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Is network meta-analysis as valid as standard
pairwise meta-analysis? It all depends on the
distribution of effect modifiers
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Abstract

Background: In the last decade, network meta-analysis of randomized controlled trials has been introduced as an
extension of pairwise meta-analysis. The advantage of network meta-analysis over standard pairwise meta-analysis is
that it facilitates indirect comparisons of multiple interventions that have not been studied in a head-to-head
fashion. Although assumptions underlying pairwise meta-analyses are well understood, those concerning network
meta-analyses are perceived to be more complex and prone to misinterpretation.

Discussion: In this paper, we aim to provide a basic explanation when network meta-analysis is as valid as pairwise
meta-analysis. We focus on the primary role of effect modifiers, which are study and patient characteristics
associated with treatment effects. Because network meta-analysis includes different trials comparing different
interventions, the distribution of effect modifiers cannot only vary across studies for a particular comparison
(as with standard pairwise meta-analysis, causing heterogeneity), but also between comparisons (causing inconsistency).
If there is an imbalance in the distribution of effect modifiers between different types of direct comparisons, the related
indirect comparisons will be biased. If it can be assumed that this is not the case, network meta-analysis is as valid as
pairwise meta-analysis.

Summary: The validity of network meta-analysis is based on the underlying assumption that there is no imbalance in
the distribution of effect modifiers across the different types of direct treatment comparisons, regardless of the structure
of the evidence network.

Keywords: Bias, Comparative effectiveness, Confounding, Effect modification, Indirect comparison, Meta-analysis, Mixed
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Background
Randomized controlled trials (RCTs) are considered as
the gold standard of whether a health intervention works
and/or whether it is better than another. Although often
placed at the top of evidence hierarchies, single RCTs
rarely provide adequate information for addressing the
evidence demands of patients, clinicians and policymakers.
Instead, each trial provides a piece of evidence that, when
taken together with others, addresses important questions
for patients, clinicians, and other healthcare decision-
makers [1]. Traditional pairwise meta-analyses of RCTs
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are increasingly used to synthesize the results of different
trials evaluating the same intervention(s) to obtain an
overall estimate of the treatment effect of one intervention
relative to the control.
In the last decade, network meta-analysis has been intro-

duced as a generalization of pairwise meta-analysis. When
the available RCTs of interest do not all compare the same
interventions but each trial compares only a subset of the
interventions of interest, it is possible to develop a network
of RCTs where all trials have at least one intervention in
common with another. Such a network allows for indirect
comparisons of interventions not studied in a head-to-head
fashion [2]. For example, the treatment effects from trials
comparing treatments B relative to A (AB trials) and trials
comparing treatments C relative to A (AC trials) can be
pooled to obtain an indirect estimate for the comparison
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between treatments B and C [3-5]. Even when a trial com-
paring treatments C and B (BC trial) exists, combining the
direct estimates with the results of indirect comparisons
can result in refined estimates as a broader evidence base
is considered [6,7]. In general, if the available evidence
base consists of a network of interlinked multiple RCTs
involving treatments compared directly, indirectly, or
both, the entire body of evidence can be synthesized by
means of network meta-analysis [8].
Although assumptions underlying standard pairwise

meta-analyses of direct comparisons are well understood,
those concerning network meta-analysis for both direct
and indirect comparisons might be perceived to be more
complex, and might be prone to misinterpretation [9-11].
In this paper, we aim to compare pairwise meta-analysis
with network meta-analysis with a specific focus on the
primary role of effect modifiers as the common cause of
heterogeneity and bias. We discuss effect modification
first within individual trials, then in standard pairwise
meta-analyses of multiple randomized trials, and finally
in network meta-analyses.

Discussion
Effect modification and within-study variation of
treatment effects
As a result of randomly allocating patients to the interven-
tion or control group, well-designed RCTs achieve high in-
ternal validity by balancing (un)known and (un)measured
prognostic factors across intervention groups within a
trial (Figure 1). By doing so, the difference in observed
outcomes in randomized trials, defined as the treatment
effect (or effect size), can be attributed to differences in
interventions compared (assuming that there are no other
systematic differences resulting in bias, such as issues in
concealment of treatment allocation) [12].
Within an RCT, different groups of participants can

respond to treatments differently. Hence, it is possible to
have subgroups of participants with different treatment
Figure 1 Treatment vs study effect in a randomized controlled
trial, and the role of effect modifiers.
effects. This variation in true treatment effects is called
heterogeneity and is caused by differences in patient char-
acteristics within a trial that are effect modifiers (Figure 1)
[13]. When heterogeneity occurs within an individual trial,
it is referred to as within-study heterogeneity. Within-study
heterogeneity occurs particularly in trials without strict
entry criteria. For instance, RCTs evaluating the efficacy of
cholesterol-lowering statins often include a mixture of pa-
tients with and without a history of coronary artery disease.
As these subgroups of patients respond to statin therapy
differently (that is, individuals with a history of coronary ar-
tery disease tend to derive greater relative mortality reduc-
tion as patients without a history of coronary artery disease),
disease history is an effect modifier and results in within-
study heterogeneity of treatment effects.

Effect modification and between-study variation of
treatment effects
With standard pairwise meta-analysis, treatment effects
of different studies comparing the same interventions are
combined using statistical techniques to obtain a ‘pooled’
treatment effect estimate [14]. Although randomization is
maintained within trials, it does not hold across the set of
trials included in the meta-analysis; patients are not
randomized to different trials. As a result, there are sit-
uations where there are systematic differences in study
characteristics or the distribution of patient characteristics
across trials. If these characteristics are effect modifiers
(that is, influence the treatment effects), then there are
systematic differences in treatment effects across trials:
between-study heterogeneity. Hence, in a standard meta-
analysis there can be both within-study heterogeneity and
between-study heterogeneity (Figure 2). If meta-analyses
are based on the reported treatment effects for the overall
trial population in publications, there is typically no infor-
mation on the within-study heterogeneity (which would
be available in individual patient-level data).
Pooling different studies in the presence of extreme

between-study heterogeneity does not introduce bias,
but may render the results of the meta-analysis irrelevant
[15]. When considering the scenario presented in Figure 2b,
the pooled result is not applicable to a moderate-only
population or a severe-only population. In this situation,
an alternative approach would be to perform separate
meta-analyses for the studies with severe and moderate
populations. In Figure 2c a more realistic scenario is
presented where there is both within-study and between-
study variation in the distribution of the effect modifier.
Given the use of published treatment effects we can only
observe between-study heterogeneity in treatment effects.
Combining the results of these four heterogeneous studies
is in essence similar to the pooling of the treatment effect
across subgroups of one trial characterized by different
values of the effect modifier.



Figure 2 Standard pairwise meta-analysis of four AB trials (comparing treatment B relative to A). (a) No differences in the effect modifier
‘disease severity’ across studies and therefore no between-study heterogeneity. (b) Extreme differences in the effect modifier across studies and
therefore between-study heterogeneity. (Not useful to pool the studies). (c) Differences in the distribution of the effect modifier across studies
and therefore between-study heterogeneity. Given the inclusion of both severe and moderate patients in each of the studies there is also
within-study heterogeneity, but this cannot be observed without access to subgroup or individual patient-level data.
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Effect modification and between-comparison variation of
treatment effects
In a standard pairwise meta-analysis where each trial
compares the same interventions with the same control
(say only AB studies) the only source of variation in the
treatment effects between trials can be due to the pres-
ence of effect modifiers that are different from one trial
to the next: between-study heterogeneity. In a network
meta-analysis, studies concern different treatment com-
parisons (for example, AB studies, AC studies). Hence,
there is an additional source of variability of treatment
effects between trials, which is the treatment comparison
itself. In a network meta-analysis or indirect comparison
of RCTs there can be three types of variation of treatment
effects: (1) true within-study variation of treatment effects
(which is only observable with individual patient-level
data or reporting of subgroups), (2) true between-study
variation in treatment effects for a particular treatment
comparison, and (3) true between-comparison variation
in treatment effects.
Figure 3 shows two scenarios where the findings of the

network meta-analysis are as valid as in a standard pairwise
meta-analysis. In Figure 3a a network meta-analysis of four
AB and four AC studies is presented. For the AB studies
there is no variation in the distribution of disease severity,
which is an effect modifier, and therefore no heterogeneity
in AB treatment effects. (For this example we assume that
severity is the only effect modifier and it is known and mea-
sured.) For the four AC studies there is also no variation in
the effect modifier, and consequently, no between-study
heterogeneity. Furthermore, the distribution of the effect
modifier for the AB comparison is the same as for the AC
comparison (that is, no between-comparison variation). As
such, any observed difference in the pooled treatment effect
between the AB and AC studies can be attributable to the
difference between the two types of comparisons: interven-
tion B or C. In this scenario, the indirect estimate for the
BC treatment effect is unbiased.
In Figure 3b a network meta-analysis is presented with

variation in the distribution of the effect modifier across
the AB studies resulting in between-study heterogeneity.
The same is observed for the AC comparison. Since the
distribution of severity across the four AB studies is the
same as for the four AC studies, the difference between
the pooled estimates of AB and AC is only due to the actual
difference in the interventions compared. The indirect esti-
mate for the BC comparison is again unbiased.
Figure 4 shows two scenarios where the findings of

the network meta-analyses are biased. In the scenario
presented in Figure 4a, all AB and AC comparisons are
free of heterogeneity. However, there is variation in the
distribution of the effect modifier between the compar-
isons. For the AB studies there is a 30:70 distribution
of patients with severe and moderate disease, while the
opposite is the case for the AC studies. Given this im-
balance in the effect modifier between comparisons the
observed difference between the pooled treatment effects of
the AB studies and the AC studies cannot be considered to
be only attributable to the difference in interventions. The
indirect comparison is affected by confounding bias due
to the imbalance in the effect modifier [16]. In a similar
fashion as in an observational study where confounding
bias arises from a common cause of the exposure and the
disease, in indirect comparisons of RCTs confounding bias
occurs when a covariate has an impact on the treatment
effect (that is, effect modifier) and is also associated with
the type of treatment comparison. From a counterfactual
perspective one can state that an indirect comparison of



Figure 3 Valid network meta-analysis of AB trials (comparing treatment B relative to A) and AC trials (comparing treatment C relative to A).
(a) Forest plot of four AB studies and four AC studies. There are no differences in the effect modifier across studies within comparisons and no imbalance
in the distribution of the effect modifier between comparisons. Hence, there is no heterogeneity, and no bias in the indirect comparison estimate of C vs
B. (b) Forest plot of four AB studies and four AC studies. There are differences in the effect modifier across studies within comparisons, but no imbalance
in the distribution of the effect modifier between comparisons. Hence, there is heterogeneity, but no bias in the indirect comparison estimate of C vs B.
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an AB and AC study is affected by confounding bias if the
population of the AB study presents an imperfect substi-
tute of what the target population in the AC study would
have been like under the counterfactual condition that
intervention B was provided instead of intervention C and
therefore the indirect treatment effect of C versus B is
different than the causal effect of C relative to B.
A similar scenario is presented in Figure 4b. Here,

there is an imbalance (or between-comparison variation)
in the distribution of the effect modifier. In addition,
there is heterogeneity across the AB studies as well as
the AC studies due to variation in the effect modifier
between studies within the comparisons. This variation
results in biased indirect comparison estimates.
An imbalance in the distribution of effect modifiers

across the different comparisons, sometimes referred to
as a violation of the similarity or consistency assumptions
[17], results in a violation of transitivity. Transitivity means
that if C is more efficacious than B, and B is more effica-
cious than A, then C has to be more efficacious than A. It
is important to acknowledge that there is always the risk of
unknown imbalances in effect modifiers and accordingly
the risk of residual confounding bias, even if all observed
effect modifiers are balanced. However, this does not imply
that network meta-analyses are as prone to bias as observa-
tional studies. In non-randomized comparative studies the
relative treatment effect between the two interventions are
affected by confounding bias if either the prognostic factors
of the study effects or modifiers of treatment effects are
not balanced across the intervention groups. Given the
randomized nature of the individual trials included in
network meta-analyses, and we only compare treatment
effects of interventions that are part of the same network
of RCTs, we only have to worry about the effect modifiers
as a source of confounding bias.

Heterogeneity and inconsistency as the two sides of the
same effect-modification coin
As explained above, between-study heterogeneity results
from the variation in effect modifiers within compari-
sons, whereas inconsistency results from the imbalance
in effect modifiers between comparisons. Figure 5a pre-
sents the results of six hypothetical studies where each
study evaluates a biological treatment (that is, D, E, and F)
relative to placebo (A) for rheumatoid arthritis. A pairwise
meta-analysis of the six studies provides an average treat-
ment effect for the efficacy of biological treatment relative to
placebo. Given the different biologics and differences in the



Figure 4 Biased network meta-analysis of AB trials (comparing treatment B relative to A) and AC trials (comparing treatment C relative to A).
(a) Forest plot of four AB studies and four AC studies. There are no differences in the effect modifier across studies within comparisons, but an imbalance
in the distribution of the effect modifier between comparisons. Hence, there is no between-study heterogeneity, but a biased indirect comparison
estimate of C vs B. (b) Forest plot of four AB studies and four AC studies. There are differences in the distribution of the effect modifier across studies
within comparisons, as well as an imbalance in the distribution of the effect modifier between comparisons. Hence, there is between-study heterogeneity,
and a biased indirect comparison estimate of C vs B.

Figure 5 Given a certain distribution of effect modifiers across studies, grouping of studies for the analysis has an impact on
heterogeneity and inconsistency. (a) Pooled results of all trials as obtained with a pairwise meta-analysis results in great amount of
heterogeneity. (b) Network meta-analysis with grouping of studies according to type of comparison (AD, AE, or AF) results in inconsistency in the
absence of heterogeneity. (c) Network meta-analysis with grouping of studies by treatment class (AD and AE vs AF) results in absence of
inconsistency but presence of between-study heterogeneity (across studies 1 to 4).
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distribution of the effect modifier (that is, disease severity)
there is fair amount of heterogeneity. In Figure 5b the
results of a network meta-analysis are presented with
pooled results for each of the three biologics relative to
placebo. Although there is no heterogeneity for the AD
comparison, AE comparison, or AF comparison, there is
an imbalance in the distribution of the effect modifiers
and the indirect comparisons are biased. If treatments D
and E are from the same class of biologics (for example,
infliximab and adalimumab are both tumor necrosis factor
(TNF)α blockers), and we assume that their treatment
effects are exchangeable, we can pool studies one
through four and compare the efficacy of this class of
biologics with the efficacy of biological agent F. This
network meta-analysis is presented in Figure 5c. Now,
there is no imbalance in the average distribution of the
effect modifier across the two types of comparisons
(that is, D and E vs A, and F vs A); for both comparisons
the distribution of moderate and severe patients is 50:50.
However, there is between-study heterogeneity across stud-
ies one through four. This heterogeneity is smaller than the
overall heterogeneity across all six studies. Based on this
hypothetical illustration we can infer the following: Given a
distribution of effect modifiers across a range of studies in a
network of RCTs, the distribution within and between
comparisons is determined by the grouping of these stud-
ies for the analysis. Please note that with this hypothetical
example we are not promoting the pooling of different
treatments in order to get a similar overall distribution
of effect modifiers for the different direct comparisons
involved in the network meta-analysis. Grouping of treat-
ments should primarily be determined by the research
question of interest. The example was just presented to
illustrate that heterogeneity and inconsistency can be
considered two sides of the same coin.
If a network meta-analysis consists of an evidence base

where for some interventions there is both direct and
indirect evidence, inconsistency can be evaluated by com-
paring the treatment effect estimates obtained from the
direct comparison, with those obtained from the indirect
comparisons for the same contrast [18-21]. For example,
in a network of RCTs that consists of AB, AC, and BC
studies, inconsistency can be evaluated by comparing the
direct comparison BC with the indirect estimate for BC
obtained from the AB and AC studies. For comparisons
where only indirect evidence is available, say the BC com-
parison in a network of only AB and AC studies, inconsist-
ency cannot be assessed this way, and can only be explored
by comparing the average distribution of effect modifiers
between AB and AC studies [22].
In network meta-analysis, consistency is sometimes

referred to as a separate assumption from the similarity
assumption suggesting that the similarity assumption
relates to indirect comparisons, and the consistency
assumption only applies to situations where there is
both direct and indirect evidence for a certain treatment
comparison [17]. However, portraying similarity and
consistency as separate assumptions is not very useful
given the fact that any valid network meta-analysis is
based on the assumption that there is no imbalance in the
distribution of effect modifiers across the different types
of treatment comparisons (i.e. transitivity), regardless of
the structure of the evidence network.

Practical implications
In an attempt to bridge the gap between the conceptual
considerations and realities of performing network
meta-analysis, a brief discussion on practical implications is
warranted. Frequently, there are several observed differ-
ences in trial and patient characteristics across the different
direct comparisons. Deciding which covariates are ef-
fect modifiers based on observed differences in results
across trials can be challenging and potentially lead to
false conclusions regarding the sources of inconsistency
[22]. We recommend that researchers first generate a
list of potential treatment effect modifiers for the inter-
ventions of interest based on prior knowledge or sub-
group results of individual studies before comparing
results between studies. Next, the distribution of study
and patient characteristics that are determined to be
likely effect modifiers should be compared across studies to
identify any potential imbalances between different types of
direct comparisons [16].
If there are a sufficient number of studies included in

the network meta-analysis, it may be possible to perform
a meta-regression analysis where the treatment effect of
each study is not only a function of the treatment com-
parison of that study but also related to an effect modifier
[23]. This allows indirect comparisons with adjustment
for confounding bias due to differences in the measured
effect modifiers between studies if the estimated relation-
ship between effect modifier and treatment effect is not
greatly affected by bias [23,24]. Network meta-analysis is
typically based on study-level data extracted from pub-
lished reports of trials. Adjusting for imbalances in patient
level effect modifiers based on study-level data can be
prone to ecological bias [24-26]. Having access to patient
level data (at least for a subset of studies) can improve
parameter estimation of network meta-analysis models
with adjustment for differences in patient-level covariates
across comparisons. Hence, it is recommended to use
patient-level data where available [25,26].
Even in cases where relative treatment effect modifiers

are identified in advance, practical challenges remain in
regards to their availability in published reports thereby
limiting meta-regression analysis [9]. Nevertheless, we
recommend network meta-analysis reports to include a
discussion of known effect modifiers, their availability in
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the published body of evidence, and how their distribu-
tion across studies may affect the findings.

Summary
Network meta-analysis is different from pairwise meta-
analysis in the sense that there is not only one type of
treatment comparison, but multiple treatment compari-
sons. As a result, the distribution of effect modifiers can-
not only vary across studies for a particular comparison
(as with pairwise meta-analysis), but also between compari-
sons. If there is an imbalance in the distribution of effect
modifiers between different types of comparisons, indirect
comparisons will be biased and the validity of the network
meta-analysis is compromised. In the Additional file 1 this
key requirement for transitivity is also demonstrated with
mathematical equations. If the assumption that there are
no imbalances in effect modifiers between different types of
direct comparisons can be defended or seems appropriate
given the available RCTs then network meta-analysis is as
valid as pairwise meta-analysis. If there are sources of bias
that affect the direct comparisons of the individual studies
(for example, information bias, publication bias, or selective
outcome reporting bias) then the pooled results of both
pairwise meta-analysis and network meta-analysis are
affected. However, when indirect evidence can wash out
trial-specific biases that are sometimes not identifiable in
a head-to-head meta-analysis, indirect estimates obtained
with a network meta-analysis might be preferable [19,20].
Network meta-analysis has the advantage that it allows for
indirect comparisons, more data are incorporated in the
analysis, and the bigger picture is tackled, while a single
pairwise meta-analysis offers a very fragmented picture.

Additional file

Additional file 1: Equations to illustrate that the imbalance in the
distribution of effect modifiers across different types of direct
comparisons violates the consistency assumption of network
meta-analysis and result in biased indirect estimates.
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