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Abstract: DNA double-strand breaks (DSBs) are harmful
lesions leading to genomic instability or diversity. Non-
homologous end-joining (NHEJ) is a prominent DSB repair
pathway, which has long been considered to be error-
prone. However, recent data have pointed to the intrinsic
precision of NHEJ. Three reasons can account for the
apparent fallibility of NHEJ: 1) the existence of a highly
error-prone alternative end-joining process; 2) the adapt-
ability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV–
dependent) to imperfect complementary ends; and 3) the
requirement to first process chemically incompatible DNA
ends that cannot be ligated directly. Thus, C-NHEJ is
conservative but adaptable, and the accuracy of the repair
is dictated by the structure of the DNA ends rather than
by the C-NHEJ machinery. We present data from different
organisms that describe the conservative/versatile prop-
erties of C-NHEJ. The advantages of the adaptability/
versatility of C-NHEJ are discussed for the development of
the immune repertoire and the resistance to ionizing
radiation, especially at low doses, and for targeted
genome manipulation.

DNA double-strand breaks (DSBs) are highly toxic lesions.

However, in certain essential physiological processes, DSBs are

used to promote genetic diversity. Programmed DSBs generated

by cellular enzymes are repaired by the same mechanisms as those

used for stress-induced DSBs. Thus, DSB repair stands at the

crossroads between genetic variability and instability.

DSB repair uses two primary strategies: non-homologous end-

joining (NHEJ), which is generally considered to be error-prone,

and homologous recombination (HR), which is considered to be

error-free. However, this view is too simplistic. Herein, we discuss

several pieces of data that challenge the fallibility of NHEJ.

Canonical NHEJ versus Alternative End-Joining

The canonical C-NHEJ pathway joins double-strand DNA ends

in a Ku- and Xrcc4/ligase IV–dependent manner. This pathway

has been extensively described and is summarized in Figure 1A.

The existence of alternative end-joining pathways has been

recently reported (Figure 1B). This alternative end-joining process,

which can be unmasked in the absence of functional C-NHEJ

genes, is referred to as A-EJ or alt-NHEJ (alternative end-joining),

B-NHEJ (backup NHEJ), and MMEJ (microhomology-mediated

end-joining) [1–11]. Herein, to clearly distinguish it from C-NHEJ

and because some repair events do not use microhomologies, it

will be referred to as A-EJ. A-EJ is far from being fully

characterized and might correspond to different molecular

processes [12], but the common points are that it does not require

extended sequence homologies, is independent of Ku80 or Xrcc4,

and is associated with deletions at the repair junctions, frequently

(but not systematically) using microhomologies distant from the

DSB. This signature led to the model in Figure 1B, which proposes

that A-EJ is initiated by a single-stranded (ssDNA) resection.

Consistent with this view are the involvement of the nuclease

activities of MRE11 and CtIP/Sae2 [11,13,14] and the fact that

53BP1, in association with RIF1 and BLM, protects against long

deletions at the A-EJ repair junctions [15]. Consequently, A-EJ is

highly mutagenic, typically generating deletions at the repair

junction. Because HR is also initiated by a ssDNA resection, a

two-step model has been proposed for the choice of the DSB

repair pathway [3,11]. The first alternative is the choice between

C-NHEJ and the initiation of the resection; the second alternative

is HR versus A-EJ (Figure 1C). Consistent with the first alternative,

Ku represses both HR and A-EJ [1,2,7,8,16,17]. A defect in Ku

leads to extended DNA degradation at the DSBs and to increased

deletion sizes at the A-EJ junctions [2,6,18–20]. Note that a defect

in Ku does not significantly decrease, whereas the absence of

Xrcc4 leads to a strong decrease in the total efficiency of end-

joining [1,21]. In both cases, the remaining events exhibit the

signature of A-EJ at the repair junction (deletions). This shows that

the absence of Ku is compensated by A-EJ. In the absence of

Xrcc4, Ku is still present and able to repress A-EJ, thus

independently of the late steps of C-NHEJ. These data support

the concept that Ku protects against initiation of A-EJ. Because A-

EJ is exclusively mutagenic, Ku favors the maintenance of genetic

stability.

Several parameters affect the second choice, such as the

presence of a homologous sequence. Moreover, long resections

are required for HR (hundreds of nucleotides), whereas short

resections (a few tens of nucleotides) are sufficient for A-EJ, as
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estimated by the deletion sizes at the repair junctions. Neverthe-

less, long deletions can also lead to A-EJ. The cell cycle can also

affect the DSB repair pathway choice; HR is only active in the S

and G2 phases [22–26], whereas both C-NHEJ and A-EJ are

active throughout the cell cycle [23,24], but A-EJ is more active in

the S phase [23].

C-NHEJ Is a Conservative but Versatile DSB Repair

Process

Genetic instability can be evaluated at two levels: at the

chromosome level or at the nucleotide level, at the DSB repair

scar.

At the Chromosome Level
C-NHEJ can be involved in translocations and rearrangements

[2,27] and in programmed rearrangements (generating the

immune repertoire). Whole genome sequencing of tumors has

revealed complex inter- and intra-chromosomal rearrangements in

a phenomenon named chromothripsis. Both C-NHEJ and A-EJ

have been proposed to be involved in chromothripsis, but they

cannot account for events involving sequence duplication (for

review see [28,29]).

Nevertheless, a defect in Ku or Xrcc4/lig IV leads to profound

genome rearrangements, underlying the fact that NHEJ is essential

for the maintenance of genomic stability [10,30–33]. Additionally,

NHEJ prevents trinucleotide repeat fragility and expansion [34].

Conversely, A-EJ is involved in chromosome translocation in

mouse cells, Drosophila, and yeast cells [35–37]. Particularly, both

CtIP and ligase III have been shown to be involved in

translocations by A-EJ [38,39].

The mobility of the DNA ends is a prerequisite to generate

profound genome rearrangements. Remarkably, Ku80 protects

broken DNA ends against mobility within the nucleus [40]. In

addition, atomic force and electron microscopy studies have

shown that Ku, in conjunction with DNA-PKcs, tethers DNA ends

in vitro [41,42], maintaining them in close proximity. Ku-mediated

tethering could account for the protective role of Ku80 against the

mobility of DNA ends and consequently against translocations. In

addition, increased mobility of DSBs has been associated with

DNA end resection in yeast, thus favoring the search for homology

during HR [43,44]. Because A-EJ is also initiated by DNA end

resection, DSB mobility might also increase the risk of chromo-

some rearrangements promoted by A-EJ. Because Ku impairs

both DSB mobility and DNA end resection, it likely plays a doubly

protective role against chromosome rearrangements.

At the Nucleotide Level, at the Repair Scar
At the repair junctions, the apparent infidelity of end-joining

should be reevaluated because, in many studies, A-EJ was not

distinguishable from C-NHEJ. In addition, the repair of DSBs

induced by ionizing radiation (IR) or V(D)J recombination

requires processing of the DNA ends prior to ligation. Thus, it

can be argued that mutagenesis is generated by DNA end

processing rather than by the end-joining machinery per se. Thus

using biological systems that do not require DNA end processing is

necessary to address the question of the actual accuracy of C-

NHEJ.

The end-joining accuracy of directly ligatable DNA

ends. We will first discuss NHEJ in two biological models,

Paramecium and mammalian cells, in which this pathway is of

particular importance. Paramecium provides a physiological exam-

ple of the efficient contribution of C-NHEJ to the precise repair of

thousands of developmentally programmed DSBs [45]. In

mammalian cells, C-NHEJ is a prominent DSB repair mechanism,

and it is essential in fundamental processes establishing the

immune repertoire. The accuracy of NHEJ will then be addressed

in yeast, bacteria, and plants, and during cut-and-paste transpo-

sition.

Similar to other ciliates, Paramecium harbors two different nuclei

in its cytoplasm. During vegetative growth, the diploid micronu-

cleus (MIC) divides through mitosis but remains transcriptionally

silent, whereas the highly polyploid macronucleus (MAC) ensures

gene expression. During sexual processes, the MAC is fragmented

and eventually lost. Subsequent divisions of the zygotic nucleus

produce the new MICs and MACs of the next sexual generation

(Figure 2A). During the MAC development, the germline genome

is amplified to a final ploidy of ,800 n. Concomitantly, massive

genome rearrangements occur [46]: i) repeated sequences,

including transposons or minisatellites, are eliminated in a

heterogeneous manner and ii) at least 45,000 short, non-coding

intervening sequences, the IESs (Internal Eliminated Sequences),

are excised [47] (Figure 2B). IESs excision generates one

chromosomal DSB every 1–2 kb within a defined time window

[48]. Thus, because endoduplication occurs during rearrange-

ments, an estimated 106 DSBs must be repaired in each

developing MAC [49]. Despite this huge number, DSB repair

preserves the linear organization of the MAC chromosomes. The

highly precise repair of the IES excision sites occurs through the

C-NHEJ pathway, as evidenced by the absolute requirement for

ligase IV and Xrcc4 [50], but requires limited processing of DSBs

(Figure 2C). Because 47% of the genes are interrupted by at least

one IES in the MIC [47], the precision of end-joining is essential

for the recovery of functional genes in the new MAC and,

therefore, for cell survival.

In mammalian cells, different studies analyzing the end-joining of

plasmids that are cleaved by restriction endonucleases in either

acellular extracts or in transfected cells have all concluded that

NHEJ is accurate [6,51–53]. Defects in any C-NHEJ component

resulted in error-prone end-joining [6,52,53], corroborating that

Figure 1. End-joining models and competition between C-NHEJ and A-EJ for DSB repair. A) The canonical C-NHEJ. The heterodimer
Ku80-Ku70 binds to the DNA ends, which then recruit DNA-PKcs. Note that DNA-PK is absent from yeast. Several proteins, including Artemis, the
polynucleotide kinase (PNK), and members of the polymerase X family, process the DNA ends for subsequent steps [86–90]. In the last step, ligase IV,
associated with its co-factors Xrcc4 and Cernunos/Xlf, joins the ends [91–93]. B) A-EJ. Parp1 plays a role in the initiation process [4,17,94,95]. Without
the protection by Ku70/Ku80, the DNA ends are resected in a reaction favored by the nuclease activity of Mre11 and CtIP [11,13]. It has been
proposed that a single-strand DNA resection reveals complementary microhomologies (two to four nt or more) that can anneal; gap filling completes
the end-joining. Subsequently, Xrcc1 and ligase III (which can be substituted by ligase I) complete A-EJ [4,9,38]. A-EJ is always associated with
deletions at the junctions and frequently (but not systematically) involves microhomologies that are distant from the DSB. The histone H1 has also
been shown to act in A-EJ [96]. C) Two-step model for the choice of the DSB repair pathway [3,11]. The MRN complex and ATM are involved
in the early steps of DSB signaling and can activate both C-NHEJ and A-EJ. 1) Binding of Ku80/Ku70 protects from ssDNA resection, leading to a
conservative DSB repair outcome through C-NHEJ. The nuclease activity of Mre11 and CtIP can initiate ssDNA resection. 2) A short ssDNA resection
allows A-EJ but not homologous recombination. A long ssDNA resection allows A-EJ and HR, but HR requires the presence of homologous sequences.
A-EJ results in error-prone repair associated with deletions at the repair junctions with frequent use of microhomologies distant from the DSB.
doi:10.1371/journal.pgen.1004086.g001
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Figure 2. End-joining accuracy of ligation-compatible ends. A) The Paramecium sexual cycle. Two types of sexual processes are induced
through starvation in Paramecium: autogamy, a self-fertilization process (shown in the figure), and conjugation between compatible mating types
(not shown). During autogamy, the two germline diploid MICs (red) undergo meiosis to generate eight haploid nuclei (pink), and a single nucleus
migrates to a specialized cell compartment, dividing once to produce two identical gametic nuclei. The remaining seven meiotic products are
degraded, and the old MAC (black) becomes fragmented. During karyogamy, the two gametic nuclei fuse to form a diploid zygotic nucleus. The
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mutagenic end-joining results, at least in part, from A-EJ. However,

in these studies, the DSB repair was not monitored in a

chromosomal context. Therefore, different systems, based on the

use of intrachromosomal substrates containing cleavage sites for the

meganuclease I-SceI, have been studied. Notably, these experiments

facilitated the characterization of A-EJ at a precise molecular level

in the context of chromosomes in living cells [1,2,11,21,23,54,55].

The conclusions drawn from these studies (see below) were

confirmed in vivo in mice in the context of physiological processes,

such as class switch or V(D)J recombination [5,10].

Because the I-SceI cleavage site is not palindromic, the use of

two cis sites (Figure 2D.1) has been informative [2]; with the sites in

direct orientation, the I-SceI–mediated cleavage generates two fully

complementary ends that can be readily ligated, whereas in the

inverted orientation, only partially complementary ends are

generated (Figure 2B). Note that in these cases, the DNA ends

are not chemically modified and, thus, are competent for the

ligation machinery; the differences arise from the annealing of the

four protruding nucleotides, which are fully complementary or

not. In the latter case, end-joining cannot restore the initial

sequence, generating an apparently mutagenic event. Notably, the

efficiency of the joining of imperfectly complementary ends is

similar to that of fully complementary ends, underlying the

adaptation capabilities of NHEJ [2].

With fully complementary ends (I-SceI sites in direct orientation),

an error-free event restores one I-SceI cleavage site. Thus, with these

substrates, the frequency of error-free end-joining is underestimated

because residual I-SceI protein can re-cleave the repaired junction,

increasing the possibility for error-prone repair and introducing a

bias in favor of inaccurate repair. The frequency of error-free events

in wild-type cells consistently varies from 35% to 75%, according to

the level of I-SceI expression and the half-life of the expressed I-SceI

protein [1,2,11]. Nevertheless, the high frequency of error-free

events (up to 75%, which is likely underestimated) shows that C-

NHEJ should not be primarily error-prone in mammalian cells.

Deficiencies in Ku80 or Xrcc4 abolish error-free events, showing

that accurate end-joining events result from C-NHEJ. The

remaining end-joining events (i.e., A-EJ) correspond to deletions at

the junctions, with the frequent use of microhomologies distant from

the DSB site [1,2,11]. Mutagenic events exhibit a similar signature in

wild-type cells, suggesting that they result from A-EJ and, thus, that

C-NHEJ is not responsible for error-prone DSB repair.

With non–fully complementary ends, end-joining cannot restore

a cleavable I-SceI site; therefore, this substrate monitors a single

cleavage/joining event. Interestingly, 90–95% of the end-joining

events involve 39-protruding nucleotides that are generated by I-

SceI cleavage (Figure 2D.2) [2]. Strikingly, although the four 39-

protruding nucleotides at each end are not complementary, the

annealing of two out of the four 39-protruding nucleotides is

observed, corresponding to the maximum possible complemen-

tarities. Thus, C-NHEJ adapts to imperfectly complementary ends

with minimal genetic modifications. A systematic in vitro analysis of

most of the DNA end possibilities in human cell extracts

consistently yielded similar results [6]. Importantly, in Ku80- or

Xrcc4-deficient mammalian cells, the repair events involve none of

the 39-protruding nucleotides, all the resulting products exhibiting

deletions at the repair junctions with the frequent use of

microhomologies that are distant from the DSB.

These data can be summarized as follows: regardless of the

structure of the DNA ends (fully complementary or not), A-EJ

removes at least all of the 39-protruding nucleotides (and generally

more), whereas C-NHEJ retains at least one of the 39-protruding

nucleotides, therefore accounting for 90–95% of the events using

the 39-protruding ends.

Importantly, these analyses have revealed that there are two

different types of microhomologies (MHs): 1) MHs at the DSB

itself that guide the annealing process of imperfectly complemen-

tary ends; end-joining is then processed by C-NHEJ in a

conservative manner; and 2) MHs distant from the break that

are involved in A-EJ, generating extended deletions at the repair

junctions (Figure 1B).

These combined data show that C-NHEJ is not error-prone per

se but is rather versatile and capable of adapting to non–fully

complementary ends, maximizing the annealing process of

potentially complementary nucleotides, which, in turn, limits

genetic alterations. Thus, at the repair junction, C-NHEJ is

conservative and the precision of end-joining is dictated by the

structure of the DNA ends.

zygotic nucleus subsequently undergoes two successive mitotic divisions; after the second division, the two nuclei become the new MICs of the
sexual progeny (red), whereas the other two differentiate into new developing MACs (red and gray) and undergo programmed genomic
rearrangements. At the first cell division, the new MICs divide mitotically, and each of the two developing new MACs segregates into a daughter cell
where it continues to amplify the rearranged genome to a final ploidy of ,800 n. During conjugation, MIC meiosis is triggered through the mating of
two compatible sexual partners, which undergo a reciprocal exchange of their haploid gametic nuclei. Consequently, the zygotic nucleus in each
partner is formed through the fusion of a resident and a migratory haploid nucleus. Exconjugants separate between the first and second divisions of
the zygotic nucleus, and MAC development occurs as described for autogamous cells. B) General structure of MIC and MAC chromosomes. On
the MIC chromosomes, genes (black boxes) and non-coding regions (thin lines) are interrupted by short internal eliminated sequences (IESs in red).
Repeated germline sequences (e.g., transposons and minisatellites) are indicated with a yellow double-headed arrow. During MAC development,
each MIC chromosome is amplified,400-fold to generate a population of heterogeneous MAC chromosomes. The imprecise elimination of repeated
DNA is associated with the following alternative rearrangements: i) chromosome fragmentation and telomere addition to new MAC chromosome
ends (gray squares) and ii) imprecise joining of the two chromosome arms that flank the eliminated germline region. C) Mechanism of IES
excision. The successive DNA intermediates formed during IES excision are displayed, with IESs shown in red and flanking MAC-destined DNA
shown in black. The first step of the reaction is the introduction of 4-base staggered double-strand breaks at each IES end, depending upon the
PiggyMac domesticated transposase. The molecular steps that lead to the repair of the chromosomal junction are shown on the left, which might
occur within a paired-end intermediate through the annealing of the central TAs within each 59 overhang. The removal of the 59-terminal nucleotide
was demonstrated in vivo (dotted arrow), but the nuclease(s) involved has not been identified. For the 39-processing step, ligase IV (Lig4) recruits or
activates a gap-filling DNA polymerase, which adds one nucleotide to the recessive 39-end prior to the final ligation. A similar mechanism has been
proposed for the circularization of excised linear IES molecules (right), provided that these molecules are sufficiently long. IES circles do not replicate
and are actively degraded. D) End-joining of fully versus non–fully complementary ends. 1) I-SceI sites in direct orientation (arrows). The
cleavage generates 39-overhangs (red nt), which are fully complementary. C-NHEJ promotes accurate ligation (left panel), and A-EJ deletes the four
protruding nucleotides, leading to the deletion of at least 4 bp at the resealed junction (right panel) [1,2,11]. 2) I-SceI sites in an inverted
orientation (arrows). The cleavage generates 39overhangs (red nt), which are not fully complementary. Similarly, A-EJ deletes the 39-protruding nt,
resulting in the deletion of at least 4 bp at the resealed junction (left panel). C-NHEJ anneals two of the four protruding nt (red nt), according to three
classes of events (right panel). This imperfect annealing generates gaps (in blue in class I), mismatches (in blue in classes I and II), or 39-single-stranded
tails (in blue in class III) [1,2,11].
doi:10.1371/journal.pgen.1004086.g002

PLOS Genetics | www.plosgenetics.org 5 January 2014 | Volume 10 | Issue 1 | e1004086



In Saccharomyces cerevisiae, sequence analysis of the end-joining

events on transfected linearized plasmids revealed that NHEJ is

very accurate. In contrast, extended deletions are recovered in

yku70 mutant strains [19,56,57]. An alternative end-joining

pathway (MMEJ), which increases upon Ku loss, has also been

described in a chromosomal context [7]. In addition, NHEJ can

generate reciprocal translocations, but in the absence of yKu80,

the breakpoint junctions are associated with deletions [58]. An

alternative end-joining pathway has also been identified in fission

yeast [59].

The continuous expression of endonucleases, such as HO or I-

SceI, consistently leads to multiple cycles of cleavage/repair in an

essential chromosome, resulting in only 0.1% survival. This result

suggests that NHEJ is at least 99.9% error-free because it restores

a re-cleavable site [60–62]. NHEJ is also adaptable in S. cerevisiae.

Indeed, the large majority of ends generated by HO are repaired

by events involving the four 39-protruding nucleotides, and the

ligation of imperfect overhangs acts in a Ku-dependent manner

[62,63]. Finally, Tdp1, a yeast DNA 39-phosphatase, has been

proposed to increase the accuracy of the NHEJ machinery by

preventing the modification of DNA ends [64].

C-NHEJ and A-EJ have also been described in bacteria [65]. In

Mycobacterium smegmatis, the vast majority of Ku-independent

junctions harbor microhomology-mediated deletions, indicating

that A-EJ substituted for C-NHEJ during DSB repair [66]. Ku and

ligase D are absent in the classical bacterial model Escherichia coli,

Figure 3. Processing of DNA ends prior to ligation. A) Junctional diversity through V(D)J recombination. 1) The Rag1-Rag2 proteins join
the V(D)J recombination sites (synapsis step). The cleavage by Rag1-Rag2 generates a circular signal joint and a linear coding joint (containing the
coding sequence); however, the cleavage generates hairpins at the extremities, which cannot be directly ligated. The opening of the hairpins (by
Artemis) generates a combination of different DNA ends (thin lines), thereby, creating the first level of junctional diversity. 2) TdT subsequently adds
N-nucleotides at the 39 or blunt ends, creating a second level of junctional diversity. B) After IR. 1) IR generates multiple damages at DNA ends
(colored boxes). These altered DNA ends are not compatible for enzymatic ligation by ligase IV. The excision of the damaged structures (dotted lines)
results in nucleotide deletion after ligation. 2) Role of Ku at the DNA ends. a) Abasic sites (red circles) at the DSB inhibit NHEJ. Ku removes these
sites, allowing the NHEJ of the processed DNA ends. This reaction results in a limited deletion (one to three nt at the resealed junction). b) Abasic sites
(red circles) that are far from the DSB do not impair NHEJ. BER can then repair the abasic sites on the resealed molecule. Note that the reduced
activity of Ku on these substrates prevents long deletions (from the abasic site to the end), which would result in large deletions at the resealed
junction and would avoid the generation of new breaks in the resealed molecule (adapted from [97]).
doi:10.1371/journal.pgen.1004086.g003
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and A-EJ is the most active end-joining pathway in this species

[67]. Finally, evidence for conservative C-NHEJ and mutagenic A-

EJ pathways has also been presented in plants [12,68–70].

A large number of class II transposons transpose through a cut-

and-paste mechanism in which the transposon is excised from its

donor site and integrates into another locus where a target site

duplication (TSD) is generated on both sides of the newly integrated

element. Transposon excision leaves a DSB at the donor site with

one copy of the initial TSD at each broken end; DSB repair through

end-joining generally yields a characteristic footprint in which the

two TSDs are separated by a few bp from the transposon (reviewed

in [71]). The excision of cut-and-paste transposons, such as Sleeping

Beauty [72,73], Mos1 [74], or the P element [75], has been used in

different hosts to induce DSBs at defined genomic loci. These

studies have revealed that, in the absence of Ku, large deletions of

the flanking sequences are recovered at transposon excision sites.

This result confirms that Ku-dependent C-NHEJ is a conservative

but versatile repair pathway in mammals, C. elegans, and, to a certain

extent, Drosophila. In the latter, however, a chromosomal assay

indicated that the most active end-joining pathway is independent

of ligase IV [35].

End-joining requiring DNA end processing: The

importance of being versatile. An efficient immune response

absolutely requires genetic diversity at the immunoglobulin gene

locus. The first level of diversity is generated through the

rearrangement of the (V), (D), and (J) segments induced by the

lymphoid-specific Rag1 and Rag2 proteins associated with the

ubiquitous C-NHEJ machinery [76–79]. V(D)J recombination

generates the coding and reciprocal signal joints (Figure 3A), and

two steps increase the diversity at the coding joints. First, Rag1/

Rag2-mediated cleavage produces hairpins at the broken coding

ends (not on the signal ends), and hairpin resolution generates a

combination of different sequences at the ends. Second, the addition

of N (non-templated) nucleotides by the terminal deoxynucleotidyl

transferase (TdT) adds junctional diversity to the coding joints [80–

82]. Note that the diversity is not generated through C-NHEJ itself

but rather through accessory mechanisms (i.e., via a hairpin

resolution and TdT). The requirement for additional processes to

generate diversity supports the notion that C-NHEJ is not, per se,

sufficiently mutagenic at the coding joints. Moreover, the repair of

signal joints, which results from the direct ligation of blunt ends, is

largely error-free [76,77]. This result shows that when the DNA

ends are directly suitable for ligation, C-NHEJ is error-free.

An end-joining process strictly restricted to fully complementary

ends would be unable to ligate the coding joints. In contrast, a

versatile but conservative process, such as C-NHEJ, is able to join

these DNA ends and generate a highly diverse immune repertoire

while protecting against side genomic instability. Notably, DNA ends

are not complementary during class switch recombination, and the

versatility of C-NHEJ is, therefore, essential to complete this process.

IR generates DSBs with chemically altered ends bearing

complex lesions that are inept for enzymatic ligation. This

situation is different from that of imperfectly complementary ends

because the ligase is inactive on those types of chemically modified

ends. Thus, IR-induced DSBs must be processed prior to ligation

(Figure 3B). Consequently, mutagenesis at the resealed junctions of

IR-induced DSBs results from this preliminary ‘‘cleaning’’ step

rather than from C-NHEJ itself. Remarkably, Ku possesses a 59-

dRP/AP lyase activity, specialized for DSB, that restricts

nucleotide loss at the ends (Figure 3B), therefore maintaining

genomic stability [83].

The ‘‘cleaning’’ of IR-induced DSBs generates non-comple-

mentary ends. Thus, a non-versatile repair process would be

unable to repair IR-induced DSBs, and the organism would be

highly sensitive to IR, even at low doses. Therefore, the

adaptability of C-NHEJ is essential for resistance to IR. This

adaptability should have important consequences for the response

to endogenous DSBs and to low exogenous doses, such as

environmental or medical (radiological examination) exposures.

Genome Manipulation: Targeted Mutagenesis Induced
by DSBs
The versatility of C-NHEJ has promising applications. Several

strategies for targeting mutagenesis are based on mutagenic DSB

end-joining. For example, targeted DSBs are generated through

different types of nucleases, and unfaithful end-joining events are

selected. One could argue that this strategy is primarily based on

A-EJ–mediated events and that: i) A-EJ is accompanied by

uncontrolled resection at the repaired junctions; ii) A-EJ favors

translocations; and iii) in wild-type cells, A-EJ is less efficient than

C-NHEJ [1,2]. For these reasons, selecting strategies that act

through C-NHEJ–dependent pathways should minimize the risks

of side genomic instability, provided that controlled variability is

introduced at the junction. Interestingly, ectopic expression of

TdT efficiently adds a limited number of nucleotides at I-SceI-

generated ends in a Ku- and ligase IV (C-NHEJ) –dependent

manner, also in non-lymphoid cells [84]. One limitation is that

TdT preferentially acts on 39 overhangs or blunt ends. Conse-

quently, TdT should be used in combination with nucleases that

generate these types of ends. DNA end–modifying enzymes have

also been shown to generate mutations at the resealed junctions of

DNA ends generated by TAL endonucleases, but it is unknown

whether they act through the C-NHEJ pathway [85].

Conclusion

C-NHEJ is a conservative end-joining process but permits

controlled genetic variability required in essential physiological

processes.

At the chromosome level, C-NHEJ protects against DSB

movements and profound genome rearrangement. Note that C-

NHEJ is involved in physiological processes leading to rearrange-

ments, such as the development of the Paramecium macronucleus

and V(D)J or class switch recombination. These processes are

highly controlled, and the synapsis of the interacting DNA is

frequently promoted by associated proteins but not the NHEJ

machinery itself, as exemplified in the V(D)J recombination during

which the Rag1-Rag2 proteins promote the synapsis of the distant

interacting sequences before DNA cleavage. Thus, although C-

NHEJ protects against chromosomal rearrangements, it should

allow genetic diversity in highly controlled physiological processes.

At the junction sequence level, the previously proposed fallibility

of the NHEJ pathway reflects a combination of factors: i) the

involvement of the highly mutagenic A-EJ process, ii) the necessity

of processing DNA ends prior to their joining, and iii) the

versatility/adaptability of C-NHEJ. C-NHEJ is not intrinsically

inaccurate, but is versatile and adaptable to imperfect ends, and

the actual quality of the end-joining is dictated by the structure of

the DNA ends rather than by the C-NHEJ machinery. Versatility/

adaptability is paramount for certain essential processes and

confers a key role for C-NHEJ in the balance between genetic

stability and genetic diversity during the generation of the immune

repertoire, molecular evolution, and when challenged with

endogenous and environmental sources of DSBs.
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