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Abstract—Real-time pricing (RTP) of electricity would improve alloca-
tive efficiency and limit wholesalers’ market power. Conventional wisdom
claims that RTP provides additional environmental benefits. This paper
argues that RTP will reduce the variance, both within- and across-days, in
the quantity of electricity demanded. We estimate the short-run impacts of
this reduction on SO2, NOx, and CO2 emissions. Reducing variance
decreases emissions in regions where peak demand is met more by
oil-fired capacity than by hydropower, such as the Mid-Atlantic. However,
reducing variance increases emissions in more U.S. regions, namely those
with more hydropower like the West. The effects are relatively small.

I. Introduction

ECONOMISTS have long advocated for electricity pric-

ing that accurately reflects time-varying production

costs.1 In particular, they have argued that real-time pricing

(RTP) of electricity would improve the efficiency of elec-

tricity consumption and investment and would lessen the

potential harm from market power. However, these recom-

mendations have met serious political opposition despite

advances in real-time metering and in technology for re-

sponding to real-time prices.2 Recently some environmental

groups have supported real-time pricing for its potential to

reduce pollution.3 Indeed, the conventional wisdom seems

to be that RTP will yield environmental benefits.4

RTP may affect the environment in several ways. In the

short run, changes in generation will affect emissions, water

discharge, nuclear waste production, and fossil fuel use. In

the long run, RTP will affect investment decisions for

generation and consumption. For any of these impacts, this

paper is the first to examine whether RTP is green. We focus

on the short-run impacts on emissions of sulfur dioxide

(SO2), nitrogen oxides (NOx), and carbon dioxide (CO2) for

various U.S. electricity regions.5

RTP may affect emissions by changing the distribution of

electricity load.6 The demand for electricity varies through-

out the day because of hourly changes in, for example,

temperature and economic activity. If the retail prices do not

vary, customers conserve less than would be efficient during

peak periods, but conserve more than would be efficient

during off-peak periods. For example, during a peak period

(such as on a hot afternoon in Texas), the wholesale price of

electricity is higher than the flat retail price. If customers

faced the higher real-time price, each would use less elec-

tricity, and the system load would be smaller. Conversely, in

an off-peak period (such as late at night), the wholesale

price is lower than the flat retail price, and the system load

would be greater under RTP. Since real-time pricing de-

creases load in the peak periods and increases load off-peak,

the effect on average load is ambiguous. However, real-time

pricing would likely decrease the variance of load.7

Decreasing the variance of load can increase or decrease

emissions. Firms use different power sources to produce

electricity including fossil fuel sources (coal, natural gas,

and oil) and nonfossil power sources, which have no emis-

sions, like nuclear and hydropower. Firms generally use

generating units in order of their marginal costs.8 Since fuel

costs are a large component of marginal costs; low-cost

generating units of a given fuel type generally are newer,

use fuel more efficiently, and pollute less per megawatt-hour

(MWh). In this case, decreasing the variance of load then

causes the more efficient, cleaner units to generate more and

the less efficient, dirtier units to generate less, thereby

reducing total emissions.9 Similarly, if peak generation is oil

fired, which typically has high emissions rates, reducing

variance will reduce emissions. On the other hand, reducing

variance may increase emissions. This occurs, for example,

if base-load generation is met by coal-fired units while peak
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1 See, for example, the peak-load pricing literature pioneered by Steiner
(1957) and Boiteaux (1960). More recently, time-varying pricing under
regulation has been discussed by Borenstein, Jaske, and Rosenfeld (2002),
and Borenstein and Holland (2005) study real-time pricing, defined as
prices that vary hour by hour, in competitive electricity markets.

2 Currently RTP is offered in just a few U.S. pilot programs, such as in
Georgia and New York. Time-of-use pricing is more widely available but
does not reflect hour-by-hour variation in production costs.

3 An environmental group in California has proposed an RTP scheme to
remove the need for construction of additional generation capacity in the
city of San Francisco. Another environmental group, Environmental
Defense (2001), argued for RTP in California, citing its environmental
benefits.

4 Hirst and Kirby (2001), Swofford (2001), Kiesling (2002), Smith and
Kiesling (2003), and Nevada Power (2003) claim environmental benefits
in their arguments for RTP.

5 RTP may affect other emissions not studied here, including particulate
matter and mercury.

6 See Borenstein and Holland (2005) and Holland and Mansur (2006) for
detailed theoretical models of RTP adoption.

7 Given prices and elastic demand, variance must decrease with RTP
adoption if average load is greater than all off-peak loads and less than all
peak loads. Hypothetical examples can be constructed in which load
variance increases.

8 “Generating units” typically consist of boilers, turbines, and genera-
tors. A power plant may have several units.

9 In addition to changing the technology used to generate electricity at
different times of day, RTP can reduce emissions by reducing the fre-
quency of restarting units and of ramping production up and down.
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load generation is met by cleaner gas-fired or hydro units.

These different effects imply that the changes in emissions

depend on the relative cleanliness of the available technol-

ogies. Therefore, we estimate the effects separately for

various regions of the United States.

This paper exploits exogenous variation in load to ana-

lyze the effect on emissions of changing the distribution of

load. Daily changes in temperature and economic activity

lead to variation in the distribution of load within and across

days. This variation also leads to variation in emissions. By

estimating this relationship, we can analyze the environ-

mental impacts of real-time pricing.10 Furthermore, the

results are applicable to any policy, such as demand-side

management or critical peak pricing, which would lead to a

reduction in load variance.

In using historic data, our retrospective analysis will not

capture adaptation to RTP by generators, consumers, and

entrepreneurs. Furthermore, RTP may induce a change in

the locational distribution of load. Finally, investment in

generation, transmission, and consumption technology will

likely be affected by RTP. Our analysis only addresses the

short-run effects of reducing load variance and does not

capture all of the ways in which RTP may or may not be

green.

Section II presents the empirical model. Section III com-

pares generation technologies in the various regions and

describes the data. In section IV, we discuss the empirical

results for the parametric approach. Section V tests the

robustness of these findings using a nonparametric model.

The empirical results are analyzed in section VI using the

production technologies in each region. Section VII con-

cludes.

II. Empirical Model

Exogenous changes in the distribution of load directly

affect the generation decisions of firms, and these genera-

tion decisions affect emissions.11 We examine the relation-

ship between the distribution of load and emissions.12 The

equation that we estimate separately for each region is the

following:

ln�Et� � �� � ln�VARt� � �1�ln�MEANt��

� �2�ln�MEANt��
2

� �
s�1

S�12

	sTEMPst (1)

� �
m�1

48


mMOYRmt � �t,

where Et is emissions in the region on day t; VARt measures

within-day variance of the region’s load; MEANt is the

region’s mean daily load; TEMPst is one of twelve functions

of the temperature for one of the S states bordering the

region; and MOYRt is an indicator variable for each of the

48 months from January 1997 to December 2000. The error

term, �t, models the idiosyncratic shock.

The variable VARt describes the load distribution on day

t and could be defined in many ways. We report results for

the coefficient of variation of hourly load, but explore the

robustness of our results to five other possible summary

statistics of variation.13 The negative log-log functional

form allows � to be interpreted as the elasticity of emissions

with respect to a reduction in the variance measure.14

The nonlinear relationship between emissions and gener-

ation across days is captured by using logarithms and

higher-order terms of MEANt. The elasticity of emissions

with respect to mean daily load is therefore �1 � 2�2

ln(MEANt). Below we use this elasticity to simulate the

effects of a reduction in across-day variance.

The estimating equation controls for other factors that

explain daily emissions for a region. The production deci-

sions (and therefore pollution levels) depend on opportuni-

ties outside the region. To control for unobserved imports

and exports, the equation includes twelve measures of

temperature in nearby states. For each neighboring state,

daily mean, minimum, and maximum temperature variables

enter as quadratic functions with coefficients allowed to

differ for cooling degree days (when temperature measure is

above 65°F) and for heating degree days (when temperature

measure is below 65°F). For each month in the sample, a

month-year fixed effect captures differences in costs and

abatement technologies across the different time periods.

Finally, the error term is tested and corrected for heteroske-

dasticity and first-order autocorrelation.15

To address potential concerns about the functional forms

of both VARt and MEANt, we also include a nonparametric

10 The answer to how RTP will change demand and the market equilib-
rium depends on the relevant own- and cross-price elasticities of demand.
Demand elasticities have been estimated for various industries and retail-
pricing programs; see, for example, Patrick and Wolak (2002), Train and
Mehrez (1994), Herriges et al. (1993), Taylor and Schwarz (1990), and
Caves and Christensen (1980). Demand response varies greatly across
industries and customer classes. While beyond the scope of this paper,
Holland and Mansur (2006) simulate the effect of real-time pricing on
load.

11 Electricity wholesale demand is extremely inelastic (see Borenstein,
2002). For identification, we treat it as exogenous to supply shocks.

12 Our estimation can be interpreted as a “reduced form” of a two-stage
model. Namely, emissions are a function of generation, which is likely
endogenous. We could instrument generation with load distribution vari-
ables. However, to simulate RTP, we would need to perturb the instru-
ments and measure the effect in each of the two steps. Instead, we estimate
the indirect effect of load distribution on emissions.

13 Coefficient of variation is the ratio of standard deviation to mean. The
other measures include the relative mean deviation, the standard deviation
of logarithms, and the Gini coefficient as in Atkinson (1970). In addition,
we analyze the max/min ratio (daily maximum to minimum ratio of load)
and the inverse load factor (daily maximum to mean ratio of load).

14 We assume this constant elasticity functional form. The nonparametric
model discussed below allows us to test whether our results are robust to
a general model specification.

15 Equation (1) is estimated using generalized least squares to account
for an AR(1) error structure using the Prais-Winsten method. Robust
standard errors use the White correction.
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analysis, which is independent of the specific functional

forms. Instead of aggregating the hourly data to the daily

level, we determine whether each hour is a high- or low-

demand hour on a high- or low-demand day. Using deciles,

this defines a ten-by-ten matrix of bins into which each hour

is sorted. For example, if the rows are based on the decile of

mean daily load and the columns are based on the decile of

the hourly load for that type of day, then the upper-left bin

would contain the low-demand hours on low-demand days

and the upper-right bin would contain the high-demand

hours on low-demand days. Specifically, for each hour , we

let the dummy variable BIN
dh equal 1 if hour  occurs on a

day which is in the dth decile of mean daily load and in the

hth decile of hourly load on dth decile days.

We define the dependent variable, system emissions rate,

as
E

q

, where q is the hourly load. For hour , the model

estimated is

E

q

� �
d�1

10

�
h�1

10

�dh � BINdh�q� � �
s�1

S�12

	sTEMPs

(2)

� �
m�1

M


mMOYRm � �.

As above, the temperature variables control for imports and

exports and the month-year fixed effects control for changes

in relative costs. With the systems emissions rate as the

dependent variable, we can simulate the effect of RTP by

analyzing how the emissions rate changes by moving a

MWh from a high-load hour to a low-load hour for a given

decile of average load.

III. Data

As is common in electricity modeling, our level of anal-

ysis is a North American Electric Reliability Council

(NERC) region (see figure 1 for the ten regional defini-

tions).16 The council initially defined the regions in order to

ensure a reliable, adequate, and secure system, and there is

substantial transmission and communication within each

region. For example, during our sample period, only 7% of

local demand was met by generation from other NERC

regions.17 We could have defined a coarser level (such as

interconnection) or finer level (such as utility or control

area) of analysis. We argue that NERC regions are the

appropriate level of aggregation because of the trading that

occurs within NERC regions and because of the transmis-

sion constraints between NERC regions.18

The environmental impacts are likely to be sensitive to

the production technologies in each of the ten NERC re-

gions. Table 1 describes the fuel shares of installed capacity

and generation for each region. Because coal and nuclear

power tend to have low marginal costs, their shares of

generation are larger than their shares of capacity. Coal is

16 The Department of Energy’s National Energy Modeling System (En-
ergy Information Administration, 2003) uses 15 NERC regions and
subregions, and Resources for the Future’s Haiku model (Paul & Burtraw,
2002) uses 13 NERC regions and subregions.

17 Over 80% of all the energy traded among the 150 control areas
occurred within NERC regions (authors’ calculation using Platts data:
http://www.platts.com).

18 If we separately analyze California, the results differ from the results
for the WSCC. A large share of California’s demand for energy is met by
imports over the AC network (about 22%) and direct DC lines to Los
Angeles from coal plants in neighboring states (another 20%) (California
Energy Commission, 2006). Therefore, ignoring importers’ emissions
could yield spurious results. Without developing a detailed model of
transmission constraints, we argue that the WSCC coefficients approxi-
mate how emissions would change with RTP adoption in California.

FIGURE 1.—MAP OF NERC REGIONS

Source: http://www.nerc.com.
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the dominant fuel source in many regions and has the largest

share of generation in all of the regions except ERCOT and

NPCC. Coal is typically the dirtiest of the fossil fuels.19 Oil

and gas have high marginal costs, and their shares of

capacity are higher than their shares of generation. Gas-fired

generation has effectively no SO2 emissions and much

lower NOx emissions rates than coal. Most oil-fired units are

dirty and have similar emissions rates to coal-fired units.

There are two types of hydropower. First, run-of-river dams

generate based on the natural flows of the river and have

low marginal costs. Second, storage reservoirs (predomi-

nantly in the West) capture seasonal runoff and use this

fixed stock of water to generate power throughout the year.

The marginal opportunity cost of these units thus includes

the scarcity cost of the exhaustible stock.

The load data are from the Federal Energy Regulatory

Commission (FERC) Form 714.20 Table 2 shows summary

statistics (the average and the standard deviation) of each

region’s mean and maximum daily load. WSCC and SERC

are the largest regions, with more than four times the

average load of some of the smallest regions: MAPP, SPP,

and FRCC. We compare variation across days by normal-

izing the standard deviation of mean daily load. The regions

with the most variation across days are SPP and ERCOT.21

The table also summarizes the within-day load variation

using the coefficient of variation. The regions with the

greatest variation are FRCC and NPCC while ECAR and

MAIN are those with the smallest within-day variation. The

differences between these regions are not quite as substan-

tial as in the across-day variation measures.22

The National Oceanic and Atmospheric Administration

(NOAA) provides temperature data on daily mean, mini-

mum, and maximum temperature for hundreds of weather

stations nationally. We calculate twelve statewide functions

of temperature. Table 2 reports the summary statistics for

the daily mean temperature in each region.23 The hottest

regions on average are FRCC, ERCOT, and SERC while

MAPP and NPCC are the coldest. Regions with high tem-

perature variation are not necessarily those regions with

high within-day or across-day load variation.

Emissions data are from the Environmental Protection

Agency’s Continuous Emissions Monitoring System (EPA’s

CEMS). For almost all of the fossil power plants in the

United States, the CEMS data report hourly emissions of

19 For example in MAAC, the SO2 emissions rates (in pounds per MWh)
are 20.3, 0.0, and 7.0 for coal-, gas-, and oil-fired generation. NOx

emissions rates are 5.8, 0.9, and 3.5, respectively, and CO2 emissions rates
are 2,198, 1,423, and 1,790. These data are described in Holland and
Mansur (2006).

20 For each of more than 200 U.S. electric utilities, the 714 data report
hourly load. We aggregate these utility data to the NERC region level. Our
aggregation data are consistent with NERC monthly load data.

21 The coefficient of variation of mean daily load for SPP and ERCOT
are 0.194 and 0.193, respectively. In contrast, the coefficient in the WSCC
is only 0.088.

22 With the exception of FRCC at 0.20, the coefficients are similar across
regions (averaging 0.11 to 0.15). FRCC likely has greater within-day
variation because of residential customers’ demand for air conditioning
(over 50% of FRCC load is residential whereas it is approximately 33%
in other regions).

23 We report statistics on the unweighted average daily temperatures for
states in each region.

TABLE 1.—SHARES OF INSTALLED CAPACITY AND GENERATION

Panel A: Installed Capacity (MW)

Shares

NERC Total Coal Gas Hydro Nuclear Oil

ECAR 123,381 79% 9% 3% 7% 1%
ERCOT 72,583 24% 67% 1% 7% 0%
FRCC 43,880 29% 26% 0% 4% 38%
MAAC 64,512 44% 17% 4% 21% 13%
MAIN 64,238 54% 17% 2% 23% 3%
MAPP 36,244 63% 10% 10% 8% 5%
NPCC 67,841 13% 32% 14% 15% 23%
SERC 195,989 47% 21% 10% 18% 2%
SPP 47,440 48% 41% 5% 3% 2%
WSCC 144,046 22% 30% 36% 7% 1%

Panel B: Net Generation (GWh)

Shares

NERC Total Coal Gas Hydro Nuclear Oil

ECAR 590,666 87% 3% 0% 8% 1%
ERCOT 313,659 35% 51% 0% 12% 1%
FRCC 181,322 36% 23% 0% 18% 19%
MAAC 264,901 45% 9% 1% 40% 3%
MAIN 294,155 56% 3% 1% 39% 0%
MAPP 178,980 76% 1% 9% 12% 0%
NPCC 254,617 17% 25% 13% 26% 13%
SERC 861,033 55% 10% 2% 29% 1%
SPP 186,976 68% 23% 2% 5% 0%
WSCC 667,187 32% 23% 28% 11% 1%

Notes: Shares are of total capacity or total generation for utilities and nonutilities. Renewables are the

missing share. Net generation is electricity produced for external sale. GWh are gigawatt-hours, or 1,000

MWh.

Source: EPA eGRID for 2000 (http://www.epa.gov/cleanenergy/egrid/index.htm).

TABLE 2.—SUMMARY STATISTICS OF LOAD AND TEMPERATURE

Region
Mean

Daily Load
Max Daily

Load
Coefficient
of Variation

Mean Daily
Temperature

ECAR 59.6 67.5 0.11 52.6
[6.5] [8.2] [0.03] [17.2]

ERCOT 30.6 36.6 0.14 68.1
[5.9] [8.5] [0.04] [14.1]

FRCC 20.6 25.9 0.20 72.6
[3.4] [4.6] [0.03] [9.5]

MAAC 28.8 33.6 0.14 55.2
[3.9] [5.0] [0.03] [16.2]

MAIN 26.5 30.4 0.12 52.1
[3.5] [4.6] [0.03] [18.5]

MAPP 13.8 15.8 0.12 46.9
[1.7] [2.2] [0.03] [20.5]

NPCC 24.2 28.6 0.15 47.6
[3.0] [3.7] [0.02] [17.3]

SERC 75.2 88.0 0.13 62.7
[10.7] [14.9] [0.04] [14.6]

SPP 20.2 23.6 0.13 58.6
[3.9] [5.5] [0.04] [18.3]

WSCC 86.8 100.4 0.12 53.3
[7.6] [9.7] [0.02] [14.4]

Notes: Table displays the sample mean with standard deviation in brackets. Load data (in GW) are

from FERC Form 714. Temperature data (in degrees Fahrenheit) are from NOAA.
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SO2, NOx, and CO2.
24 By region, table 3 summarizes the

emissions data. A daily system emissions rate is calculated

as the ratio of mean daily emissions to mean daily load.

ECAR is clearly the dirtiest region with the highest emis-

sions per MWh of SO2 and NOx, and second-highest levels

of CO2. On the other hand, WSCC is the cleanest region in

all pollutants.25 Each region’s rates vary substantially day to

day.

To understand the differences in system emissions rates,

we also compare the share of load met by fossil fuel

generation across regions.26 The CEMS data report hourly

gross generation at each unit.27 Table 3 presents summary

statistics on the daily gross generation as a share of total

load. In the dirtiest region, ECAR, the average ratio is 0.98

while the cleanest region, WSCC, has an average ratio of

0.36.28

To visualize the unconditional correlations in the emis-

sions and load data, we use kernel regressions to estimate a

smooth relationship between emissions and demand in each

region. Figure 2 graphs kernel regression estimates for

hourly pounds of SO2 on hourly load for each of the ten

regions. For some of the regions, there appears to be a

general linear relationship between emissions and genera-

tion, suggesting little impact of variance on emissions.

However, for regions like ERCOT, SPP, and WSCC, the

concave shape of the kernel estimates implies that reducing

the likelihood of both extreme high- and low-demand hours

will result in higher emissions. However, simply analyzing

the shape of these estimates may be misleading since the

kernel regressions do not control for covariates.

IV. Results of Parametric Estimation

To estimate the effect of a change in load variance on

emissions, equation (1) is estimated separately for each

NERC region and for each of the three pollutants.29 Since

there are hundreds of estimated coefficients, we first focus

on those for within-day variance, that is, VARt. Next we

simulate across-day variance using coefficients on MEANt.

Finally we analyze changes in gross fossil generation.

A. Within-Day Variation

Within-day variation is measured by the coefficient of

variation. Table 4 presents the coefficient estimates and

standard errors for the negative logarithm of the coefficient

of variation for all three pollutants in all ten regions. Each

coefficient is from a regression described in equation (1)

where the dependent variable is the log of SO2 pounds

emitted in column (i), the log of NOx pounds emitted in

column (ii), and the log of CO2 tons emitted in column (iii).

These coefficient estimates are conditional on mean daily

load, fixed effects, and temperature.30 The coefficients are

the effect on emissions of a reduction in within-day vari-

ance; for example, a positive coefficient suggests that RTP

would increase emissions.

The estimates for SO2 vary across the ten regions. For

four regions (ECAR, ERCOT, SERC, and WSCC), the

coefficient estimates are positive and significant at the 5%

level. In these regions, we estimate that a reduction in

within-day load variance would increase SO2 emissions. In

one region, MAIN, the negative coefficient indicates that a

reduction in within-day load variance would decrease SO2

emissions. Note that the estimates are quite small. The

largest effect, in WSCC, implies that a 10% reduction in the

coefficient of variation would imply only a 0.4% increase in

SO2 emissions.31

24 All units over 25 megawatts and new units under 25 megawatts that
use fuel with a sulfur content greater than 0.05% by weight are required
to measure and report emissions under the Acid Rain Program. CEMS
data are highly accurate and comprehensive for most types of fossil units
(Joskow & Kahn, 2002).

25 The WSCC SO2 system emissions rate is less than a tenth that of
ECAR and even a third of the next cleanest region, ERCOT. To a lesser
extent, this is also seen in the system emissions rates for NOx and CO2.

26 The remainder of load is met by nuclear, hydroelectric, and imports
(net of exports).

27 Gross generation differs from net generation because of the discrep-
ancy between electricity generated by a unit and the amount of electricity
sold onto the grid. This discrepancy arises from internal power usage for
water pumps, conveyor belts, and so on. Informal data on gross to net
ratios suggest an average ratio of 1.05 to 1.1.

28 These ratios can exceed 1 since a region may export electricity and
since electricity is used internally at power plants.

29 A detailed examination of the results for one equation, ECAR SO2, are
presented at http://www.som.yale.edu/faculty/etm7/papers/holland_
mansur_rtp_pollution_append.pdf.

30 For all regions and pollutants, the temperature variables are jointly
significant at the 6% level while the month-year indicator variables are
jointly significant at the 1% level.

31 As noted by a referee, these small effects may be an artifact of the SO2

market, which has already dramatically reduced emissions.

TABLE 3.—SUMMARY STATISTICS OF EMISSIONS AND GENERATION

Region
SO2

Rate
NOX

Rate
CO2

Rate
Fossil
Share

Sample
Size

ECAR 14.87 5.79 1.04 0.98 1,453
[1.15] [0.70] [0.04] [0.03]

ERCOT 3.96 2.42 0.69 0.79 1,453
[0.68] [0.23] [0.03] [0.04]

FRCC 6.08 2.77 0.56 0.59 1,453
[1.29] [0.34] [0.04] [0.04]

MAAC 8.75 2.38 0.51 0.51 1,453
[1.18] [0.43] [0.06] [0.05]

MAIN 9.11 3.78 0.75 0.68 1,453
[2.15] [0.59] [0.05] [0.04]

MAPP 8.75 5.30 1.15 0.96 1,089
[0.61] [0.44] [0.07] [0.07]

NPCC 4.97 1.53 0.47 0.59 1,453
[0.87] [0.29] [0.07] [1.17]

SERC 9.34 4.22 0.76 0.74 1,453
[0.94] [0.69] [0.04] [0.04]

SPP 5.51 3.75 0.90 0.91 1,453
[0.80] [0.62] [0.12] [0.10]

WSCC 1.36 1.30 0.35 0.36 1,453
[0.18] [0.11] [0.03] [0.04]

Notes: Table displays the sample mean with standard deviation in brackets. Emissions rates are

system-wide averages of total pollution (SO2 and NOX in lbs and CO2 in tons) to total demand (in MWh).

The sample period is from January 1997 to December 2000, except MAPP does not include 2000. Days

of daylight savings transitions are dropped.

Source: EPA CEMS.
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The estimates for NOx and CO2 are similar to the SO2

estimates. For NOx, three of the regions have positive

effects and three have negative effects. For CO2, five re-

gions have positive coefficients, and two regions have

negative coefficients. For both pollutants, the coefficients

are generally more negative than the SO2 coefficients but

are still relatively small (the estimated elasticity with the

largest magnitude is �0.04).

These coefficient estimates show positive effects for all

three pollutants in two regions and for two pollutants in

three regions. For these five regions (ECAR, ERCOT,

MAPP, SERC, and WSCC), the estimates imply that a

reduction in within-day variance, for example from RTP

adoption, would increase emissions. However, this effect is

not universal. Three regions (FRCC, MAAC, and MAIN)

have negative coefficient estimates, implying that a reduc-

tion in within-day variation will lead to a reduction in

emissions. Finally, SPP and NPCC show no effect.32 In

appendix A, we show that these results are robust to other

measures of within-day variation.

B. Across-Day Variation

We now turn to the coefficients on the log of mean daily

load. As described above, these coefficients can be used to

compute the elasticity of emissions with respect to mean

daily load. The elasticities are unity if emissions are pro-

portional to load.

Table 5 presents the elasticities over the observed ranges

of mean daily load for each of the three pollutants for each

region. The estimated elasticities are all positive indicating

that emissions, as expected, are increasing in system load.

Most of the elasticities are decreasing in system load,

indicating that a change in system load has a much larger

proportional effect on small-load days than at large-load

32 In SPP, the coefficients are not significant despite being very precisely
estimated. This implies that there would be no effect on emissions from a

reduction in within-day variation. In NPCC, the coefficients are not
significant but are less precisely estimated.

FIGURE 2.—KERNEL REGRESSIONS OF POUNDS OF SULFUR DIOXIDE ON MWH OF ELECTRICITY DEMANDED
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days.33 For example, in the WSCC, a percent increase in

system load on the lowest-load day leads to a 1.4% increase

in SO2 emissions, whereas a percent increase on the highest-

load day leads to a small increase in SO2 emissions

(0.04%).34

Although these elasticities are suggestive of the effect of

a reduction in load variation across days, they show only the

proportional effect. To describe the effect of a reduction in

load variation across days, we use the elasticities to simulate

the change in emissions from a marginal change in the

extremes of the load distribution. Specifically, we use the

elasticities to calculate the percentage change in emissions

from shifting 1% of the average load from the highest-load

day to the lowest-load day. The results of this simulation are

presented in table 6.35

As with the within-day variation, there are regional dif-

ferences. In ECAR, MAPP, and SERC, the reduction in

across-day load variance leads to statistically significant

increases in all three pollutants. In the WSCC, the reduction

leads to significant increases in SO2 and NOx, but not in

CO2. Recall that these regions also show positive effects

from a reduction in within-day variance. In other regions,

the reduction in across-day variance can decrease emissions

for all three pollutants (NPCC and MAAC) or for two

pollutants (MAIN and SPP). For MAIN and MAAC, we

also predict a reduction in emissions from reducing within-

33 The estimated elasticities decrease significantly in load in ECAR,
FRCC, MAPP, SERC, and WSCC for all pollutants and in NPCC for some
pollutants. Elasticities only increase significantly for some pollutants in
MAAC and SPP. We determine significance based on the significance of
the coefficient on the log of daily demand squared in equation (1).

34 This is not surprising since peak loads in the WSCC tend to be met
with hydropower.

35 The standard errors are calculated from the covariance matrix of the
parameter estimates using the delta method.

TABLE 4.—PARAMETRIC ESTIMATION OF WITHIN-DAY EFFECTS

Dependent variable: Columns (i–iii) log of daily emissions in daily
pounds of emissions, column (iv) log of daily gross fossil generation

in MWh.

Independent variable: Negative log of the coefficient of variation
(std. dev. over mean).

Region (i) SO2 (ii) NOX (iii) CO2 (iv) Gen

ECAR 0.025** 0.020** 0.016** 0.021**
(0.005) (0.005) (0.003) (0.003)

ERCOT 0.036** �0.008 0.009** �0.002
(0.008) (0.005) (0.003) (0.003)

FRCC 0.028 �0.033** 0.013 �0.005
(0.023) (0.013) (0.010) (0.007)

MAAC �0.009 �0.035** �0.041** �0.041**
(0.014) (0.017) (0.015) (0.016)

MAIN �0.027** �0.037** �0.031** �0.033**
(0.010) (0.010) (0.006) (0.006)

MAPP 0.012 0.022** 0.022** 0.030**
(0.010) (0.010) (0.007) (0.007)

NPCC 0.015 �0.047 �0.001 �0.010
(0.019) (0.036) (0.013) (0.032)

SERC 0.028** 0.015** 0.010** 0.008*
(0.006) (0.007) (0.005) (0.005)

SPP 0.001 �0.005 �0.001 0.001
(0.014) (0.010) (0.007) (0.007)

WSCC 0.042** 0.027 0.024** 0.025**
(0.015) (0.016) (0.010) (0.009)

Notes: Table presents GLS coefficients accounting for a common AR(1) error structure using the

Prais-Winsten method. Robust standard errors are in parentheses. We note significance at 5% level using

(**) or at 10% level using (*). Regression includes month-year fixed effects, quadratic function of log

of daily mean quantity demanded, and daily mean, minimum, and maximum temperatures for all states

bordering each region.

TABLE 5.—PARAMETRIC ESTIMATION OF ACROSS-DAY ELASTICITY RANGES

Region (i) SO2 (ii) NOX (iii) CO2 (iv) Gen

ECAR [1.279, 0.662]** [1.400, 0.712]** [1.093, 0.615]** [1.146, 0.629]**
ERCOT [0.520, 0.535] [1.374, 1.291] [0.970, 0.922] [1.288, 1.098]**
FRCC [2.313, 1.408]** [1.996, 1.255]** [1.590, 0.987]** [1.680, 0.947]**
MAAC [0.740, 0.776] [0.692, 1.470]** [0.642, 1.346]** [0.672, 1.574]**
MAIN [1.057, 1.069] [1.146, 1.128] [1.003, 0.948] [1.027, 1.049]
MAPP [0.823, 0.554]** [0.960, 0.578]** [0.826, 0.579]** [0.908, 0.603]**
NPCC [1.376, 1.225] [1.339, 1.337] [1.581, 1.195]** [1.765, 1.306]**
SERC [1.552, 0.481]** [1.512, 0.606]** [1.352, 0.637]** [1.354, 0.736]**
SPP [0.646, 0.763] [1.085, 1.199] [0.831, 1.031]** [0.972, 1.088]
WSCC [1.420, 0.042]** [1.408, 0.491]** [1.249, 0.552]** [1.521, 0.707]**

Notes: The elasticities are reported over the observed ranges of mean daily load. Based on the significance of the coefficient on the log of daily

demand squared, we note significant differences in the elasticities across the range at 5% level using (**) or at 10% level using (*).

TABLE 6.—PARAMETRIC SIMULATION OF ACROSS-DAY EFFECTS

Region (i) SO2 (ii) NOX (iii) CO2 (iv) Gen

ECAR 0.256** 0.398** 0.467** 0.509**
(0.031) (0.037) (0.022) (0.022)

ERCOT �0.040 �0.242** 0.046** �0.052**
(0.051) (0.036) (0.020) (0.019)

FRCC �0.710** 0.398** 0.252** 0.364**
(0.095) (0.037) (0.039) (0.036)

MAAC �0.288** �1.198** �1.362** �1.260**
(0.085) (0.099) (0.119) (0.113)

MAIN �0.623** �0.326** �0.047 �0.132**
(0.060) (0.056) (0.037) (0.038)

MAPP 0.338** 0.414** 0.241** 0.298**
(0.052) (0.054) (0.042) (0.046)

NPCC �0.638** �3.383** �0.370** �0.795**
(0.088) (0.252) (0.061) (0.075)

SERC 0.908** 0.603** 0.570** 0.451**
(0.042) (0.048) (0.031) (0.030)

SPP �0.112 �1.022** �0.176** 0.042
(0.069) (0.097) (0.054) (0.050)

WSCC 1.016** 0.624** �0.033 0.260**
(0.070) (0.075) (0.074) (0.052)

Notes: We simulate a reduction in across-day variation in the following manner. First we measure a 1%

change in average load (deltaload). We then increase the minimum mean daily load by deltaload and

decrease the maximum mean daily load by deltaload. The resulting change in pollution is normalized by

the average daily pollution in that region. The estimates can be interpreted as elasticities. Standard errors

are in parentheses and are computed using the delta method. We note significance at 5% level using (**)

or at 10% level using (*).
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day variance. The results for ERCOT and FRCC are

mixed.36

Since the simulation results describe a percentage change

in emissions from a 1% change in load, they can be

compared with the within-day elasticities. We note that

marginal changes in across-day variation have larger effects

than marginal changes in within-day variation. Here the

largest elasticity in magnitude is �3.4 compared with the

largest within-day elasticity of �0.04. This suggests that

the largest environmental effects are likely to come from

policies that reduce variance across days rather than within

days.

C. Variance Effects on Fossil Generation

To understand the effects on emissions described above,

we analyze the effects of changes in within- and across-day

variation on gross fossil generation. We estimate an equa-

tion similar to equation (1) where the dependent variable is

now the log of gross fossil generation in MWh—instead of

emissions.37 The independent variables are identical to those

in the regressions reported in columns (i) to (iii) of tables 4

and 6.38

Column (iv) of table 4 reports the estimates for the

regressions with gross fossil generation as the dependent

variable. Several coefficients deserve note. First, the

ERCOT coefficient is not statistically significant despite

being very precisely estimated. Since ERCOT is not inter-

connected with other regions and has limited hydroelectric

resources, fossil generation must follow load directly.39

Second, the positive coefficient for WSCC likely reflects the

significant hydro capacity in the West. Decreasing within-

day load variance thus would decrease the demand for

peak-shaving hydroelectricity. Finally, the four regions with

significant effects in the East are closely interconnected and

neighboring regions have coefficients with opposite signs.

Thus, as the coefficients of variation are correlated across

regions, the decreased fossil generation in ECAR likely is

offset by the increased fossil generation in either MAAC or

MAIN.40

We find statistically significant effects on fossil genera-

tion in five of the ten regions. Reducing within-day variance

results in more gross fossil production in ECAR, MAPP,

and WSCC, and weakly in SERC. Note that these are the

regions where we estimate increases in emissions. In two

regions, MAAC and MAIN, higher within-day variance is

associated with less gross fossil production. These are the

regions where reductions in emissions are seen. Although

two regions, ERCOT and FRCC, show some environmental

effects but have no change in fossil generation, the majority

of the environmental effects from changes in within-day

variance seem to be driven by changes in fossil generation.

We now turn to the across-day variance effects on fossil

generation. Column (iv) of table 5 reports the elasticity

ranges for fossil generation with respect to mean daily load.

Since most (seven of ten) of these elasticities are decreasing,

fossil generation accounts for a smaller proportion of load

on the highest-load day than on the lowest-load day in most

regions.

Column (iv) of table 6 reports the simulated effects of the

percentage change in gross fossil generation of shifting 1%

of the average load from the highest-load day to the lowest-

load day. Five of the effects are positive and four of the

effects are negative. The most important thing to note about

these effects is that they coincide closely with the environ-

mental effects. Thus, as with the within-day environmental

effects, the across-day environmental effects seem to be

driven largely by changes in fossil generation.

V. Robustness Using Nonparametric Model

Since the estimates of section IV depend on specific

functional forms, we evaluate the constraints of the para-

metric model using the nonparametric model described in

section II. We estimate equation (2) and correct the standard

errors for serial correlation and heteroskedasticity.41 With

ten regions, three pollutants (plus generation), and one

hundred bins each, there are thousands of coefficients.

Instead of presenting all of these coefficients, we simulate

the impacts of real-time pricing.42

We simulate a reduction in within-day variance by com-

paring the various coefficient estimates of emissions rates.

For each mean daily load decile, we move one MWh from

the lowest decile of hourly load to the second-lowest decile,

and also move one MWh from the highest hourly load

decile to the second-highest decile. Then, we average these

impacts over the ten mean daily load deciles. Therefore, the

36 FRCC has a negative effect in SO2 but positive effects in NOx and
CO2. ERCOT has a negative effect in NOx but a positive effect in CO2.

37 These regressions analyze the gross fossil generation and cannot be
used to analyze changes in the gross to net ratio separately from changes
in net fossil generation.

38 Load not met by fossil generation is served by imports or other fuel
sources such as nuclear, hydropower, renewables, or small peaking units,
which do not appear in the CEMS data. Transmission line losses and
internal plant usage might also account for some of the discrepancy
between gross generation and load.

39 Since the electrical grid must be balanced at all times, generation must
equal load. If fossil generation is positively correlated with the coefficient
of variation, then either imports or hydropower must be negatively
correlated with the coefficient of variation since nuclear power cannot
respond to within-day changes in load.

40 The correlations among these coefficients of variation are high:
corr(ECAR, MAAC) � 0.78, corr(ECAR, MAIN) � 0.87, and corr-
(MAIN, MAPP) � 0.87. These high correlations suggest exploring
whether the effects in these four regions should be estimated jointly. We

find that conditioning our estimates for each region on the load variance
measures in each of the other three regions (plus NPCC for MAAC) does
not change our results substantially. In particular, all of the coefficients for
ECAR, MAIN, and MAPP agree in sign with those in table 4 and they are
all significant. However, the coefficients for MAAC are now insignificant.

41 As this section attempts to estimate the impacts of real-time pricing
using a nonparametric approach, we use a nonparametric technique to
correct for serial correlation and heteroskedasticity as well. We use the
Newey-West method assuming a six-hour lag structure.

42 See appendix B for a depiction of one of the regressions.
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coefficients represent the average change in emissions given

one fewer MWh in the first and tenth deciles of hourly load

and one more MWh in the second and ninth hourly load

deciles.43 Table 7 reports the findings of this simulation.44

We compare the within-day effects of the parametric

method (table 4) with those of the nonparametric method

(table 7). The primary difference between the two estima-

tors is that the nonparametric estimator puts more weight on

the tails of the distribution. About half (24 of 40) of the

parametric estimations are significant across the ten regions

and four dependent variables (SO2, NOx, CO2, and gross

fossil generation). The nonparametric simulations support

these findings qualitatively in 17, or 71%, of these regres-

sions. However, of the 34 significant effects that the non-

parametric simulations predict, only half of them are also

predicted by the parametric models.45 These differences

suggest that the environmental effects of RTP may depend

on how it affects the entire load distribution.

Next, we use the nonparametric estimates to simulate the

impact of reducing across-day variation. For each hourly

load decile, we move one MWh from the lowest decile of

mean daily load to the second-lowest decile, and we move

one MWh from the highest mean daily load decile to the

second-highest decile. Then, we average these impacts over

the ten hourly load deciles. Table 8 reports the findings of

this simulation.

For the across-day effects, the parametric models predict

significant effects in 35 of the 40 models. Of these 35

effects, the nonparametric simulations are qualitatively sim-

ilar in 21, or 60%. The nonparametric simulations are

significant in only 27 regressions. Therefore, 78% of these

regressions are supported by the parametric models.

We conclude that the nonparametric model supports our

findings in section IV. For most regions and pollutants, the

parametric and nonparametric simulations are qualitatively

similar.46 Furthermore, we find that the across-day variance

effects are larger than the within-day effects.47

VI. Discussion

The results of section IV imply that a reduction in within-

or across-day load variance, whether through RTP or some

other means, would have different environmental impacts in

different regions. In particular, we found that the results

were correlated with changes in fossil generation, that is,

emissions tended to increase in a region if fossil generation

in that region also increased with a reduction in load

variance. In this section, we attempt to understand these

changes in emissions and fossil generation by analyzing the

production technologies and capacities in each region.

To understand the differences in how load variance af-

fects the mix of fossil and nonfossil generation (and thus

emissions) across regions, recall the capacity shares from

table 1. On days with more within-day variation, firms are

likely to use technologies that ramp up and down quickly

rather than slower base-load technologies. The peaking

43 This is equivalent to calculating a change in the weighted average
emissions rates by giving less weight to extreme events.

44 The standard errors in tables 7 and 8 are estimated using the delta
method.

45 For example, the decreased emissions in MAIN are no longer signif-
icant with the nonparametric estimator.

46 In 38 of 80 tests, both the parametric and nonparametric results agree
in sign and significance. Seven tests were insignificant using both meth-
ods. For 26 tests, one method found significant results while the other did
not. Finally, nine tests reached opposing significant conclusions.

47 Comparing tables 7 and 8, the impact of reducing across-day variance
is about twice as large as the impact of reducing within-day variance.

TABLE 7.—NONPARAMETRIC SIMULATION OF WITHIN-DAY EFFECTS

Region (i) SO2 (ii) NOX (iii) CO2 (iv) Gen

ECAR 0.107** 0.082** 0.006** 0.011**
(0.027) (0.012) (0.001) (0.001)

ERCOT 0.060** �0.017** 0.002* 0.007**
(0.015) (0.006) (0.001) (0.001)

FRCC 0.228** 0.078** 0.008** 0.013**
(0.029) (0.010) (0.002) (0.001)

MAAC 0.182** 0.036** 0.009** 0.012**
(0.035) (0.011) (0.002) (0.002)

MAIN 0.008 �0.028* 0.003 0.006**
(0.037) (0.015) (0.002) (0.002)

MAPP 0.031 0.050** 0.008** 0.012**
(0.028) (0.017) (0.003) (0.003)

NPCC 0.101** 0.015 �0.002 0.017**
(0.023) (0.014) (0.002) (0.002)

SERC 0.276** 0.128** 0.016** 0.019**
(0.023) (0.010) (0.001) (0.001)

SPP 0.059** 0.064** 0.003 0.005**
(0.022) (0.024) (0.002) (0.002)

WSCC 0.017** 0.019** 0.003** 0.008**
(0.006) (0.004) (0.001) (0.001)

Notes: Table presents simulations based on OLS coefficients. Standard errors, in parentheses, have

been corrected for heteroskedasticity and serial correlation using the Newey-West method assuming a

six-hour lag structure. We note significance at 5% level using (**) or at 10% level using (*). Regression

includes month-year fixed effects, quadratic function of log of daily mean quantity demanded, and daily

mean, minimum, and maximum temperatures for all states bordering each region.

TABLE 8.—NONPARAMETRIC SIMULATION OF ACROSS-DAY EFFECTS

Region (i) SO2 (ii) NOX (iii) CO2 (iv) Gen

ECAR 0.447** 0.190** 0.020** 0.018**
(0.051) (0.021) (0.002) (0.002)

ERCOT �0.044 �0.008 0.003 0.007*
(0.027) (0.014) (0.003) (0.003)

FRCC 0.213** 0.059** 0.014** 0.014**
(0.062) (0.022) (0.003) (0.003)

MAAC 0.158** �0.035 �0.003 �0.012**
(0.074) (0.024) (0.004) (0.005)

MAIN 0.026 0.087** 0.010** 0.004
(0.066) (0.027) (0.003) (0.003)

MAPP 0.238** 0.159** 0.022** 0.021**
(0.051) (0.030) (0.005) (0.005)

NPCC �0.054 �0.032* �0.000 �0.002
(0.043) (0.016) (0.003) (0.003)

SERC 0.509** 0.173** 0.028** 0.024**
(0.043) (0.019) (0.003) (0.003)

SPP �0.067 �0.145** �0.005 �0.006
(0.056) (0.038) (0.005) (0.004)

WSCC 0.047** 0.042** 0.007** 0.006**
(0.010) (0.007) (0.002) (0.002)

Notes: Table presents simulation based on OLS coefficients. Standard errors, in parentheses, have been

corrected for heteroskedasticity and serial correlation using the Newey-West method assuming a six-hour

lag structure. We note significance at 5% level using (**) or at 10% level using (*). Regression includes

month-year fixed effects, quadratic function of log of daily mean quantity demanded, and daily mean,

minimum, and maximum temperatures for all states bordering each region.
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units either are fossil fired—typically burning either natural

gas or oil—or are hydroelectric plants. Table 9 reports the

shares of peaking capacity, which we define as hydroelec-

tric, oil, and natural gas generation.

If hydro generation is a significant share of peak capacity,

then a reduction in load variance will reduce peak hydro and

may increase dirtier base-load fossil generation. On net this

would increase emissions. Oil-fired peaking units have

relatively high emissions rates. In regions where oil-fired

generation is a significant share of peak capacity, a reduc-

tion in within-day variance may reduce emissions if base-

load generation is relatively clean.48

The regions with hydro shares larger than oil shares are

ECAR, ERCOT, MAPP, SERC, SPP, and WSCC. In all of

these regions (except SPP with no effect) we find that a

reduction in within-day variance leads to an increase in

emissions (see table 4). For most pollutants in these regions,

the results are consistent with the hypothesis that reducing

load variance leads to less peak hydro and, therefore, more

emissions.

The regions with large oil shares, relative to hydro shares,

are FRCC, MAAC, MAIN, and NPCC. These relatively

large oil shares would suggest that a reduction in within-day

variance should reduce emissions. This is consistent with

our results for all of these regions except NPCC in which we

find no effect.

The relative capacity shares of hydroelectricity and oil-

fired generation help to understand the different effects that

we estimate for the various regions. Note, however, that the

hydro effect has an interesting implication for the environ-

mental impacts of a reduction in load variance. Since

hydropower has low marginal production costs and quick

ramping rates, it can be used to adjust to rapid changes in

load. A reduction in load variance would imply that less

hydropower is needed during the extreme peak loads and

could potentially offset other emissions. This suggests that

the adverse environmental effects estimated here for some

regions might be partially mitigated by using peak hy-

dropower to offset fossil generation.

To address this concern, we examine the relationship

between emissions and the amount of load that is not met by

hydropower. In so doing, we are assuming that reducing

load variance will not affect the dispatch of hydropower.49

Given data constraints, we use our measure of gross fossil

generation as a proxy for load net of hydropower. This

measure is imperfect as it does not account for net imports

nor the conversion of gross to net generation. Furthermore,

it is endogenous: an outage at a large fossil power plant will

reduce emissions and gross fossil generation. Therefore, we

instrument using our measures of the load distribution.50 We

find that our results are robust to this model, particularly in

regions with little inter-regional trading.51 We conclude that

our findings are consistent with a model that accounts for

the dynamic optimization of hydropower.

Understanding the implications of reducing across-day

variance is less straightforward. For this measure of vari-

ance, most regions with relatively large hydro shares are

predicted to see an increase in emissions. However, in SPP

we predict a reduction in emissions and in ERCOT the

effects are mixed. We estimate that most regions with

relatively large oil shares will see a reduction in emissions

if across-day variance is reduced. However, FRCC has

mixed results.

VII. Conclusion

Economists have advocated for real-time pricing in an

attempt to improve the efficiency of investment and the

allocation of electricity. Conventional wisdom, previously

untested, has claimed that RTP has an additional benefit,

namely, reduced emissions from reduced peak demand. This

paper analyzes the short-run environmental impacts of real-

time pricing by estimating the effect of load variation on

emissions of SO2, NOx, and CO2. We find that the impacts

of a reduction in load variance are different for different

regions. In particular, contrary to the conventional wisdom,

RTP may actually increase emissions in some regions.

We estimate that a reduction in within-day load variance

would decrease emissions of some pollutants in three of the

48 Natural gas typically has lower emissions rates than oil, though is
dirtier than hydroelectric.

49 Run-of-river power cannot change and reservoir hydropower is dis-
patched during the set of hours with the highest prices. While reducing the
variation of load will alter prices, it is unlikely to change the set of hours
when prices are greatest.

50 Specifically, we regress the log of daily emissions on the log of the
coefficient of variation of gross fossil generation, the log of the mean daily
gross fossil generation (and its square), and the other covariates as above.
The coefficient of variation and the two measures of mean daily genera-
tion are endogenous so, in a first stage, we regress each of these variables
on the coefficient of variation of load, the two mean daily load measures,
and the other covariates. In order to address serial correlation, we assume
a first-order autocorrelation process as above and quasi-difference the
data.

51 The coefficients on the coefficient of variation for ERCOT, FRCC,
NPCC, and SPP are nearly exactly the same as those in table 4. Those for
WSCC and SERC are slightly smaller in magnitude but are qualitatively
similar. The midwestern regions of ECAR, MAAC, MAIN, and MAPP are
more integrated, as discussed in footnote 36, and the results are not robust
in these regions. However, this part of the United States has very little
hydroelectric power.

TABLE 9.—PEAK CAPACITY SHARES OF FOSSIL POWER PLANTS

NERC

Share of Peak Capacity

Hydro Oil Gas

ECAR 23% 8% 69%
ERCOT 1% 0% 99%
FRCC 0% 59% 41%
MAAC 12% 38% 50%
MAIN 9% 14% 77%
MAPP 40% 20% 40%
NPCC 20% 33% 46%
SERC 30% 6% 64%
SPP 10% 4% 85%
WSCC 54% 1% 45%

Notes: Peak includes oil, gas, and hydroelectric.

Source: EPA eGRID for 2000 (http://www.epa.gov/cleanenergy/egrid/index.htm).
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ten regions (FRCC, MAAC, and MAIN). However, a re-

duction in within-day load variance would actually increase

emissions in most of the rest of the United States. In fact, for

ECAR and SERC, emissions of all three pollutants would

increase and for ERCOT, MAPP, and WSCC, emissions

would increase for two of the three pollutants. Similar to our

results for within-day variance, we find that a reduction in

across-day load variance would lead to a reduction in

emissions in some regions (MAAC, MAIN, NPCC, and

SPP) but would lead to an increase in emissions in other

regions (ECAR, MAPP, SERC, and WSCC).

Our results are robust to alternate empirical specifica-

tions. We measure within-day variance using five other

measures of variance and find very similar results. We also

test a nonparametric specification of the model and find

similar results. These findings do not support the conven-

tional wisdom that RTP will reduce emissions and even

suggests that RTP will increase emissions in many regions.

To understand the different effects across regions, we test

the effects of a reduction in load variance on fossil gener-

ation and compare the generation technologies in the vari-

ous regions. We find that changes in emissions are similar to

changes in fossil generation. In particular, if a reduction in

load variance leads to an increase (decrease) in fossil

generation, then it also leads to an increase (decrease) in

emissions for most pollutants.

Since changes in emissions are driven by changes in

fossil generation, we compare the generation technologies

across the regions. We find that the results are consistent

with the relative shares of hydroelectric and oil-fired capac-

ity. In particular, a reduction in within-day load variance

leads to an increase in emissions only for regions with more

hydroelectric capacity than oil-fired capacity. This supports

the hypothesis that the environmental benefits of RTP come

from reducing peak demand, but only if peak capacity is oil

fired rather than hydroelectric.

Several points should be noted in interpreting our results.

First, SO2 and NOx are regulated in many regions by

cap-and-trade programs. If the total amount of emissions is

capped, then emissions cannot increase. However, our re-

sults reflect the demand for emissions. For example, if our

coefficient estimate is positive (that is, an “increase in

emissions”) we are predicting that RTP would lead to an

increase in demand for emissions permits and that the

permit price would increase.

Second, our estimates hold average load constant. If the

average load increases or decreases substantially with RTP

adoption, the environmental effects may be quite different.

Holland and Mansur (2006) calculate an increase in average

load from RTP adoption in one region. However, other

regions may show decreases in average load depending on

the relevant demand and supply elasticities.

Third, this paper does not capture ways that generators,

retailers, and consumers may adapt to RTP. For example,

generators (and load-serving entities) may adapt by chang-

ing the types of retail contracts offered. In addition, our

estimates do not capture the environmental effects of in-

vestment. Reduced investment may benefit the environment

if the siting of new power plants causes environmental

damage. Since investment under regulation is based on peak

capacity requirements and RTP reduces the peak load, RTP

may reduce investment in regulated markets. For competi-

tive markets, Borenstein and Holland (2005) show that

investment could theoretically increase with RTP adoption.

Thus the long-run environmental benefits of RTP adoption

are unclear. Finally, our results are not specific to RTP and

apply equally to regulatory programs or market mechanisms

affecting the variance of the electricity load in the short run.
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APPENDIX A

Table 4 reports the regression results using the coefficient of variation
as the within-day measure of variance. Since these results could be
specific to the coefficient of variation, we explore five other distribution
summary statistics of “within-day variance”: the max/min ratio, inverse
load factor, relative mean deviation, standard deviation of logarithms, and
Gini coefficient.

These six measures do capture different aspects of within-day variance
since they are not perfectly correlated. Calculating the correlations of
these six measures for the ten regions shows that all but one of the 150
possible correlations are positive and the average correlation is 0.72. The
smallest correlation (�0.01) is between the Gini coefficient and the
inverse load factor in FRCC. In general, the Gini coefficient is less
correlated with the other measures (an average correlation of 0.46), while
the standard deviation of logarithms is correlated the most with the other
measures (an average correlation of 0.82).

Despite the imperfect correlations, the coefficient estimates on the
measures of variance are very robust to the different measures. We
estimate equation (1) for each of the six measures of variance for each of
the three pollutants for each of the ten regions. The SO2 results are

particularly robust. For nine of the ten regions, the coefficients on the
measure of variance agree in sign and significance for all six measures of
variance. In the remaining region, WSCC, four of the six estimates are
positive and significant while the other two estimates are positive but not
significant. For NOx, in eight of the ten regions, all the coefficients had
either the same sign or the same significance.52 For CO2, in nine of the ten
regions, all the coefficients had either the same sign or the same signifi-
cance.53 Note that no region has coefficients on any of the measures of
variance that are significant but of opposite sign.

APPENDIX B

Figure B1 depicts the coefficients for one of our estimates of equation
(2): SO2 emissions rates in ECAR. All of the other covariates have been
demeaned and the regression does not include a constant. Therefore, each
coefficient equals the average emissions rate for the hours in a given bin.
Consistent with the sample mean in table 3, the average of the emissions
rate coefficients is 14.9 lbs per MWh. The rates range from 13.6 to 15.5
lbs per MWh. The lowest rate occurs when demand is in the bin with the
highest decile of mean daily load and the highest decile of hourly demand
for that type of day. The greatest emissions rate occurs in the highest
decile of mean daily load but in the lowest decile bin of hourly demand for
that type of day. Generally in ECAR, the SO2 emissions rate decreases
with hourly demand. Across regions and pollutants, we find substantially
different patterns.

52 In MAAC, four coefficients are negative and significant but one
coefficient (on the inverse load factor) is positive but insignificant. In
MAPP, four coefficients are positive and significant but one coefficient (on
the inverse load factor) is negative but insignificant.

53 In MAPP, four coefficients are positive and significant but one
coefficient (on the inverse load factor) is negative but insignificant.

FIGURE B1.—PLOT OF NONPARAMETRIC ESTIMATION COEFFICIENTS FOR ECAR SO2 SYSTEM EMISSIONS RATE

1

3

5

7

9

S1

S3

S5

S7

S9

13.00

13.50

14.00

14.50

15.00

15.50

S
u

lf
u

r 
D

io
x
id

e 
(t

o
n

s 
p

er
 h

o
u

r)

Decile of Hourly Demand

Decile of Daily Mean

IS REAL-TIME PRICING GREEN? 561


