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Rainfall-runoff modeling is highly uncertain for a number of different reasons. Hydrological

processes are quite complex, and their simplifications in the models lead to inaccuracies.

Model parameters themselves are uncertain—physical parameters because of their

observations and conceptual parameters due to their limited identifiability. Furthermore,

the main model input—precipitation is uncertain due to the limited number of

available observations and the high spatio-temporal variability. The quantification of

model output uncertainty is essential for their use. Most approaches used for the

quantification of uncertainty in rainfall-runoff modeling assign the uncertainty to the model

parameters. In this contribution, the role of precipitation uncertainty is investigated.

Instead of a standard sensitivity analysis of the model output with respect to the input

variations, it is investigated to what extent realistic precipitation fields could improve

model performance. Realistic precipitation fields are defined as gridded realizations of

precipitation which reproduce the observed values at the observation locations, with

values which reproduce the distribution of the observed values and with spatial variability

the same as the spatial variability of the observations. The above conditions apply to each

observation time step. Through an inverse modeling approach based on RandomMixing

precipitation fields fulfilling the above conditions and reproducing the discharge output

better than using traditional interpolated observations can be obtained. These realizations

show how much rainfall runoff models may profit from better precipitation input and how

much remains for the parameter and model concept uncertainty. The methodology is

applied using two hydrological models with a contrasting basis, SHETRAN and HBV, for

three different mesoscale sub-catchments of the Neckar basin in Germany. Results show

that up to 50% of the model error can be attributed to precipitation uncertainty. Further,

inverting precipitation using hydrological models can improve model performance even

in neighboring catchments which are not considered explicitly.

Keywords: data uncertainty, model inversion, hydrological modeling, Random Mixing, SHETRAN, HBV,

precipitation
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1. INTRODUCTION

Hydrological modeling is affected by high uncertainty due to
problems with:

• process description.
• process parametrization.
• observation uncertainty.
• spatial variability of static or slowly changing spatial fields (soil

properties, land cover).
• spatial and temporal variability of meteorological forcing—

precipitation and temperature.

The quantification of the uncertainty of the outputs of
hydrological models is very important both theoretically and
for applications. Most techniques for uncertainty estimation
assign the uncertainty to the model parameters, as these are
generally used for model calibration. Conventional approaches
have assigned all uncertainty to parameters using likelihood
functions for the parameter estimates (Stedinger et al., 2008;
Schoups and Vrugt, 2010; Beven and Binley, 2014). However,
there are multiple sources of uncertainty in the modeling
process to be considered, which may be more important than
parameter estimation. These include the observation of inputs to
the model (typically precipitation, potential evapotranspiration),
the specification of inputs to the model (e.g., time and space
resolution), the model structure (e.g., physics-based or lumped),
and the observed discharge data used for model validation (or
calibration). It is of course not straightforward to treat these
sources independently, as there are many possible interactions
and analysis of one source must be considered conditional on
other choices of themodeling procedure (see Gharari et al. (2021)
for a comprehensive discussion).

Precipitation uncertainty seldom considered. In these cases
most frequently sensitivity analyses have been carried out to
show how large differences in the simulated discharge can be
as a consequence of changing precipitation input. This tells
us how much difference we can expect if we use different
precipitation inputs, even if the modified input may not be
plausible from the viewpoint of the observations. Furthermore,
this way, one cannot tell how much improvement of the
model performance would be possible had we used different
but plausible precipitation. In Kavetski et al. (2006) the
authors recognized the influence of precipitation uncertainty
on the model outputs, and included it into the calibration
procedure. However, their approach includes a multiplier for
the precipitation, which may lead to non-realistic fields. Pianosi
and Wagener (2016) also used a multiplier for precipitation
uncertainty but in a global sensitivity analysis which allowed
some comparative assessment of different sources of uncertainty,
concluding that uncertainty in precipitation has a significant
influence in a wet catchment, although less so in dry and
snow affected settings. Yatheendradas et al. (2008) addressed a
particularly sensitive case of flash flood forecasting in a semi-arid
catchment, concluding that the uncertainty due to bias in radar
rainfall estimates almost completely dominated the uncertainty
in the modeled response.

According to Wikipedia: An inverse problem in science is
the process of calculating from a set of observations the causal
factors that produced them. In our case precipitation is causing
discharge. An inverse modeling approach (to "do hydrology
backwards") was demonstrated by Kirchner (2009). The purpose
there was to infer catchment average precipitation from
discharge, and this was achieved using a highly simplified model,
namely a first-order nonlinear ordinary differential equation.
Similarly, an inverse approach was used for areal precipitation
estimation for small catchments in Luxembourg by Krier et al.
(2012). These studies did not intend to incorporate observed
precipitation into their modeling, and lead to the recognition that
inverse modeling without conditional precipitation can result
in infinitely many solutions across an unrealistically wide and
non-informative range.

Our approach and goal are different from previous inverse
modeling studies—we would like to know howmuch of the error
of the modeled discharge can be explained by precipitation errors
and uncertainty. Our approach is also different from previous
sensitivity analyses as we move beyond a simple multiplicative
bias approach and develop a more generic probabilistic error
and uncertainty framework for the precipitation fields, allowing
exploration of the potential for improvement of the simulations
solely through plausible changes to the precipitation field. Thus,
the research questions of this contribution are: To what extent is
erroneous precipitation observation and interpolation responsible
for hydrological model errors? Are there plausible realizations of
space-time precipitation (over a long time period of years) such that

FIGURE 1 | Study area showing the three considered sub-catchments of the

Neckar river.
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these realizations conform with precipitation observations both at
observation locations and in spatial variability, but still generate
discharge using a hydrological model which is closer to the observed
discharge? In practice, therefore, can it be that models are better
than the data?

For this purpose, a methodology to find appropriate plausible
space-time precipitation fields is developed. The use of this
methodology leads to further research questions:

Is this methodology general or specific to different hydrological

models? Do the fields obtained using the inverse methodology

for one model also improve the performance of another model,

suggesting lower conditional dependence between model and input?

As precipitation fields are identified over a larger area including
more than one single catchment, the third question is:

FIGURE 2 | Relative sum of squared errors for the Kocher catchment as a

function of the iterations completed for the 10 optimizations using SHETRAN

(Top) and HBV (bottom). At iteration 0 the error corresponding to the

interpolated precipitation is 1.0.

Is the precipitation which leads to better discharge estimates in one

catchment obtained at the cost of other neighboring catchments? Do

models for other catchments in the area perform worse due to the

precipitation adjusted for a selected catchment? Can we generate

precipitation fields which simultaneously improve runoff estimates

for more than one catchment?

Event-based Space-time model inversion was considered in
Grundmann et al. (2019). Here, the methodology is based
on Random Mixing, and Whittaker-Shannon interpolation
(Hörning et al., 2019) is used. A similar approach for the analysis
of a single event was presented in Bárdossy et al. (2020).

2. METHODOLOGY

The goal is to generate time series of precipitation fields which,
for each timestep,:

FIGURE 3 | Sum of squared errors for the Enz catchment as a function of the

iterations completed for the 10 optimizations using SHETRAN (top) and HBV

(bottom). At iteration 0 the error corresponding to the interpolated precipitation

is 1.0.
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• are identical to the observed precipitation values at the
observation locations,

TABLE 1 | Best model performance using interpolated, individually and

simultaneously inverted precipitation with SHETRAN.

River Interpolated Individual Simultaneous

NS SQ NS SQ NS SQ

Enz 0.770 59E4 (1.0) 0.894 27E4 (0.46) 0.860 36E4 (0.61)

Jagst 0.705 12E5 (1.0) 0.831 67E4 (0.57) 0.797 81E4 (0.69)

Kocher 0.609 29E5 (1.0) 0.766 17E5 (0.60) 0.742 19E5 (0.66)

Numbers in the parentheses show values relative to the respective squared error sum of

the interpolation.

TABLE 2 | Best model performance using interpolated, individually and

simultaneously inverted precipitation with HBV.

River Interpolated Individual Simultaneous

NS SQ NS SQ NS SQ

Enz 0.857 38E4 (1.0) 0.931 18E4 (0.47) 0.918 21E4 (0.56)

Jagst 0.855 60E4 (1.0) 0.922 32E4 (0.53) 0.909 37E4 (0.62)

Kocher 0.885 88E4 (1.0) 0.939 46E4 (0.52) 0.933 50E4 (0.57)

Numbers in the parentheses show values relative to the respective squared error sum of

the interpolation.

TABLE 3 | Final model performance using precipitation inverted for a different

catchment with SHETRAN.

Optimized for

River Enz Jagst Kocher

NS SQ NS SQ NS SQ

Enz 0.774 58E4 (0.98) 0.772 58E4 (0.99)

Jagst 0.716 11E5 (0.96) 0.727 11E5 (0.92)

Kocher 0.618 28E5 (0.98) 0.629 27E5 (0.95)

Numbers in the parentheses show values relative to the respective squared error sum of

the interpolation.

TABLE 4 | Final model performance using precipitation inverted for a different

catchment with HBV.

Optimized for

River Enz Jagst Kocher

NS SQ NS SQ NS SQ

Enz 0.860 36E4 (0.95) 0.860 36E4 (0.95)

Jagst 0.871 52E4 (0.87) 0.869 53E4 (0.89)

Kocher 0.902 73E4 (0.83) 0.897 77E4 (0.88)

Numbers in the parentheses show values relative to the respective squared error sum of

the interpolation.

• have spatial variability similar to that of the observations
(described with the variogram or the spatial covariance
function), and

• provide better fits of the simulated discharges to the
observation when used as input for the hydrological modeling.

Formally, given a precipitation field S(x, t) (x is the location while
t is the time step), the modeled discharge is denoted asQS(t). The
goal is to find a space-time field S for which the quadratic error of
the calculated discharge is minimal:

T
∑

t=1

(

qo(t)− QS(t)
)2

→ min (1)

where qo(t) is the observed discharge at time t. This optimization
problem has a very large number of unknowns which act non-
independently on the model output.

For our catchments, precipitation is mainly responsible for
high discharges, and slight alterations of the precipitation

FIGURE 4 | Discharge of Enz observed (dotted line) simulated using

interpolated precipitation (dashed line) and simulated using individual model

inversions (solid lines). Top, SHETRAN; bottom, HBV.
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have no significant effect on the low flow conditions. Thus,
model errors corresponding to intense precipitation are mainly
affected. Hence, we select a set of days t1, . . . , tn with the
highest precipitation and only investigate the corresponding
precipitation fields. The precipitation fields for the remaining
days are simply interpolated from the gauge data.

So, better precipitation fields S(x, ti) are to be found. The
formal conditions are that the precipitation fields have the same
values as the observations at gauge locations:

S(xk,i, ti) = p(xk,i, ti)

where, k is a given gauge. The variogram of the field γS,ti should
be similar to the variogram of the observations γp,ti :

γS,ti (h) = γp,ti (h)

where h is the one-dimensional Euclidean distance.
In order to generate appropriate precipitation fields, the

objective function has to be simplified. Alterations of the
precipitation do not only have an effect on the calculated
discharge at the selected time, but also affect subsequent
time steps. However, hydrological systems have a relatively
short memory. So, one can assume that if the precipitation
input S(x, τ ) was altered at time τ - Sa(x, τ ) then there
is a duration 1t such that if t > τ + 1t then
QS(t) ≈ QSa (t). 1t can be called the memory of the
hydrological model.

Now, to alter precipitation fields with non-interacting
consequences, the time steps will be partitioned in subsets,
so they consist of non-interacting steps. The j-th such set
is Tj:

0 ≤ tj0 < tj1 < tj2 < . . . < tjmj
≤ T and tjk+1

− tjk > 1t

FIGURE 5 | Eight inverted precipitation realizations for the Enz discharge for day 4,043 (January 27, 2002) and the interpolated precipitation in the middle using

SHETRAN. The white squares in the middle figure represent the observation locations.
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In this case the squared error can be written as:

T
∑

t=1

(

qo(t)− QS(t)
)2

≈

J
∑

j=0

∑

tj,i∈Tj

tji+1−1
∑

t=tji

(

qo(t)− QS(t)
)2

(2)

For each j the sum consists of discharges which mainly depend
on the precipitation field at the beginning of the interval tji , and
only marginally depend on previous the precipitation.

Thus, the minimization of the squared error can be done for
each tji separately.

For a given time step tji the corresponding sum is:

tji+1−1
∑

t=tji

(

qo(t)− QS(t)
)2

→ min

This depends only on the precipitation field S(x, ti) at time ti. As
we assume that the memory of the hydrological model is shorter

than 1t, we can also assume that QS(t) for t > ti+1 is not
influenced by changes of the precipitation field S(x, ti). Thus, the
very complex problem is decomposed into a series of problems
with a single precipitation field. To generate candidate fields, the
following steps are taken:

1. For each day τ , collect all precipitation observations
Z(xj, τ ) (xj is the gauge location j). Fit a non-parametric
distribution to the positive values (in the log domain
to avoid negative values after the back transform). This
distribution represents the possible values of precipitation to
be considered.

2. Estimate a smooth precipitation field which matches the
observations at gauge locations. This is an interpolated field
that will be perturbed later on such that its covariance
function would match that of the observed one. Transform
the observed precipitation amounts to the Standard Normal
using the distribution function obtained in step 1. Interpolate
the Gaussianised values corresponding to the observations

FIGURE 6 | Eight inverted precipitation realizations for the Enz discharge for day 4,043 (January 27, 2002) and the interpolated precipitation in the middle using HBV.

The white squares in the middle figure represent the observation locations.

Frontiers in Water | www.frontiersin.org 6 March 2022 | Volume 4 | Article 836554

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Bárdossy et al. Precipitation and Hydrological Model Uncertainty

using the spatial covariance function (or variogram) for the
computational grid of the model. This field is S0(x, ti).

3. Generate two random normal fields S1(x, ti) and S2(x, ti) such
that they are zero at the observation locations (Sk(xj, ti) = 0).

4. Select a number of fields L

Sϕl = cos

(

l · 2π

L

)

Sk−1 + sin

(

l · 2π

L

)

Sk l = 0, . . . , L− 1

The fields defined this way are all Gaussian and have the same
covariance function, which is equal to the covariance function
of the Gaussianised observations.

5. For each of the above fields, a precipitation field is defined:

Zϕl = F−1
ti

(

8
(

S0 + Sϕl

))

l = 0, . . . , L− 1

where 8 is the Standard Normal distribution function.
This precipitation field has the same variability as the

observations and has the same values as the observations at
the respective locations.

6. Using the hydrological model, the discharge time series Ql(t)
for each of these precipitation fields are calculated.

7. Using the discharge series Ql(t) with the Whittaker-Shannon
interpolation (Hörning et al., 2019) the discharge series are
calculated for a large number of possible angles α. Then, for
each time step tji the field corresponding to the α minimizing

tji+1−1
∑

t=tji

(

qo(t)− Qi(t)
)2

→ min (3)

is accepted and used for the next iteration. Starting at step 3.
It is found that days with high precipitation are often

clustered, and the in-between time is frequently < 1t. For such
a case, the set of days U is split into disjoint subsets with index

FIGURE 7 | Eight inverted precipitation realizations for the Enz discharge for day 4,044 and the interpolated precipitation in the middle using SHETRAN. The white

squares in the middle figure represent the observation locations.
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(u) so that in each of the sets: {t
(u)
j1

, t
(u)
j2

. . . t
(u)
juJ

} the following

condition holds:

0 < t
(u)
j1

< t
(u)
j2

< . . . < t
(u)
juJ

< T and t
(u)
jk+1

− t
(u)
jk

> 1t for each j.

In this case, each iteration is carried out for each index u one after
the other.

2.1. Simultaneous Estimation
Instead of conditioning precipitation on observations and
discharge measured at a single catchment, more discharge series
may be used simultaneously. For this purpose, the objective
function is formulated as the sum of the squared errors of the
individual catchments (C):

C
∑

c=1

T
∑

t=1

(

q(c)o (t)− Q
(c)
k
(t)

)2
→ min (4)

Here, the set of time steps that are considered is the union
of the sets of the individual catchments. The simultaneous
estimation requires forward model runs separately for each
catchment using the same precipitation fields. The optimum is
the best compromise.

3. APPLICATION

3.1. Study Area
Themethodology was applied to a set of different sub-catchments
of the Neckar river in the South-West of Germany. Namely
Enz, Jagst and Kocher (Figure 1). These three catchments were
selected due to them being relatively unaffected by urbanization.

The total catchment area of the Neckar is about 14,000 km2

while Enz, Jagst and Kocher have 1,655, 1,820, and 1,943 km2,
respectively. They are bounded by the Black Forest from the
West and the Swabian Alps from the East. The mean annual
interpolated precipitation for each is 928, 818, and 887 mm.

FIGURE 8 | Eight inverted precipitation realizations for the Enz discharge for day 4,044 and the interpolated precipitation in the middle using HBV. The white squares

in the middle figure represent the observation locations.
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Precipitation is relatively evenly distributed over the catchments.
The mean areal interpolated temperatures are 11.7, 11.5, and
11.7 oC, respectively for the considered time period of 1991–
2015 (9,131 days). Their elevations lie between 205–992, 155–
731, and 159–745 meters above the mean sea level, respectively.
The Jagst and the Kocher have elongated catchment forms, thus
likely to have different precipitation variability than the roundish
catchment like the Enz.

3.2. Data
Observed weather data time series were downloaded from
the Deutscher Wetter Dienst’s (DWD, German Weather
Service) open access portal (DWD, 2019). The considered
variables were precipitation and temperature (daily minimum,
maximum, and average). Stations near but outside the rectangle
covering all three catchments were considered. The number
of available constraining precipitation observations varied
between 120 and 230. Thus, the coverage with precipitation
observations was extremely good, and there was little
room for precipitation alterations between the stations.
The potential evapotranspiration was computed using the
Hargreaves-Samani equation (Hargreaves and Samani, 1982).
The daily discharge time series was downloaded from the
open access portal of the Landesanstalt für Umwelt Baden-
Würrtemberg (LUBW, Environmental agency of the federal state
of Baden-Würrtemberg) (LUBW, 2020).

3.3. Rainfall-Runoff Models
The total number of inversion time steps (number of days of
the total selected events) considered was 1,386 (15%) out of the
possible 9,131. The events were selected in a sequence such that
making changes to the current time step would have negligible
effects on the next considered one.

Two spatially distributed hydrological models with a grid
resolution of 1 km were used: SHETRAN (physically-based) and
HBV (conceptual). The input data was also at a 1 km spatial
resolution with a 1 day temporal resolution.

3.3.1. SHETRAN

SHETRAN is a freely-available distributed catchment
hydrological modeling software based on the Système
Hydrologique Européen (SHE) principles, which simulates
surface and subsurface flows and their interactions on a
3D spatial grid (Ewen et al., 2000). It includes components for
vegetation interception and transpiration, overland flow, variably
saturated subsurface flow and channel-aquifer interactions.
Solutions to the governing, physics-based, partial differential
equations of mass and momentum are solved on a three-
dimensional grid using finite-difference equations (https://
research.ncl.ac.uk/shetran/). The model parameters were not
calibrated with a classical optimization procedure. Instead,
available data such as the digital elevation model, soil and
land use maps were used to estimate the model parameters
(Birkinshaw et al., 2010; Lewis et al., 2018). These were modified
within the plausible range of uncertainty to produce reasonable
water balances.

3.3.2. HBV

The HBV (Bergström, 1992) model is a conceptual model
developed by the Swidish Meteorological and Hydrological
Institute (SMHI) (Bergström and Forsman, 1973). It is widely
used for hydrological simulations and is well known for its easy
handle and light burden calibration. The model version used
here is the modified version by IWS, University of Stuttgart.
It was calibrated using the gridded precipitation, temperature,
and potential evapotranspiration interpolated using Ordinary
Kriging (Wackernagel, 2004) for the considered time period. It
was set in a distributed manner such that all the cells had the
same model parameters, but the input data for each of them
were different. In the end, the runoff from each cell was summed
up and scaled appropriately to produce a simulated discharge
time series. The Differential-Evolution (Storn and Price, 1997)
optimization scheme was used to find the optimum model
parameters using theNash-Sutcliffe efficiency (Nash and Sutcliffe,
1970) as the objective function.

FIGURE 9 | Discharge of Kocher observed (dotted line) simulated using

interpolated precipitation (dashed line) and simulated using individual model

inversions (solid lines). Top, SHETRAN; bottom, HBV.
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4. RESULTS

4.1. Single Catchment Inversion Results
Rectangular precipitation fields covering all three catchments

of the size of 147 km × 130 km were used for the inversion.

Precipitation amounts for a regular 1 km × 1 km grid were

identified. Precipitation stations in the field and outside near the

boundary were taken as conditioning points. This means that at

the observation locations, the precipitation amounts of the fields

were identical to the observed ones.
The methodology to find precipitation fields was first applied

for each catchment separately. This is referred to as individual
inversions in the rest of the text. Simulations with 10 different
sets of random fields were performed. As the computation time
of the SHETRAN model is non-trivial (about 1 h per run) only
10 to 50 full iterations were carried out. The model performance
improved quickly after a few iterations, and the improvement
slowed down gradually with the increase of the number of

iterations. Using both the models, Figure 2 shows the values of
the objective function as a function of the number of iterations
for the simulations done for Kocher and Figure 3 for the Enz. It
is apparent that the sum of squared-differences decreases to about
half of that obtained using interpolated precipitation.

Tables 1, 2 show the Nash-Sutcliffe values and the sum of
squared-differences for the interpolated and for the inverted
precipitation obtained applying the final precipitation fields
obtained by the algorithm using SHETRAN and HBV. Again, it
can be seen that the inversion improves the model significantly.
The mean squared error decreased by 40–50%. More iterations
could further decrease the error. However, there is a danger of
over-fitting (over-inverting) the precipitation fields. In order to
test the robustness of the inversion, the inverted precipitation
series of fields were applied to the other two catchments.
Tables 3, 4 show the results for the final iterations. All values
are slightly better than the ones obtained using interpolation.
This means that adjusting precipitation for one catchment is not

FIGURE 10 | Eight inverted precipitation realizations for the Kocher discharge for day 3,733 (March 20, 2001) and the interpolated precipitation in the middle using

SHETRAN. The white squares in the middle figure represent the observation locations.
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at the expense of another catchment. In fact, for the two close
catchments Kocher and Jagst, the inversion of the precipitation
for one catchment led to a significant improvement for the other.
For Enz, the effect is much smaller, which is due to its distance
to the other two catchments. Improvements are similar for both
hydrological models.

Looking at individual flood events, for some events, the
improvement of simulation is very large. Figure 4 shows the
hydrographs for an event obtained using interpolated vs. inverted
precipitation. One can see that the severe underestimation of
the hydrograph can be well explained by precipitation error.
Figures 5–8 show the corresponding precipitation fields. Note
that all fields are similar to the interpolated field, which is
due to the dense precipitation measurement network. The
number of stations used as constraints varied between 120
and 230. Even this high density of stations leaves room for
variations. The details in between the stations are responsible
for a large portion of the difference of the simulated discharge

compared to the interpolation based discharge estimates. In some
cases, only partial improvement could be achieved. Figure 9
shows an example of a flood event where the first peak
could not be improved, while plausible precipitation fields
were found for the second one. The corresponding fields are
shown in Figures 10, 11. They show high similarity due to the
large number of constraining observations, but the variability
between the observations could explain the underestimation
obtained when using interpolated precipitation. These results
suggest that small differences in the precipitation fields may
explain a large portion of the output uncertainty of the
hydrological models.

The reasons for little or no improvement for some events
can vary. One of the plausible reasons is that even the relatively
dense observation network may miss the heavy precipitation
intensities, and the values measured at the stations may not be
representative of the real precipitation. This kind of effect is not
considered in the present methodology, where the distribution

FIGURE 11 | Eight inverted precipitation realizations for the Kocher discharge for day 3,733 (March 20, 2001) and the interpolated precipitation in the middle using

HBV.
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FIGURE 12 | Eight inverted precipitation realizations for the simultaneous discharge for day 3,733 (March 20, 2001) and the interpolated precipitation in the middle

using SHETRAN. The white squares in the middle figure represent the observation locations.

of the precipitation measured at the stations is taken as the
distribution of precipitation over the whole field for each day.

In most (about 80%) of the cases, improvements were
achieved when discharge was underestimated by the
interpolation-based field. However, in about 20% of the cases,
an overestimation was corrected. We suggest this is because
observation networks are more likely to miss the maxima which
occurred, than to capture them.

4.2. Results of the Simultaneous Inversion
for the Three Catchments
In order to see to what extent the consideration of the
discharge of several catchments constrains the adjustments of
the precipitation fields, a joint inversion was carried out. Table 1
shows the performance of the model for the three catchments
obtained by simultaneous inversion. The improvement is less
than that with the same number of iterations for the individual
catchments, but one can find precipitation fields which fulfill the

conditions (observed values and spatial variability) that lead to a
significant improvement for all catchments. These are referred to
as simultaneous inversions in the rest of the paper.

Figures 12, 13 show an example of discharge using
simultaneous inversion for the same event shown in Figure 9

using individual inversion. The model performances are similar,
but the precipitation fields in Figures 12, 13 are different. The
precipitation fields corresponding to the simultaneous inversion
are more similar to each other due to the stronger constraints
imposed by the discharge of the three catchments. Figure 14
shows the corresponding event hydrographs.

4.3. Results for Switched Inversion
Precipitation
The results for the cases in which inverted precipitation
obtained using one model was used as input for another
model were also compared. Table 5 shows the change in
model performances when the same catchment precipitation
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FIGURE 13 | Eight inverted precipitation realizations for the simultaneous discharge for day 3,733 (March 20, 2001) and the interpolated precipitation in the middle

using HBV. The white squares in the middle figure represent the observation locations.

inverted using SHETRAN was used as an input for HBV.
The results show slight improvements, showing that the
models may have common problems with falsely estimated
precipitation. Calibration of the HBV model leads to a partial
error compensation, which can only be improved in some clear
cases of for days with under or overestimation of precipitation.
Table 6 shows the results for the case when other than the
considered catchments were used for inversion. In this case, there
is no improvement visible, which may be caused by the error
compensation of the HBV model. We assume that if the HBV
would be recalibrated for this realization of precipitation, the
performance would also increase.

4.4. Comparison of Simulated Fields
Standard deviations for each time step using all simulated
precipitation fields were computed to show the variability of
the fields. Figures 15, 16 show standard deviation fields for the
day 3,733 (March 20, 2001) using the simultaneous inversion

for the three catchments for SHETRAN and HBV, respectively.
According to the methodology, the standard deviations are zero
at the observation locations as the fields were conditioned at
those points. Both figures show that the uncertainty increased
as the distance of unconditioned points increased from the
conditioning ones. Interestingly, we saw no other pattern
(preferential paths or otherwise) neither in SHETRAN nor in
HBV. The standard deviations were higher near the boundaries
and at locations with low observation density.

Furthermore, the Root-mean-squared-error (RMSE) of all
simulations at each pixel with respect to the interpolated field
was also calculated. Figures 17, 18 show these fields for the same
settings as that of the standard deviations.

In order to quantify the similarity of the patterns for each
simulated day, the Pearson correlations between all possible pairs
of realizations were calculated. The mean correlation between
the simulated precipitation fields corresponding to the same
day is 0.68. This is mainly due to the conditioning by the
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FIGURE 14 | Discharge of Kocher observed (dotted line) simulated using

interpolated precipitation (dashed line) and simulated using simultaneous

model inversions (solid lines). Top, SHETRAN; bottom, HBV.

observations and the assumption of spatial continuity reflected
by the prescribed variogram. The different forms and sizes of
the catchments expressed by the variance correction factor (ft)
(Isaaks and Srivastava, 1989) for catchment G is:

ft = 1−
¯γt(G,G)

σ 2
t

= 1−

∫

G

∫

G γt(x− y) dx dy

σ 2
t

(5)

which expresses the variance of the areal mean precipitation
compared to the variance of the point precipitation σ 2

t for a given
day t. Here, γt(h) is the variogram of precipitation on day t. For a
typical variogram the values of the variance correction factor are
0.2858 for the Enz, 0.2053 for the Jagst and 0.2513 for the Kocher.
The reduction of the mean squared error is related to this factor–
the highest reduction of the model error is achieved for the Enz
catchment, which has the highest reduction factor.

TABLE 5 | Model performance comparison when using inverted precipitation from

SHETRAN as an input for the HBV for the same catchment.

River Interpolated Individual Simultaneous

NS SQ NS SQ NS SQ

Enz 0.857 38E4 0.863 37E4 0.847 41E4

Jagst 0.855 60E4 0.863 57E4 0.863 57E4

Kocher 0.885 88E4 0.886 87E4 0.884 89E4

TABLE 6 | Model performance comparison when using inverted precipitation from

SHETRAN as an input for the HBV for the other catchments.

Optimized for

River Enz Jagst Kocher

NS SQ NS SQ NS SQ

Enz 0.802 53E4 0.803 53E4

Jagst 0.849 62E4 0.869 53E4

Kocher 0.880 92E4 0.854 60E4

5. DISCUSSION AND CONCLUSIONS

In this contribution, the role of precipitation uncertainty and
error on the discharge obtained using two hydrological models
was investigated. Instead of simple sensitivity studies, it was
intended to find out whether one can find time series of
precipitation fields with high spatial resolution such that they
reflect both the observed values and their spatial variability
and also produce calculated discharges that are similar to the
observed. Observed data from spatially dense networks (120
to 230 gauges) were used for constraining the precipitation
fields. The results show that the overall squared-differences
sum decreased by 40–50% while peak errors decreased by up
to 70–90%. The inverted precipitation fields are very similar
overall to the eye, but small differences had a major impact
on discharge peaks. The inverted fields are non-unique, and a
large number of different fields are found which can improve
model performance. It was also shown that precipitation fields
optimized using one model improved the results of the other
to some extent, but they never became worse, compared with
using the interpolated precipitation. Optimizing precipitation
for a target catchment improved the results for the neighbor as
well, but not for a more distant one. As the results for both
models were improved significantly, it shows that the method has
generality across conceptual and physically-based model types
with different process representations.

Furthermore, the same methodology could be applied to find
precipitation fields in higher (e.g., 1 h) temporal resolutions. For
such a case, a space-time simulation has to be performed and
advection (which is visible only in higher resolution fields such as
those obtained using Radar) of the fields has to be incorporated
as an additional constraint in the simulation methodology. We
assume that much better modeling performance can be achieved
using the appropriate temporal scales responsible for runoff
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FIGURE 15 | Standard deviation field of all realizations obtained using

simultaneous inversion with SHETRAN for day 3,733 (March 20, 2001).

FIGURE 16 | Standard deviation field of all realizations obtained using

simultaneous inversion with HBV for day 3,733 (March 20, 2001).

FIGURE 17 | Root-mean-squared-error (RMSE) field of all realizations

obtained using simultaneous inversion with SHETRAN for day 3,733 (March

20, 2001) with respect to the interpolated field.

FIGURE 18 | Root-mean-squared-error (RMSE) field of all realizations

obtained using simultaneous inversion with HBV for day 3,733 (March 20,

2001) with respect to the interpolated field.
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formation. For mesoscale catchments, a temporal resolution of
1 h is much better for the description of the real hydrological
processes, but due to the high variability of precipitation,
present observations cannot provide useful estimates in space
and time.

From our results we draw the following conclusions:

• Rainfall-runoff models may be better performing than we
think, as the uncertainty of the calculated discharge can be, to
a large extent, caused by inaccurate precipitation estimation.

• Assigning all uncertainty to themodel parameters neglects this
important part of the uncertainty.

• Discharge measurements can be used to improve precipitation
estimation indirectly.

Themethodology of this paper could also be used on other spatial
and temporal scales, for example for global hydrological data
assessment so that precipitation and discharge estimates are not
independently assessed but harmonized with the help of water
balance modeling.

We conclude that the uncertainty of model parameters
and input uncertainty should both be considered. Precipitation
uncertainty can be responsible for output uncertainty of up to
50% even in densely monitored catchments.

While the methodology can generate plausible precipitation
fields which improve overall model performance, we have so far
not established if these “better” fields have any characteristics
which are physically meaningful, and related to correcting
systematic errors in observation or interpolation, e.g., elevation
dependence or wind-driven undercatch of gauges, rather than
purely random errors due to under-sampling of the true
field. A larger and more diverse range of catchments and
topography is needed to investigate this aspect, which may then
potentially lead to a practical outcome of guided improvement
of precipitation fields and model performance in an operational

predictive setting, rather than just establishing the potential
for improvement.
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