
engineers. We also cannot expect the programs to be of 
similar complexity, regardless of how we define and 
measure it. They actually widely vary in size (Table 1) 
and control flow complexity. It is also expected that the 
results of our study would vary depending on the 
mutation operators selected; the ones we used, as 
discussed in Section 3.3, were selected based on the 
literature available so as to be a minimal but sufficient set.  

Our analysis and interpretations will have to account 
for all the abovementioned factors so as to ensure that all 
plausible explanations are considered.  

4. Analysis Results 
Following the procedure described in Section 3.4, we first 
compare the adequacy ratios of test suites in terms  of 
mutant and fault (Section 4.1). In Section 4.2, we identify 
possible phenomena which could explain the trends 
observed in Section 4.1. To investigate the most plausible 
explanations, we then compare the percentages of test 
cases that kill faults and mutants across programs, thus 
looking at their detectability (Sections 4.3 and 4.4). We 
end the section with a discussion of the implications of 
our results (Section 4.5). 

4.1. Comparing Detection Distributions of 
Mutant and Faults  

The first step of our analysis is to compare, for each 
subject program, the distributions of mutant and fault 
adequacy ratios Am and Af. The objective is to determine 
whether there are statistically and practically significant 
differences among them. We provide in Table 2 
descriptive statistics of those distributions for each subject 
program (with a two-decimal precision). Note that those 
are the results we obtain when the selected test suite size 
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is 100. Similar results were obtained with other test suite 
sizes (10, 20, 50) and are therefore not reported here.  

From Table 2, we can easily observe that, in general, 
mutants tend to be easier to detect than faults. The only 
exception to this trend is Space where no practically 
significant difference can be observed between mutant 
and fault distributions (e.g., their medians are 0.75 and 
0.76, respectively). Though due to space constraints not 
all distributions can be shown here, Figures 1a and 1b 
display the distribution histograms for the Space and 
Replace programs along with standard quantile box plot 
to visualize the distribution’s main descriptive statistics. 
The box plot shows the median, average, various 
quantiles (1%, 10%, 25%, 75%, 90%, 99%), and the 
minimum and maximum.  

We now have to check whether differences are 
statistically significant. To do that, we perform a Matched 
Pairs t-test [5, 18]. Recall that in these distributions, we 
compare mutant (Am) and fault (Af) adequacy ratios for 
5000 test suites. In each distribution, observations are 
likely to correlate as they are paired, i.e., one observation 
in each of the Am and Af distributions corresponds to the 
same test suite. This is why such a matched pairs test is 
needed as opposed to an independent samples test.  

Figure 1a. Subject Program Space: 
Distributions of Adequacy Ratios: 
test suite size = 100 
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Table 2. Descriptive Statistics – Adequacy Ratios for Mutants and Faults (test suite size 100) 

Subject Programs  
Statistic Space Replace Printtokens Printtokens2 Schedule Schedule2 Tcas Totinfo 

Mutants – Am(S) 
Median 0.75 0.93 0.98 0.99 0.96 0.96 0.91 0.99 
Mean 0.75 0.93 0.97 0.99 0.96 0.96 0.90 0.99 
90% 0.78 0.95 0.99 0.99 0.98 0.97 0.94 0.99 
75% 0.77 0.94 0.98 0.99 0.97 0.97 0.93 0.99 
25% 0.74 0.93 0.97 0.98 0.94 0.95 0.89 0.98 
10% 0.72 0.92 0.96 0.98 0.93 0.95 0.86 0.98 
Min 0.65 0.88 0.94 0.93 0.91 0.91 0.77 0.94 
Max 0.82 0.98 1 1 0.99 0.99 0.97 1 

Faults – Af(S) 
Median 0.76 0.68 0.57 0.90 0.67 0.67 0.76 0.65 
Mean 0.77 0.67 0.63 0.93 0.66 0.63 0.79 0.89 
90% 0.82 0.77 0.86 1 0.78 0.78 1 0.96 
75% 0.79 0.74 0.71 1 0.78 0.78 0.95 0.91 
25% 0.74 0.61 0.57 0.90 0.56 0.56 0.68 0.87 
10% 0.71 0.55 0.29 0.80 0.44 0.44 0.61 0.83 
Min 0.53 0.35 0.14 0.60 0.33 0 0.34 0.65 
Max 0.97 0.93 1 1 1 1 1 1 
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Figure 1b. Subject Program Replace: 
Distributions of Adequacy Ratios: 
test suite size = 100 
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Table 3 shows, for each subject program, the results of 

the t-test, that is the average difference in fault/mutant 
adequacy ratios among pairs, the t-ratios, and p-values 
(this is a two-way test as we could not beforehand 
determine the direction of differences). Results show that 
all differences are statistically significant as all p-values 
are close or equal to 0. This is even the case of Space 
though with a mean difference of 1%, this is not 
practically significant as no test technique assessment 
would lead to different conclusions based on such small 
differences. For the remaining subject programs, average 
differences range from 6% to 34%, with an average of 
22%. As opposed to Space, this is practically significant 
as, based on such ranges, if one has used mutants to 
assess a test technique, it will likely look more effective at 
detecting faults than if one has used the seeded faults. 

Table 3. Matched Pairs t-test Results – test suite 
size = 100 

 Matched Pairs Results 
Subject 
Programs  

Mean  
Af(S) – Am(S) 

t-ratio p-value 

Space 0.014 16.87 < 0.0001 
Replace -0.266 -233.96 0.0000 
Printtokens -0.344 -158.2 0.0000 
Printtokens2 -0.061 -59.39 0.0000 
Schedule -0.298 -161.33 0.0000 
Schedule2 -0.327 -152.19 0.0000 
Tcas -0.1128 -57.56 0.0000 
Totinfo -0.1037 -145.78 0.0000 

 
However, it is important to remember that only the 

Space faults are real faults detected during testing and 
operation. So one plausible reason for the differences 
observed between Space and the other programs would be 
that the faults seeded in the latter are more difficult to 

detect than the real faults of Space. If this is deemed the 
most plausible reason, then the results of testing on the 
Space faults are therefore more credible and conclusions 
should be drawn based on this program’s results only. 

4.2. Alternative Explanations  

Besides the relative detectability of real and seeded faults, 
several other factors could explain the data presented in 
the previous section: The test pool, the program inner 
characteristics (e.g., size), the test size suite compared to 
the size of the test pool and program, and the mutation 
process. It is important to consider each of them in turn to 
assess whether our first explanation is indeed the most 
plausible.  

Test pools can contain test cases that have, on average, 
different detection abilities. The literature about these 
programs  [10], however, suggests the pools were formed 
following a similar process and identical criteria. 
Furthermore, to explain our results this would mean that 
the average test case detection ability would vary 
depending on whether one consider mutants or faults as 
Space, when compared to the Siemens programs, has an 
intermediate-ranking adequacy ratio for faults and a low 
one for mutants.  

Another possibility is that the difference between Am 
and Af increases as the test suite size increases compared 
to the size of the test pool or the size of the program. 
(Space is much bigger and has a larger test pool size than 
the other programs.) If this were the case, then we should 
see a smaller Am-Af for the Siemens programs as test 
suite sizes decrease. However, the results turned out to be 
similar for smaller test suite sizes of 10, 20, and 50: 
mean(Am-Af) remained similar for Space and tended to 
even increase for the other programs as smaller test suite 
sizes we used. The graphs in the Appendix compare Am 
and Af for the four test suite sizes, for Space and for 
Replace; the graphs for the other Siemens programs were 
similar. 

The mutation process could somehow be biased so that 
mutants are harder to kill on Space than on the Siemens 
programs. However, we followed the exact same mutation 
process for Space and there is no clear reason why the 
result should be different. Therefore, the fact that Space is 
much larger than the Siemens programs is a more likely 
explanation for the lower mutation adequacy ratio as 
larger programs are known to be more difficult to test. 
This explanation is however neither confirmable nor 
falsifiable with the small number of subject programs we 
have, since all the Siemens programs are small and of 
similar size and we do not have observations in a 
continuous range of sizes up to that of Space. 

A higher detectability of faults for Space than for the 
Siemens programs is the factor we already discussed 
above and the last to consider. To investigate further 
whether this is the most plausible explanation, we look 
next at the detectability of faults and mutants in terms of 
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their likelihood of being detected by test cases randomly 
drawn from the test pools across programs.  

Assuming that the Siemens hand-seeded faults are 
harder to detect than the real Space faults—and that this is 
not due to variations in the detection ability of test cases 
across test pools —we should observe the following 
trends: (1) Space faults should be easier for any individual 
test case to detect than the Siemens faults, (2) Space 
mutants should not be easier for any individual test case 
to kill than the Siemens program mutants. We explore 
these predictions in turn in the next two sections. 

4.3. Comparing the Detectability of Faults across 
programs 

Figure 2 shows the distributions of the ratios E(F) of test 
cases that detected each fault, for each subject program. 
The Y-Axis is the computed ratio for each mutant 
whereas the X-Axis is simply the subject program. The 
horizontal extent for each subject program on the X-Axis 
is proportional to its relative mutant sample size. We can 
see, for example, that the sample size is larger for Space 
and Replace, and rather small for Schedule and Schedule 
2 (Table 1). These unequal sample sizes will need to be 
accounted for in our analysis. Moreover, the figure shows 
the observations for each program, the overall average 
(horizontal line across programs), and each program 
specific average (line across each diamond) as well as 
their 95% confidence interval for the average (the vertical 
span of each diamond). 
Figure 2 clearly shows that Space ratios tend to be higher 
than for other programs , as we expected. A one-way 
Analysis of Variance (ANOVA) [5, 18] shows that, 
overall, there are statistically significant differences (F-
test, p-value < 0.0001) across program means. The E(F) 
means of the Siemens programs and of Space faults are 
0.035 and 0.14, respectively, thus clearly showing a 
significant difference. 

Further statistical testing comparing each Siemens 
program with Space (using the Bonferroni procedure3 for 
multiple comparisons of means using t-tests [18]) shows 
that Space is only significantly different from Tcas and 
Replace (at α = 0.05), though differences are graphically 
visible between Space and all the other programs 4. A 
likely cause for the lack of statistical significance with the 
other Siemens programs  is that we deal with small 
samples, as the number of faults ranges from seven 
(Printtokens) to 23 (Totinfo). It may also be due to the 
Bonferroni procedure which tends to be conservative [5]. 
This increases the probability of a Type II error, and 
makes it likely that legitimately significant results will fail 
                                                                 
3 This requires to use as significance threshold the ratio α divided by the 
number of mean comparisons, that is 28 in our case.  
4 An equivalent, non-parametric Mann-Whitney Test [5, 18] yields the 
same results. Other procedures for multiple mean comparisons, such as 
Tukey’s method, can’t be used as we have unequal sample sizes across 
programs [18]. 

to be detected. In other words, it guarantees that the type I 
error rate is at most α (0.05 in our case) but it may be 
much less in reality.  

Figure 2. Distribution of Ease of Detection of 
Faults – E(F) 
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4.4. Comparing the Detectability of Mutants 
Across Programs 

Figure 3 shows the distributions of E(M), the ratio of test 
cases that killed each mutant, for each subject program. It 
has the same structure as Figure 2, except for the fact that 
it is looking at mutants rather than faults.  

As for faults in the previous section, ANOVA  shows 
that the differences across programs are overall 
statis tically significant (F-test, p-value < 0.0001). 

Figure 3. Distribution of Ease of Detection of 
Mutants – E(M) 
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When looking more closely at each program pair using 

again the Bonferroni procedure and t-tests, we observe 
that the mean for Space is significantly lower than that of 
all programs but Tcas (at α = 0.05), confirming what is 
visible in Figure 3. We can therefore conclude that, not 
only are mutants not easier to kill, but the individual test 
cases show more difficulty to detect mutants in Space 
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and, to a lesser extent, Tcas than in Siemens programs. 
For Space, as discussed above, this is likely due to the 
much larger size of this program (see Table 1).  

These reverse trends for mutants and faults supports 
our interpretation that the differences across programs are 
not due to different test case detection abilities, as this 
would instead show consistent trends for both mutants 
and faults, i.e., Space test cases detecting more mutants 
and faults. Figures 2 and 3 as well  their associated 
statistical test results therefore support our conjecture that 
the most plausible interpretation for the trends in Section 
4.1 is that faults seeded in Space tend to be easier to 
detect because they are real faults, as opposed to faults 
being devised by humans as is the case for the Siemens 
programs.  

4.5. Discussion  

Based on the above results we can deduce that the fact 
that the test suite mutant adequacy ratios are comparable 
to fault adequacy ratios in Space, whereas they are very 
different for other programs , is due to the fact that the 
faults seeded in the other programs are probably not 
representative in terms of ease of detection. After all, they 
are not real faults and it is likely difficult for humans to 
gauge the detectability of seeded faults. 

The paper in which these programs were reported for 
the first time [11] actually contains corroboration of this 
conclusion. Hutchins et al. clearly state that, from an 
initial large set of faults suggested by developers, faults 
that were detected by 350 or more test cases (from their 
original test pool) were discarded6. This supports our 
conjecture above that the results for Space are the ones 
that should be given more credibility. If this is the case, 
then we can conclude that mutants, based on the mutation 
operators presented here, do provide test effectiveness 
results that are representative of real faults. 

It also implies that any research done on human-
seeded faults should be carefully interpreted, since we see 
that by using the example programs used here—which 
have been widely used in previous research [6]—one 
would obtain conservative results when assessing the fault 
detection rates of test techniques. In other words, this 
would lead to underestimating the effectiveness of test 
techniques . This is especially important in situations in 
which one is measuring the cost-effectiveness of different 
testing techniques. If technique A detects a greater 
proportion of the hard-to-detect Siemens faults than does 
technique B, but A is more expensive than B, we may not 
actually have proven the relative cost-effectiveness of A. 

                                                                 
6 They report that about 38% of the faults were discarded for that reason, 
with 18% of the faults being discarded for the complementary reason 
that they were too hard to detect. 

5. Conclusions  
The main contribution of the paper is a thorough 
investigation of a fundamental assumption that has been 
underlying much of experimental software testing 
research to date: Faults generated by hand (e.g., by 
experienced engineers) or from mutation operators are 
representative of real faults. Indeed, most experimental 
results rely on seeded mutants [1, 2, 12, 13, 20]—using 
mutation operators—or faults selected by experienced 
developers [7, 11]. Furthermore, this problem is not likely 
to go away in future research as real faults are usually too 
few to be amenable to experiments allowing statistical 
analysis. So even when real faults are available for a 
particular subject program, one is often forced to seed 
additional faults.  

Therefore, a fundamental question is whether mutants 
or manually seeded faults are likely to yield results, for 
example in terms of detection ability, that are 
representative of what one would obtain on real faults. 
Our analysis suggests that mutants, when using carefully 
selected mutation operators and after removing equivalent 
mutants, can provide a good indication of the fault 
detection ability of a test suite. Furthermore, it shows the 
danger of using faults selected by humans as, in the 
systems studied in this article, it leads to underestimating 
the fault detection ability of test suites. Another issue with 
faults selected by humans is more related to the necessity 
of building over time an experimental body of results 
regarding test techniques’ efficiency. For this to be 
possible, studies must be replicated by researchers. This is 
very difficult to achieve when faults have been selected 
based on a subjective, undefined process. 

We should also note that, although our focus in this 
paper has been to show that the mutants we generated 
were not easier to detect than real faults, our data also 
suggest that they were not harder to detect than real faults 
to any practical degree. This fact lends support to the 
“competent programmer assumption” that underlies the 
theory of mutation testing; that is, the assumption that 
programmers tend to make relatively small mistakes. 

Future research requires of course to replicate the 
study we report in this paper. We did so in such a way 
that it should facilitate the precise replication of our 
analysis and therefore the comparison of future results 
with ours. It would also be important to perform similar 
studies in the context of object-oriented systems, with 
suitable mutation operators, as those systems represent an 
increasing share of industrial systems. Finally, since the 
results in this paper report only on randomly -selected test 
suites, it will be important also to study whether they are 
the same for test suites selected according to various 
criteria, such as code coverage criteria. 
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8. Appendix 
Figure 2 and Figure 3 show how the means of Am and Af 
changes as a function of the test suite size. We can 
observe that, regardless of size, Af and Am are very 
similar for Space. However, for Replace, as for the 
remaining programs, the difference is substantial and 
tends to grow as test suite size decreases.  

Figure 2. Mean(Am) and Mean(Af) versus test 
suite size - Space  
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Figure 3. Mean(Am) and Mean(Af) versus test 
suite size - Replace 
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