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Abstract—Community detection or cluster detection in net-
works is a well-studied, albeit hard, problem. Given the scale
and complexity of modern day social networks, detecting ‘“rea-
sonable” communities is an even harder problem. Since the first
use of k-means algorithm in 1960s, many community detection
algorithms have been invented - most of which are developed with
specific goals in mind and the idea of detecting ‘“meaningful”
communities varies widely from one algorithm to another. With
the increasing number of community detection algorithms, there
has been an advent of a number of evaluation measures and
objective functions such as modularity and internal density.
In this paper we divide methods of measurements in to two
categories, according to whether they rely on ground-truth or
not. Our work is aiming to answer whether these general used
objective functions are well consistent with the real perfor-
mance of community detection algorithms across a number of
homogeneous and heterogeneous networks. Seven representative
algorithms are compared under various performance metrics,
and on various real world social networks.

Index Terms—Social network; Community detection; Objec-
tive functions; Benchmark network; Measurements.

I. INTRODUCTION

With the rapid proliferation of social networks, social media,
blogs, and even cell phone communication networks, comes
the opportunity of innovation in and application of community
detection algorithms. However, the evaluation of community
detection algorithms continues to be a hard problem. While
a number of evaluation measures or objective functions have
been proposed, each have their short-comings or assumptions.
This becomes even more confounding when we also have
heterogeneous information networks, as not only such net-
works are challenging for community detection algorithm,
they are also challenging for evaluation. In this paper, we
propose to compare community detection algorithms under
various performance metrics, and on various “real world”
social networks to explore whether current objective func-
tions are well consistent with ground-truth of social network
datasets. Another important purpose of our survey is to prove
that different community detection algorithms have different
performances on different social networks.

In order to conduct appropriate experiments, we divide the
community detection algorithms in to two categories based
on whether the social network is heterogeneous or homoge-
neous. Additionally, considering the heuristics or philosophy

employed by community detection algorithms, some of the
heuristics could be formalized in to objective functions, and
then they can be optimized by maximizing or minimizing
objective functions such as modularity [2, 6] and partition
density [17]. However in some other algorithms, heuristics are
extremely hard to be formalized in to objective functions, such
as RankClus [1] and Edge Betweenness Clustering algorithm
[5]. In this way we can divide each category in to two
smaller categories, according to whether their heuristics can
be formalized in to objective functions.

As for performance metrics, they can also be classified in to
two categories according to whether their evaluations rely on
ground-truth or not. Currently we are using the metrics listed
in Table I, and in future more frequently used performance
metrics will be included.

Besides performance metrics we discussed above, Andrea
Lancichinetti et al. [16] proposed to use benchmark networks
with built-in communities to evaluate the performance of
community detection algorithms, this method is also involved
in our comparisons.

Several datasets are chosen as our experimental subjects:
Karate Club dataset [10], Mexican Political Power dataset [9],
Sawmill dataset [13], Cities and Services dataset [21], and
MIT Reality Mining dataset [11]. They are all small size social
networks and are valuable at the startup stage of our survey,
by using which we can have a more intuitive and clear view
of social networks and community detection algorithms. In
future work, we plan to increase the size of social networks
to explore more details.

II. RELATED WORK

A. Community Detection Algorithms

The algorithms used in our survey are selected according
to categories described in Section I. From Table II we can
clearly see why these algorithms are selected to perform our
experiments.

B. Social Network Datasets

The social networks datasets are listed in Table III.



TABLE I

PERFORMANCE METRICS OF COMMUNITY DETECTION ALGORITHMS
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TABLE I

PERFORMANCE METRICS OF COMMUNITY DETECTION ALGORITHMS

Algorithm RankClus [1] LinkCommunity [17] LineGraph [22] K-means [18]
Formalization | Heter | Homo | Formalization | Heter | Homo | Formalization | Heter | Homo | Formalization | Heter | Homo
Properties | No Yes N/A Yes Yes Yes Depends Yes Yes Yes No Yes
Algorithm Walktrap [2] SPICi [15] Betweenness [5] Comments
Formalization | Heter | Homo | Formalization | Heter | Homo | Formalization | Heter | Homo See footnote
Properties | Yes N/A Yes Yes N/A Yes No Yes Yes
TABLE III . . . . .
SOCIAL NETWORK DATASETS small sized social networks with ground-truth information are
chosen, which allow us to perform the initial analyses and
Datasets Size Ground-Truth Is Heteroge- insights. With these analyses we can gradually increase the
Communities neous social networks size and see whether these insights still hold
Karate Club 34 nodes | 2 No with the increment of social network size, and the type of
Mexican 35 nodes | 2 No social networks. Using this methodology we can redesign
Sawmill 36 nodes | 3 No experiments with ease to explore more precise conclusions.
Reality Mining 79 nodes | 2 No
Cities&Services | 101 nodes | 4 Yes III. EXPERIMENTS
Benchmark 45 nodes 3 No

Fig. 1. Methodology
—

Identify
Network

¢ Redesign experiments

2

increase size

C. Methodology

The methodology employed in our paper is something
like “black box” approach by measuring algorithms under
different objective functions, because whether these objective
functions are reliable or not is unknown to us. By employing
this methodology we can simplify our work of experiments
and achieve more concise comparisons of these performance
metrics of community detection algorithms. Currently only

Our selected data sets include both heterogeneous network
and homogeneous networks. Likewise, our clustering meth-
ods include algorithms designed for heterogeneous networks,
homogeneous networks or both (Table II). Such that if an
algorithm is designed for homogeneous network and we apply
it on heterogeneous network, it may have unreasonable results.
However, there is possibility that it still has high score of some
objective function, in this way the biases between objective
function and ground-truth information could be identified.

We apply seven selected community detection algorithms
on the datasets listed in Table III. The communities detected
are evaluated by performance metrics presented in Table L.

We will study these data according to two dimensions: algo-
rithm dimension and objective function dimension. Algorithm
dimension means we only study the related behaviors of one
specified algorithm, while objective function dimension refers
that we compare information related with specific objective
function. Generally speaking the ground-truth based rand
index is much more precise to differentiate the qualities of
algorithms on social networks.



TABLE IV
EXPERIMENT RESULTS

Dataset | GT RankClus Walktrap
RI D C CR M Co RI ID C CR M Co
Karate 2 1 0.275 0.875 0.965 0.211 2 0.745 0.308 0.81 0.953 0.188 2
Mexican | 2 0.489 0.168 0.434 0.778 0.003 2 0.536 0.197 1 1 0.018 1
Sawmill | 3 0.530 0.048 0.138 0.877 0.003 3 0.560 0.307 0.845 0.981 0.178 2
Cities 4 0.668 0.988 0.168 0.018 0.004 4 0.348 0.266 1 1 0.006 1
Reality | 2 0.575 1 0.987 0.988 0.099 2 0.561 1 0.968 0.969 0.100 2
Bench 3 0.718 0.208 0.625 0.937 0.107 3 1.0 0.31 0.874 0.981 0.289 3
Dataset | GT K-means LinkCommunity
RI ID C CR M Co RI ID C CR M Co
Karate 2 0.941 0.168 0.503 0.897 0.057 2 0.743 0.499 0.468 0.907 0.284 8
Mexican | 2 0.536 0.218 0.606 0.847 0.066 2 0.536 0.197 1 1 0.018 1
Sawmill | 3 0.527 0.309 0.761 0.961 0.232 3 0.560 0.328 0.731 0.902 0.314 5
Cities 4 0.604 0.31 0.282 0.807 0.032 4 0.348 0.266 1 1 0.006 1
Reality 2 0.523 0.433 0.742 0.944 0.189 2 0.574 0.964 0.898 0.828 0.109 3
Bench 3 1 0.143 0.411 0.888 0.015 3 0.826 0.397 0.598 0.931 0.406 11
Dataset | GT SPICi Betweenness
RI D C CR M Co RI ID C CR M Co
Karate 2 0.586 0.729 0.524 0.898 0.136 5 0.913 0.21 0.63 0.933 0.199 3
Mexican | 2 0.553 0.6 0.648 0.903 0.155 3 0.605 0.079 0.1 0.79 0.036
Sawmill | 3 0.629 0.633 0.547 0.947 0.192 7 0.570 0.028 0.11 0.908 0.022 6
Cities 4 0.636 0.513 0.11 0.799 0.022 12 0.267 0 0 0.729 0.007 12
Reality | 2 0.573 0.88 0.844 0.9 0.098 2 0.563 0 0.11 0.322 0.079 9
Bench 3 0.865 0.521 0.731 0.965 0.260 5 0.943 0.399 0.721 0.964 0.284

In these tables GT states the number of classes of ground-truth, RI is the rand index score, ID is the internal density, C is the conductance, CR is the cut ratio, M represents the
modularity, and Co is the number of communities detected by corresponding algorithms. As for these metrics, higher score indicates higher quality.

If we focus on the algorithm of RankClus (originally
designed for heterogeneous networks) we can see that internal
density, conductance, cut ratio and modularity to some extent
can reveal algorithm’s performance over different datasets. For
example RankClus does not perform well on the Mexican
Political dataset across the different performance measures
— rand index score with other social networks, internal
density, modularity and conductance also suggest that the
detected communities are of poor quality. RankClus has the
best performance on cities and services dataset; however the
related conductance, cut ratio and modularity are do not reveal
the high performance. Another example is, RankClus correctly
clustered all nodes in the Karate Club dataset, and however the
internal density does not have the best score when comparing
with other algorithms. These bring forth the critical issues with
evaluation.

Another interesting observation is that Walktrap algorithm
and LinkCommunity algorithm have the worst performance
on the same social networks (they cluster nodes of Mexican
dataset and cities dataset in to one single community). And
more interesting thing is that while they have the worst
performance their conductance and cut ratio scores are perfect,
which gives diametrically opposed measurements. A possible
reason for this is that Walktrap and LinkCommunity are
both designed to optimizing some objective functions. In

contrast optimization of criterions does not always lead to real
qualified communities. Additionally we can see that although
RankClus is designed for heterogeneous networks, it also has
surprisingly high score on specific homogeneous network, this
is an interesting phenomenon we need to look deep in to at
our next stage of work. The behaviors of community detection
algorithms vary in different social networks.

When we concentrate on a single objective function, for
instance, internal density, trivially we can find that SPICi
algorithm has the best internal density on Karate dataset;
however RankClus has the best performance on Karate dataset.
Another example is, LinkCommunity has the best modularity
on Sawmill dataset while SPICi has the best performance on
Sawmill dataset. Among the data in Table IV there are a lot
of such examples, based on current experiments results and
observations, we can see that the correlation between the real
quality and objective functions that are not based on ground-
truth, is not strong.

Lancichinetti et. al [16] proposed to use generated bench-
mark networks to measure the performance of community
detection algorithms. However, in Table IV we can see that
these six algorithms listed above all have very high rand
index scores, which does not hold for the other datasets.
There are two possible reasons, the first one is this generated
benchmark network is easy to be “mined”, another one is the




Fig. 2. LinkCommunity (Left) and Line graph (Right) clustering on the
Karate Club dataset

generated benchmark networks are not good approximations
of “real world” social networks. In order to know which
reason contributes to this phenomenon, we need to conduct
more experiments and try more benchmark networks generated
under different configurations.

The quality of communities detected by algorithms is hard
to evaluate, for example, in Fig. 2 we need to carefully analyze
them to get the conclusion that line graph algorithm gives more
reasonable partition. Performance metrics can largely help our
evaluations but cannot completely define the quality.

IV. CONCLUSION AND FUTURE WORK

Seven representative algorithms were compared under var-
ious performance metrics, and on various “real world” social
networks. Based on our current observations of experiments
results, we can conclude that performance metrics based on
the ground-truth information are more reliable than objective
functions that are not based on ground-truth, such as internal
density and modularity. Benchmark networks are not yet
confirmed to be good approximations of ground-truth method.

Our current work is based on small social networks, with ob-
servations we made in Section III, we will redesign next stage
experiments to enhance our opinions or achieve more precise
conclusions. For example, objective functions not based on
ground-truth information are not so strong to accurately reveal
the performance of algorithms on social networks we have
studied. However, there is possibility that these objective func-
tions could become reliable when the size of social network
increases, this requires us to conduct more experiments on
larger social networks. As for benchmark networks we need try
more benchmark networks created under different properties
configurations, either we can prove that benchmarks networks
are not good approximations of measuring algorithms, or we
can find that proper configured benchmark networks could
facilitate our research on community detection algorithms
comparisons.

In the future work more performance metrics are to be
involved, and more algorithms and datasets will be selected to
reinforce the robustness of our conclusions. With the gradual
increment of dataset size the relation between social network
volume and objective functions is estimated to be unfolded.
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