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Abstract

Changes in spontaneous brain activity at rest provide rich information
about behavior and cognition. The mathematical properties of resting-state
functional magnetic resonance imaging (rsfMRI) are a depiction of brain
function and are frequently used to predict cognitive phenotypes.
Individual characteristics such as age, gender, and total intracranial volume
(TIV) play an important role in predictive modeling of rsfMRI (for example,
as "confounders" in many cases). It is unclear, however, to what extent
rsfMRI carries independent information from the individual characteristics
that is able to predict cognitive phenotypes. Here, we used kernel ridge
regression modeling to thoroughly examine the predictability of four
cognitive phenotypes in 20,000 healthy UK Biobank subjects. We extracted
common rsfMRI features of functional brain connectivity (FC) and temporal
complexity (TC). We assessed the ability of these features to predict
outcomes in the presence and absence of age, gender, and TIV. Additionally,
we assessed the predictiveness of age, gender, and TIV only. We find TC and
FC features to perform comparably with regard to predicting cognitive
phenotypes. As compared to rsfMRI features, individual characteristics
provide systematically better predictions with smaller sample sizes and, to
some extent, in larger cohorts. It is also consistent across different levels of
inherent temporal noise in rsfMRI. Our results suggest that when the
objective is to perform cognitive predictions as opposed to understanding
the relationship between brain and behavior, individual characteristics
outperform rsfMRI features.
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Resting-state functional magnetic resonance imaging (rsfMRI) is a widely-used
technique for studying human brain function [1]–[3]. Functional brain
connectivity (FC) is an important aspect of rsfMRI defined as the statistical
dependence between cortical and subcortical areas during periods of rest or
low cognitive demand [4]. A common application of rsfMRI is for the prediction
of cognitive performance [5]–[9], and clinical phenotypes [5], [10]–[13]
[14]–[20]. It is usually accomplished by extracting various features from
rsfMRI, such as widely used FC measures, and using them for predictive
modeling. This approach has been boosted by modern MRI scanners with
powerful magnetic field strengths, large databases, high-performance
computing systems, computational software packages, and improved machine
learning techniques [21]. However, the field has struggled to advance to
real-world applications due to systematic challenges such as modest prediction
accuracy in large populations (Nsubject > 2000) [5], [6], [22], [23] and biased
findings in studies with small sample sizes [23]. This makes it difficult to use
the current predictive models of cognitive phenotypes for generating
individual-level outputs in real-world applications. An effective improvement
could be to consider features beyond prevalent FC measures.

Functional brain connectivity and large-scale nonlinear interactions between
brain regions are tightly related to each other [24], [25]. Nonlinear brain
dynamics help to process information from the neuronal to the observable
hemodynamic levels in an adaptive way [26]. The nonlinearity of functional
connections at different spatial scales gives rise to a temporally complex (TC)
behavior in the hemodynamic response of the brain across time, as measured
by fMRI [27], [28]. In fact, if neural connections do not fluctuate in a balanced
way throughout time, emotions, learning, and memory cannot be managed by
the brain effectively [29]. This is in line with the brain criticality hypothesis,
which postulates that neural networks and, by extension, many aspects of brain
function, self-organize into a critical state or a transition between ordered and
disordered states [30]. There is evidence that the TC of rsfMRI and cognitive
phenotypes are correlated [31]–[34], making it promising for brain-behavior
predictions [31], [32], [35][36]–[38][36], [38]–[40]. Having said that, the
relationship between these rsfMRI features and “noise” across different brain
areas is not entirely understood yet. In the context of cognitive phenotypic
prediction, it is a significant challenge to define what the “signal of interest” is
given the influence of numerous factors, such as internal brain states, external
stimuli, the impact of thermal noise inside the MRI scanner, the inevitable
impact of head motion, and the persistence of physiological changes such as
heartbeat and respiration [41].
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In the current rsfMRI-based prediction pipelines, individual characteristics
such as age, gender, and total intracranial volume (TIV) are frequently treated
as “confounds” and removed from the rsfMRI features or from the prediction
targets before analysis [42]. It stems from the idea that any information other
than that directly related to brain activity should be discarded because it may
prevent us from determining the neuronal origin of the predictive signal [43].
However, a previous study has shown that features based on individual
characteristics might be better at diagnosing brain abnormalities than those
based on fMRI [44]. Nevertheless, it is unclear how much of the shared
information between rsfMRI and cognitive phenotypes is lost as a result of
removing individual characteristics.

To examine these questions, we developed four cognitive prediction scenarios
using rsfMRI features based on the role of individual characteristics. We sought
to evaluate the relevance of treating commonly used individual characteristics
(age, gender, and TIV) as “confounds” for cognitive phenotypic prediction in
contrast to the TC and FC features of rsfMRI. We used a large subset of the UK
Biobank (Nsubject = 20,000) that included high-resolution rsfMRI and four
cognitive phenotypes: fluid intelligence, processing speed, visual memory, and
numerical memory [45]. We used nine brain region-wise rsfMRI features to
predict the cognitive phenotypes. The rsfMRI features covered five prominent
characteristics of FC (fractional amplitude of low-frequency fluctuations or
fALFF [46], local correlation or LCOR [47], global correlation or GCOR [48],
Eigenvector centrality or EC [49], and weighted clustering coefficient or wCC
[49]) as well as four TC metrics (Hurst exponent or HE [50], Weighted
permutation entropy or wPE [51], Range entropy or RangeEn [52], and
Multiscale entropy or MSE [53]). We then entered these features into four
predictive modeling pipelines, considering different roles for age, gender, and
TIV as individual characteristics. These analysis pipelines performed predictive
modeling using: (i) rsfMRI features without removing individual
characteristics, (ii) rsfMRI features with the removal of individual
characteristics (i.e., treating them as confounds), (iii) a combination of rsfMRI
features and individual characteristics, and (iv) individual characteristics only
(i.e., age, gender, and TIV). We also investigated the impact of brain region-wise
tSNR on the performance of predictive models using rsfMRI features. We
wanted to examine to what extent brain regions with low tSNR contribute to
better predictions.

We found that the TC and FC characteristics of rsfMRI had comparable
predictive capacity. The removal of age, gender, and TIV from the features or
targets resulted in reduced performance. In most cases, the sole use of these
individual characteristics yielded the best prediction accuracy. The accuracy of
the predictions improved marginally when using a combination of rsfMRI
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features and individual characteristics. In line with previous works, our results
show that age and gender could be predicted much more accurately than
cognitive phenotypes. Our findings demonstrate that rsfMRI features are not
necessarily better than individual characteristics at predicting cognitive
phenotypes, even when the sample size is increased to large numbers.

Results
Quantifying rsfMRI complex dynamics and cognitive phenotypes We used
preprocessed rsfMRI data from 20,000 unrelated UK Biobank participants for
this study [54] (see Methods). We calculated four TC measures and five
ROI-wise FC-derived measures (see Methods). As prediction targets, we chose
the four most reliable cognitive phenotypes in the UK Biobank database,
measuring fluid intelligence, processing speed, visual memory, and numerical
memory [55]. See Table S1 in the Supplementary Materials for the full list of
features and targets.

We used kernel ridge regression with l2-norm regularization for predictive
modeling, a widely used prediction method [5], [56], [57], to assess rsfMRI
markers’ cognitive phenotypic prediction ability. Model performance was
measured through cross-validation using the Pearson correlation between the
real and predicted targets (kernel ridge regression) or the balanced accuracy
for gender classification (ridge classification). Model hyper-parameterization
was done using nested cross-validation. Individual characteristics, i.e., age,
gender, and TIV, were addressed through four scenarios, outlined in Figures
1-B.1 to B.4 (see also Methods).
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Figure 1: (A): main block diagram of this study, including the rsfMRI features and the prediction
targets from the UK Biobank. (B) Four analysis scenarios based on the role of individual
characteristics, i.e., age, gender, and total intracranial volume (TIV), in cognitive phenotypic
prediction.

Larger sample sizes increase accuracy but eventually reach a plateau. First,
we examined whether increasing the sample size could improve the prediction
accuracy of cognitive phenotypes in all four scenarios (Figure 1). As illustrated
in Figure 2, increasing the number of subjects improved accuracy most of the
time, but the performance curves reached a plateau when using approximately
more than 2,000 participants.

As a sanity check, we tested all the predictive modeling scenarios using fish
consumption (the day prior to fMRI) as a target presumably unrelated to the
rsfMRI features. The performance for all sample sizes, rsfMRI features,
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individual characteristics, and their combinations remained at chance level
(Figure 2).

Temporal complexity and FC features show comparable predictive
capacities. Next, we investigated how TC and FC measures compare in
cognitive phenotype prediction across different sample sizes. The average
performance of ridge regression models suggested that certain features,
specifically fALFF, LCOR, wPE, and RangeEnB, performed better than others in
all contexts, regardless of the target. Both types of features were situated at the
lower and upper bands of prediction accuracy. The correlation between actual
and predicted targets remained below 0.35 even at the maximum sample size.
Voxel-based local brain activity measures of fALFF and LCOR showed the
highest predictive capacity among the FC measures. Among TC measures, wPE
and RangeEnB resulted in the highest accuracy, comparable to fALFF and LCOR.

Even with a sample size of 20,000 individuals, not all cognitive phenotypes
could be predicted with equal accuracy (Figure 2). Processing speed was
predicted with the highest correlation coefficient of up to 0.35, followed by
fluid intelligence with 0.25 when using fALFF together with the individual
characteristics. For all combinations, predictions for visual memory and
numeric memory scores were less accurate with a correlation accuracy of less
than 0.2. The prediction accuracy of processing speed was again higher than
that of the other three cognitive phenotypes when using only the individual
characteristics (age, gender, and TIV) (Scenario 4, see Figure 1). However, as
shown in the black colored curves of Figure 2, the predictability of fluid
intelligence, visual memory, and numerical memory scores was close to each
other. Worthy to note that in all cases, removing the individual characteristics
from cognitive phenotypes worsened the predictive performance.
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Figure 2: Prediction accuracy scores associated with nine rsfMRI features and five prediction
targets using scenarios 1–3 of this study (see also Figures 1-B.1–B.3 and Methods). The prediction
accuracies of individual characteristics only (Scenario 4 in Figure 1-B.4) have been plotted in bold
black on all panels. Prediction accuracies of the fluid intelligence, processing speed, visual memory,
and numeric memory scores are computed as the Pearson correlation between the actual values
and predicted values through kernel ridge regression modeling. The prediction accuracy of Fish
consumer yesterday is computed as the balanced accuracy through ridge binary classification. Each
rsfMRI feature is illustrated in a distinct color and listed in the figure legend. In each figure panel,
the x-axis represents the population size in the analysis, and the y-axis shows the prediction
accuracy. The predictive modeling of each pair of features and targets is repeated for different
sample sizes in the UK Biobank, ranging from Nsubject = 100 to Nsubject = 20,000. The population sizes
from 100 to 2000 were increased with a 50-step increment (see the light orange shadow in the
figure panels) and from 2000 to 20,000 with a 500-step increment (see the light blue shadow in
the figure panels). As the panels show, the prediction accuracy improved with increasing sample
size and the number of suprathreshold ROIs (i.e., higher accuracy toward the upper right corner of
the color-coded maps). See Supplementary Figure S1 for the boxplot representation of these
results.

Age, gender, and TIV result in higher accuracy than rsfMRI features. Next,
we tested how age, gender, and TIV predict cognitive performance when used

7



Individual characteristics versus rsfMRI for cognitive phenotypic prediction

as sole input features and without any rsfMRI data involved. To this end, we
used these individual characteristics as input to the kernel ridge regression to
predict cognitive phenotypes (Figure 1-D.1). As shown in Figure 2 and
Supplementary Figure S1, this approach resulted in the highest correlation
between actual and predicted targets across all sample sizes, outperforming all
scenarios where rsfMRI features were utilized (Figure 1-D.1 to D.3). When
individual characteristics served as input features, the sample size required to
reach the plateau was substantially lower (lower than 500 subjects; see Figure
2). In other words, the ability of individual characteristics to predict cognitive
phenotypes from a small sample size was better than the ability of rsfMRI
features to predict the same targets, even when a larger sample size was used.

Given that the individual characteristics outperformed rsfMRI features in
predicting cognitive phenotypes, the next logical step was to combine the TC
and FC features with individual characteristics and see if it improved the
prediction accuracy. For all rsfMRI features, this scenario produced the highest
prediction accuracy of the first three analysis scenarios using rsfMRI features
(Figure 2C, see also Supplementary Figure S1). This result shows that the
inclusion of individual characteristics such as age, gender, and TIV may
improve the performance of rsfMRI features, in particular for large sample
sizes. The distinction between combined rsfMRI features and individual
characteristics (Scenario 3) and rsfMRI features only (scenarios 1 and 2) was
more pronounced when predicting processing speed in comparison to the
other three cognitive phenotypes. Additionally, when the rsfMRI features were
combined with individual characteristics and with larger sample sizes, the
prediction accuracy was more similar (Figure 2, Scenario 1 versus Scenario 3).

The temporal signal-to-noise ratio plays no major role. We then asked if
background noise in rsfMRI data affects prediction performance. To this end,
we investigated whether excluding brain regions with high noise levels would
increase prediction accuracy. We used a group-level tSNR map to threshold the
rsfMRI feature maps (see Methods). Figure 3 illustrates the prediction
accuracies for fluid intelligence using rsfMRI features (Scenario 1), rsfMRI
features after removing individual characteristics (Scenario 2), and when
combining rsfMRI features with individual characteristics (Scenario 3),
following stepwise thresholding on the tSNR maps from 0% (no threshold,
corresponding to results in Figure 2) to 60% with 5% increments. Prediction
accuracies improved with increasing sample size and the number of
suprathreshold ROIs. The results were similar for the other cognitive
phenotypes (see Supplementary Figures S3–S5). Prediction accuracy for fish
consumption remained at chance-level for all tSNR thresholds (Supplementary
Figure S6).
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Figure 3: Pearson correlation accuracy associated with kernel ridge regression modeling of fluid
intelligence using nine rsfMRI features and after tSNR thresholding from 0% (no threshold) to 65%.
In each figure panel, the accuracy values are color-coded. Additionally, the x-axis represents the
population size in the analysis, and the y-axis shows the number of suprathreshold ROIs after tSNR
thresholding. The predictive modeling of each pair of features and targets is repeated for different
sample sizes in the UK Biobank, ranging from Nsubject = 100 to Nsubject = 20,000. The population sizes
from 100 to 2000 were increased with a 50-step increment, and from 2000 to 20,000 with a
500-step increment.

Age and gender are easier to predict than cognitive phenotypes. We
investigated the capability of the rsfMRI features to predict individual
characteristics. Compared to the prediction of four cognitive phenotypes, the
prediction accuracy of all rsfMRI features was higher for both age and gender
prediction (Figure 4). Two TC features, wPE and RangeEnB, performed best at
large sample sizes, as well as fALFF and LCOR (FC), with correlation coefficients
of up to 0.5. This accuracy was considerably better than the prediction accuracy
of cognitive phenotypes, which was typically less than 0.25 (see Figure 2). This
result was noticeably different when individual characteristics were used as
features for predictive modeling (gender and TIV for age prediction, and age
and TIV for gender prediction). Gender could be classified using age and TIV
with 88% accuracy. However, the individual characteristics did not perform
well in age prediction, with a Pearson correlation of 0.2 between actual and
predicted values.
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Figure 4: Prediction accuracy scores associated with nine rsfMRI features and age and gender as
targets using scenarios 1–3 of this study (see also Figures 1-B.1–B.3 and Methods). The prediction
accuracies of individual characteristics only (Scenario 4 in Figure 1-B.4) have been plotted in bold
black on all panels. For age prediction, we considered gender and TIV as confounds, while for
gender prediction, we considered age and TIV as confounds. Age prediction accuracies are
computed as the Pearson correlation between the actual values and predicted values through
kernel ridge regression modeling. Gender prediction accuracies are computed as the balanced
accuracy through ridge binary classification. Each rsfMRI feature is illustrated in a distinct color
and listed in the figure legend. In each figure panel, the x-axis represents the population size in the
analysis, and the y-axis shows the prediction accuracy. The predictive modeling of each pair of
features and targets is repeated for different sample sizes in the UK Biobank, ranging from Nsubject =
100 to Nsubject = 20,000. The population sizes from 100 to 2000 were increased with a 50-step
increment (see the light orange shadow in the figure panels) and from 2000 to 20,000 with a
500-step increment (see the light blue shadow in the figure panels). See Supplementary Figure S2
for the boxplot representation of these results.

Similar individual patterns across rsfMRI features. We looked into how
much information rsfMRI features with comparative prediction capacity share
with one another. Our findings show that some rsfMRI features have
comparable predictive capacity, despite their mathematical definitions and
interpretations being quite different. For instance, fALFF and wPE were
frequently among the most predictive features across three analysis scenarios,
despite describing different aspects of rsfMRI. To check how well different
rsfMRI features match with each other, we quantified the similarity between
them using the identification accuracy score (see Methods). A number of rsfMRI
feature pairs showed a high level of match (Figure 5). The pairs wCC-EC,
wPE-RangeEnB, fALFF-LCOR, and MSE-HE were among the most highly matched.
The identification accuracy changed when individual characteristics were
removed or when rsfMRI features were added to individual characteristics
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(Figure 5, panels B, C, and D). Importantly, identification accuracy decreased as
the number of subjects increased. This was in contrast to the increase in
prediction accuracy (Figure 2).

Figure 5: The process and results of rsfMRI feature comparison. (A) A schematic example of
comparing two rsfMRI features X and Y from the same subject in a sample. This comparison leads
to the computation of an identification accuracy score (see Methods). (B-D) Identification accuracy
patterns of 10 rsfMRI feature pairs with above zero matching are associated with three analysis
scenarios of this study (see Figure 1 as well as Methods). Each pair in the middle row panels has
been depicted in a distinct color, and all pairs are listed in the figure legend. In each figure panel,
the x-axis represents the population size in the analysis, and the y-axis shows the identification
accuracy. The identification analyses are repeated for different sample sizes in the UK Biobank,
ranging from Nsubject = 100 to Nsubject = 20,000. The population sizes from 100 to 2000 were increased
with a 50-step increment (see the light orange shadow in the figure panels) and from 2000 to
20,000 with a 500-step increment (see the light blue shadow in the figure panels). The color-coded
matrices in the row illustrate the identification accuracy of rsfMRI feature pairs for Nsubject = 20,000.
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Discussion
A primary goal of neuroscience research is to investigate the relationship
between complex brain dynamics and individual differences in behavior [58].
Spontaneous fluctuations in blood oxygenation level-dependent (BOLD)
changes measured by fMRI have been shown to exhibit complex dynamics in
the time domain referred to as TC [60], [61]. The interactions between BOLD
changes across brain areas, also known as FC, provides useful perspectives on
brain activity at a large scale. It has been demonstrated that these functional
interactions are crucial for accomplishing tasks and are related to cognitive
phenotypes [62].

The goal of this study was to investigate the use of TC/FC properties of
spontaneous BOLD changes to predict cognitive phenotypes and to learn more
about the effects of individual characteristics. To this end, we looked at how
four cognitive phenotypes, fluid intelligence, processing speed, and memory
characteristics, can be predicted by various aspects of TC/FC in rsfMRI. We first
demonstrated that, despite having different mathematical definitions, the TC
and FC metrics of rsfMRI lead to comparable performance across a wide range
of sample sizes [45]. It naturally follows that a more thorough examination and
a wider variety of rsfMRI features are required for deriving a more concrete
conclusion.

Comparing MRI modalities for cognitive prediction has been the subject of
several recent studies [63]–[65]. However, most of these studies have utilized
the same datasets, primarily the widely used Human Connectome Project (HCP)
database [66], with a medium sample size of fewer than 1500 participants.
Cognitive prediction studies that use the UK Biobank database have a lot more
participants than HCP, but as far as the authors know, only a few studies with
large fMRI datasets have been done so far [22], [56], [57]. This makes
extrapolating the findings of low sample size studies to larger sample sizes
challenging [5]. Additionally, it may result in the problem of dataset decay,
which means that repeated statistical tests on the same dataset in different
studies may result in a rise in false positives [67]. Studies on reproducible
brain-wide associations have also been established to require the involvement
of thousands of participants [23]. To take these issues into account, we used a
sizable portion of the UK Biobank database [45], varied the population size
from 50 to 20,000 subjects, and examined the effects of sample size scaling on
the predictive capacity of rsfMRI TC and FC-derived measures for cognitive
phenotypic prediction. Altering the sample size indeed has a significant impact
on the predictive accuracy of rsfMRI features (Figures 2 and 4). Previous
cognitive prediction studies using the UK Biobank and other rsfMRI databases
also found that the accuracy of kernel ridge regression modeling reaches a
plateau by increasing the sample size [56], [68]. This finding implies that
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prediction accuracy derived from small populations may not be reliable and can
lead to large variance in cross-validation [69]. The comparative predictive
ability of the TC and FC features of rsfMRI (Figures 2 and 3) suggests that the
complex dynamics of rsfMRI and spontaneous functional interaction between
brain regions carry overlapping information about behavior and cognition
rather than being two distinct facets of brain function [62]. Such a relationship
has also been seen in the characteristics of neurological conditions such as
epilepsy, which has been described as both a disorder of functional networks in
the brain and an abnormality of its dynamics at the same time [70].

Depending on the analysis workflows of this study, we either used rsfMRI
features, individual characteristics, or both as input features for the kernel
ridge regression models with l2-norm regularization. Interestingly, the
prediction accuracy using individual characteristics was higher than that of all
rsfMRI features (Figure 2). This result is consistent with a previous study in the
ADHD-200 Global Competition, which found that when using logistic
classification for ADHD diagnostics, individual characteristic data (site of data
collection, age, gender, handedness, performance IQ, verbal IQ, and full scale IQ)
performed better than a variety of fMRI features [44]. One way to reconcile
these findings is to retain age, gender, and anatomical brain properties in
rsfMRI features when predicting cognitive phenotypes and diagnosing diseases
rather than removing them as is currently common practice in the literature
[71]. If supported by additional research and if prediction accuracy itself is the
goal (as opposed to identifying the neuronal origins of the predictive signal),
then it may also suggest that using demographic and structural MRI data rather
than fMRI recordings is a simpler and more practical method for cognitive
phenotypic prediction in humans. The three individual characteristics
performed better than the combined feature vectors of size 403 and the 400
rsfMRI feature vectors. A possible technical reason for this is that the number of
samples needed to estimate a model with a given level of accuracy rises
exponentially with the number of features, i.e. the curse of dimensionality [72].
However, given our large sample size, this is unlikely to be a concern.

Previous studies have shown that some cognitive phenotypes can be
predicted better than others using neuroimaging data [5]. This is supported by
our prediction results (Figure 2 and Supplementary Figure S1), which show
that regardless of the rsfMRI features used and the sample size, the processing
speed measure was usually predicted better than the visual and numerical
memory scores. A recent review of human fluid intelligence prediction using
neuroimaging data has reported an average Pearson correlation of 0.15 with a
CI95% of [0.13, 0.17] across the fMRI literature [9]. This is confirmed by our fluid
intelligence prediction results with a maximum correlation score of 0.23 using
combined LCOR and individual characteristics and at very high sample sizes
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(20,000 - see Figure 2). Contrary to cognitive phenotypes, age and gender were
easier to predict using both TC and FC features, as shown by a comparison
between the prediction accuracy curves (Figures 2 and 4 as well as the boxplots
in Supplementary Figures S1 and S2). However, gender prediction using age
and TIV was better than age prediction using gender and TIV (see the
black-color curves in Figure 4). All four analysis workflows passed a sanity
check using the chance-level prediction of yesterday’s fish consumption (Figure
2 and Supplementary Figure S1).

In the analysis of biological systems, "noise" is a term used to describe
arbitrary or irregular disturbances that hinder or prevent the transmission of
true, biologically plausible information to the recorded biosignals. This issue is
particularly apparent in fMRI features defined by bandpass filtering of fMRI
time series, such as fALFF [46]. This challenge is not limited to the rsfMRI
literature, but it also includes new conceptualizations of macroscopic and
microscopic brain functional organization [74]. In fact, what was once "noise" is
now "signal," as has frequently occurred in the history of biosignal analysis
research [74]. The temporal signal-to-noise ratio (tSNR) is a metric for
comparing the strength of an interest signal to the amount of background noise
in the time domain [75]. The tSNR analysis results of our study (Figure 4,
Supplementary Figures S3-S6) indicate that even the rsfMRI features of brain
regions with a high level of noise, which are typically found in deeper areas of
the brain and close to sinus cavities, still contain predictive information about
cognition. It is corroborated by our observation that using more brain regions,
even when their tSNRs are not very high, leads to higher accuracy. To retain the
same number of brain regions across individuals, we used the group-mean
tSNR map of the full sample with 20,000 UK Biobank individuals to threshold
subject-specific rsfMRI feature brain maps. This is because tSNR brain maps do
not always agree on the same brain regions across participants. We believe that
the information in this group-mean tSNR map from a very large sample is so
compressed and dimensionally reduced that any influence of data leakage
would be minimal.

Our results show a relatively inverse association between identification
accuracy and prediction accuracy across different sample sizes. While adding
more subjects improved cognitive phenotypic prediction accuracy (Figure 2),
doing so reduced identification accuracy (Figure 5). This shows that the
identification problem becomes harder as the sample size grows because there
are more chances of obtaining a match with another subject than with the self.
On the other hand, the prediction problem becomes relatively easier for larger
populations because more information is available for learning. Additionally, it
is consistent with a recent study that found a similar dichotomy between the
neural identity facets that best predict a person’s behavior and cognition and
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those that best distinguish them from other people [64]. Figure 5 also suggests
that the nine investigated rsfMRI features can be categorized into various
matched pairs. The matches between wPE and RangeEnB, HE and MSE, fALFF
and LCOR, and wCC and EC, are most notable. The similar prediction
performance of these feature pairs can be partly explained by the
measurements yielding similar individual-level patterns (as shown by the high
identification accuracy), even though they are conceptually different. We have
previously demonstrated spatial overlap between the distribution of sample
entropy, the MSE’s fundamental unit, and the HE across cortical brain areas
[52]. The identification accuracy of rsfMRI gets more reasonable at time scales
greater than 200 sec [76]. In particular, the reliability of FC connections (as
determined by intraclass correlation) is at its peak for longer time scales of
almost 400 sec and above [76]. Although we did not examine how unique the
rsfMRI features were in an FC fingerprinting sense [10], [76], we think that the
length of the rsfMRI datasets in the UK Biobank (490 sec) is long enough to
analyze identification using rsfMRI features.

In conclusion, rsfMRI TC measures show some potential for cognitive,
phenotypic, and individual characteristic prediction. This capacity is
comparable to the widely used rsfMRI FC features. However, the individual
characteristics showed a higher capacity for cognitive prediction than the
rsfMRI features. Having said that, there are several limitations that should be
taken into account when interpreting the findings of this study. First, we only
used one predictive algorithm, kernel ridge regression. Although ridge
regression has been shown to be effective in similar applications in the
literature, other models might capture different information. Second, even
though many more variables, such as handedness and genetic factors, could
influence the rsfMRI features, we only considered three individual
characteristics in our predictive modeling. Third, we attempted to address the
challenge of accurately quantifying cognitive phenotypes using some of the
most reliable cognitive phenotypes available in the UK Biobank. Despite this,
these quantitative scores might still be noisy and subject to oversimplification.
Unfortunately, standardized normed scores that account for demographic
factors such as age and gender are not available in the UK Biobank database.
Fourth, we only included cortical areas in our analyses. Using subcortical and
cerebellar areas may give a more complete picture. Taken together, our findings
could aid future research in creating accurate, individualized predictive models
for clinical, behavioral, and cognitive measurements.

Methods
Data and preprocessing. We used the rsfMRI data of 20,000 unrelated UK
Biobank (UKB) participants after excluding subjects with mental and cognitive
disorders (ICD10, category F), diseases of the nervous system (ICD10, category
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G), and cerebrovascular diseases (ICD10, categories I60 to 69). Data
management of the UKB datasets was performed using DataLad [77] on
JURECA, a pre-exascale modular supercomputer operated by the Jülich
Supercomputing Center at the Forschungszentrum Jülich, Germany. The
duration of each rsfMRI scan was 6 minutes (490 time points), with a
repetition time (TR) of 0.735 sec, an echo time (TE) of 39 msec, a voxel size of
2.4×2.4×2.4 mm, and a field of view of 88×88×64. The following procedure was
performed on the rsfMRI datasets as part of a pipeline developed by the UK
Biobank [54]: grand-mean intensity normalization of the entire 4D fMRI
dataset by a single multiplicative factor; highpass temporal filtering using
Gaussian-weighted least-squares straight line fitting with σ = 50 sec; echo
planar imaging unwarping; gradient distortion correction unwarping; and
structured artifact removal through independent component analysis (ICA),
followed by an ICA-based X-noiseifier (ICA-FIX) [78]–[80]. No spatial or
temporal smoothing was applied to the fMRI volumes. The preprocessed data
files, referred to as "filtered_func_data_clean.nii”, were normalized to the MNI
space using FSL’s applywarp function with spline interpolation and parcellated
using the Schaefer brain atlas into 400 regions of interest (ROIs) [81]. Since we
needed a continuous fMRI time series for the extraction of TC features, we did
not apply motion scrubbing. Finally, we considered age, gender, and TIV as
individual characteristics in the analyses and incorporated them into four
analysis scenarios illustrated in Figure 1. The TIV of each subject was extracted
after brain extraction from the T1 image using the Computational Anatomy
Toolbox (CAT12) for SPM [82].

Four cognitive phenotypes were selected as the predictive targets among the
most reliable UK Biobank cognitive phenotypes, including fluid intelligence
(data field 20016), processing speed (data field 20023), numeric memory (data
field 20240), and visual memory (data field 399) [55]. Additionally, an
unrelated binary target (fish consumption yesterday - data field 103140) was
used as a sanity check of the rsfMRI features in the predictive modeling
scenarios.

Temporal complexity features. HE [50] is used to determine whether a time
series contains a long-memory process. It quantifies three different types of
trends: (i) values between 0.5 and 1, indicating that the time series is complex
and has long-range dependence; (ii) values less than 0.5, indicating that the
time series is random and has short-range dependence; or (iii) a value close to
0.5, indicating that the time series is a random walk with no memory of the
past. HE has been shown to be stable and reproducible across different fMRI
datasets [83]. In this study, we estimated HE using the rescaled range analysis
technique [50]. The wPE [51] is a modified version of permutation entropy
[84], a robust metric of TC that captures order relations between time points in
a signal and generates an ordinal pattern probability distribution using an
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embedding dimension m and a time delay τ, where the former is the length of
the patterns and the latter is a lag parameter denoting the number of time
points to shift throughout the time series. Unlike its predecessor, wPE assigns a
weight to each time point to take amplitude information into account. In this
study, we used the parameters m = 4 and τ = 1 and normalized the wPE values
by dividing them by log2(m!) in order to get the numbers between 0 and 1.
RangeEn offers two versions (RangeEnA and RangeEnB) as modifications to
approximative entropy [85] and sample entropy [86], respectively. A property
of RangeEnB is that regardless of the nature of the signal dynamics, it always
reaches 0 at its tolerance value of r = 1 [52]. In light of this, one can obtain a
complete trajectory of signal dynamics in the r-domain using this measure.
Therefore, we extracted it in this study from ROIwise rsfMRI and reduced its
dimensionality by computing the area under each curve along the r-axis (m =
2). We have recently shown that range entropy is robust to variations in signal
length [52], making it a viable option for relatively short-length time series
such as rsfMRI. MSE is an extension of sample entropy that provides insights
into the complexity of rsfMRI fluctuations over a range of time scales [53]. The
measure returns a trajectory of sample entropy values across the time scales 1
to τmax. We have already shown that MSE may be linked to higher-order
cognition [36]. In this study, we chose the parameters m = 2, r = 0.5, and τmax =
10 for MSE. We then reduced its dimensionality by taking the area under their
curves and dividing by τmax.

Functional connectivity features. We computed the FC measures of rsfMRI at
two spatial scales: (i) at the ROI level averaged time series (EC, wCC) and (ii)
first at the voxel level, then averaged within the ROIs (fALFF, LCOR, GCOR). For
the ROIwise measures, we characterized the FCs between every pair of voxels
or ROIs in each rsfMRI dataset and extracted the connections using Pearson
correlation between fMRI time series [49]. GCOR serves as a representative of
brain-wide correlation properties and a voxel-level representation of node
centrality [48]. LCOR measures voxel-level local coherence. It is defined as the
average of the correlation coefficients between a voxel and its immediate
surroundings (a Gaussian kernel with FWHM of 25 mm) [47]. Similar to GCOR,
LCOR takes both the strength and sign of functional connections into
consideration. The fALFF quantifies the contribution of low frequency
fluctuations to the total frequency range within a given frequency band (here,
0.008-0.09 Hz [46]). While GCOR and LCOR assess the strength of interregional
and local cooperation by measuring the temporal similarity between voxels,
fALFF evaluates the amplitude of regional neuronal activity. For each subject,
the voxelwise GCOR, LCOR, and fALFF brain maps were parcellated into 400
ROIs using a brain atlas [81]. EC is an ROI-based measure in our study that
indicates the impact of an ROI on the functional brain network [49]. The
eigenvector centrality of the ith ROI corresponds to the ith element in the
eigenvector corresponding to the largest eigenvalue of the ROIwise functional
connectome. The wCC quantifies how much the ROIs in the brain network
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functionally cluster together. This metric is calculated as the ratio of all
triangles in which the ith ROI participates to all triangles that, theoretically,
could be formed given the degree of the ith ROI's involvement in the brain’s
functional network [49]. We chose to exclude the vectorized upper/lower
triangle of the FC matrix from the FC feature sets (i.e., feature vectors of length
79,800), because it would greatly increase the degrees of freedom in the
predictive models and would increase the risk of overfitting. Also, it would lead
to a very high computational load for the analysis of large sample sizes. The list
of rsfMRI features in this study is summarized in Table S1 in the
Supplementary Materials.

tSNR analysis. We calculated the temporal signal-to-noise ratio (tSNR) for each
brain region as the ratio between the mean and standard deviation of the
rsfMRI time series at each ROI [75]. This led to a tSNR brain map for each
participant, which we normalized over ROIs and later averaged across the
entire UK Biobank population (Nsubject = 20,000). We used the group-average
map for thresholding to exclude the noisiest brain regions at multiple tSNR
levels. The thresholding levels were varied from no threshold (i.e., preserving
all ROIs for the prediction) to 65%, resulting in 14 suprathreshold ROIs. See
Figure 3 as well as Figures S1 to S4.

Predictive modeling. Following previous studies in the field [5], [56], [57], we
chose to use kernel ridge regression with l2-norm regularization and
classification for predictive modeling. As illustrated in Figures 1-B.1 to B.4, we
designed four analysis scenarios based on the role of individual characteristics
in predictive modeling. We trained 78 kernel ridge regression models for each
cognitive phenotype on a wide range of UK Biobank subjects from Nsubject = 100
to Nsubject = 2000 with a 50-step increment and from Nsubject = 2000 to Nsubject =
20,000 with a 500-step increment and each tSNR level, resulting in a total
number of 36504 models (9 features × 4 targets × 78 population sizes × 13
tSNR levels). We also trained 78 ridge binary classifiers using each rsfMRI
feature to predict fish consumption yesterday (total number of models: 9126).
In all cases, we estimated the best model hyperparameter λ of the ridge
regression/classification over the following values: [0.001, 0.01, 0.1, 1, 5, 10,
100, 1000, 10000, 100000] through grid search. For the evaluation of
prediction accuracy, we performed five repeats of 5-fold nested
cross-validation using the scikit-learn [87] and Julearn
(https://juaml.github.io/julearn/main/index.html) libraries in Python. For
evaluation of the regression models, we computed Pearson’s correlation
coefficient between the actual targets and the model’s predictions. To evaluate
the binary classifications, we used balanced accuracy, taking into account any
imbalance between the two classes. We repeated the predictive modeling for
five targets (four cognitive phenotypes as well as fish consumption yesterday)
and nine rsfMRI features at a range of sample sizes varying from 100 to 20,000.
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At each sample size, we randomly sampled the data to contain an equal
number of males and females. We developed four predictive modeling
scenarios based on the role of personal information or the individual
characteristics (age, gender, and TIV) in our study, as illustrated in Figure 1.
These scenarios included (B.1) prediction using rsfMRI features before
removing individual characteristics, (B.2) prediction using rsfMRI features
after treating individual characteristics as confounds and removing them, (B.3)
prediction using combined rsfMRI features and individual characteristics, and
(B.4) prediction using individual characteristics only. Individual characteristics
were regressed out at the target level for regression modeling [5], [7] and at
the feature level for the classification analyses [42], [71] using linear
regression. Confound removal was performed in a cross-validation consistent
manner to avoid data leakage [42].

Feature comparison via identification analysis. We adapted the concept of
identification accuracy from the functional connectome fingerprinting
literature [10], [88] and applied it to comparing different rsfMRI features of the
same subject across a population. In this context, "identification" refers to the
process of identifying a rsfMRI feature vector (brain map) X having the highest
spatial correlation with Y, one of the other eight rsfMRI feature maps across the
entire population. In this study, identification accuracy was defined as the
proportion of correctly identified individuals based on matching their two
rsfMRI features. The score ranges between 0 and 1, with higher values
indicating a better match. See Figure 5-A for a schematic example of comparing
two rsfMRI features across a given sample.
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Supplementary Materials

Table S1 RsfMRI features and the prediction targets in this study
RsfMRI Feature name Category Spatial resolution

Weighted permutation entropy (wPE) [51] Temporal complexity ROIwise

Range entropy (RangeEnB) [52] Temporal complexity ROIwise

Multiscale entropy (MSE) [53] Temporal complexity ROIwise

Hurst exponent (HE) [50] Temporal complexity ROIwise

Eigenvector centrality (EC) [49] Functional connectivity ROIwise

Weighted clustering coefficient (wCC) [49] Functional connectivity ROIwise

Fractional amplitude of
low-frequency fluctuations (fALFF) [46] Functional connectivity Voxelwise

Local correlation (LCOR) [47] Functional connectivity Voxelwise

Global correlation (GCOR) [48] Functional connectivity Voxelwise

Prediction target UK Biobank Data field

Fluid intelligence 20016

Processing time 20023

Visual memory 399

Numeric memory 20240

Fish consumer yesterday 103140
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Figure S1: Prediction accuracy scores associated with nine rsfMRI features and five prediction
targets using scenarios 1–3 of this study (see also Figures 1-B.1–B.3 and Methods). Prediction
accuracies of the fluid intelligence, processing speed, visual memory, and numeric memory scores
are computed as the Pearson correlation between the actual values and predicted values through
kernel ridge regression modeling. The prediction accuracy of Fish consumer yesterday is computed
as the balanced accuracy through ridge binary classification. Each rsfMRI feature is illustrated in a
distinct color and listed in the figure legend. In each figure panel, the box has a line at the median
and spans the complete range of sample sizes (from 100 to 20,000 participants), extending from
the lower to upper quartile values of the prediction accuracies. The whiskers extend outside the
box to display the data's range. The population sizes from 100 to 2000 were increased with a
50-step increment and from 2000 to 20,000 with a 500-step increment. See Figure 2 for the
representation of prediction accuracies over the range of sample sizes.
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Figure S2: Prediction accuracy scores associated with nine rsfMRI features and age and gender as
targets using scenarios 1–3 of this study (see also Figures 1-B.1–B.3 and Methods). For age
prediction, we considered gender and TIV as confounds, while for gender prediction, we
considered age and TIV as confounds. Age prediction accuracies are computed as the Pearson
correlation between the actual values and predicted values through kernel ridge regression
modeling. Gender prediction accuracies are computed as the balanced accuracy through ridge
binary classification. Each rsfMRI feature is illustrated in a distinct color and listed in the figure
legend. In each figure panel, the box has a line at the median and spans the complete range of
sample sizes (from 100 to 20,000 participants), extending from the lower to upper quartile values
of the prediction accuracies. The whiskers extend outside the box to display the data's range. The
population sizes from 100 to 2000 were increased with a 50-step increment and from 2000 to
20,000 with a 500-step increment. See Figure 4 for the representation of prediction accuracies over
the range of sample sizes.
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Figure S3: Pearson correlations associated with kernel ridge regression modeling of the processing
speed score using nine rsfMRI features and after tSNR thresholding from 0% (no threshold) to
65%. In each figure panel, the accuracy values are color-coded. Additionally, the x-axis represents
the population size in the analysis, and the y-axis shows the number of suprathreshold ROIs after
tSNR thresholding. The predictive modeling of each pair of features and targets is repeated for
different sample sizes in the UK Biobank, ranging from Nsubject = 100 to Nsubject = 20,000. The
population sizes from 100 to 2000 were increased with a 50-step increment, and from 2000 to
20,000 with a 500-step increment.

Figure S4: Pearson correlation accuracies associated with kernel ridge regression modeling of the
visual memory score using nine rsfMRI features and after tSNR thresholding from 0% (no
threshold) to 65%. In each figure panel, the accuracy values are color-coded. Additionally, the
x-axis represents the population size in the analysis, and the y-axis shows the number of
suprathreshold ROIs after tSNR thresholding. The predictive modeling of each pair of features and
targets is repeated for different sample sizes in the UK Biobank ranging from Nsubject = 100 to Nsubject =
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20,000. The population sizes from 100 to 2000 were increased with a 50-step increment, and from
2000 to 20,000 with a 500-step increment.

Figure S5: Pearson correlation accuracies associated with kernel ridge regression modeling of the
numeric memory score using nine rsfMRI features and after tSNR thresholding from 0% (no
threshold) to 65%. In each figure panel, the accuracy values are color-coded. Additionally, the
x-axis represents the population size in the analysis, and the y-axis shows the number of
suprathreshold ROIs after tSNR thresholding. The predictive modeling of each pair of features and
targets is repeated for different sample sizes in the UK Biobank, ranging from Nsubject = 100 to Nsubject

= 20,000. The population sizes from 100 to 2000 were increased with a 50-step increment, and
from 2000 to 20,000 with a 500-step increment.

Figure S6: Balanced accuracy associated with ridge binary classification of fish consumption
yesterday using nine rsfMRI features and after tSNR thresholding from 0% (no threshold) to 65%.
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In each figure panel, the accuracy values are color-coded. Additionally, the x-axis represents the
population size in the analysis, and the y-axis shows the number of suprathreshold ROIs after tSNR
thresholding. The predictive modeling of each pair of features and targets is repeated for different
sample sizes in the UK Biobank, ranging from Nsubject = 100 to Nsubject = 20,000. The population sizes
from 100 to 2000 were increased with a 50-step increment, and from 2000 to 20,000 with a
500-step increment.
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