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[1] Sea level data from the Chesapeake Bay are used to test a
novel new analysis method for studies of sea level rise (SLR).
The method, based on Empirical Mode Decomposition and
Hilbert-Huang Transformation, separates the sea level trend
from other oscillating modes and reveals how the mean sea
level changes over time. Bootstrap calculations test the
robustness of the method and provide confidence levels.
The analysis shows that rates of SLR have increased from
�1–3 mm y�1 in the 1930s to �4–10 mm y�1 in 2011,
an acceleration of �0.05–0.10 mm y�2 that is larger than
most previous studies, but comparable to recent findings
by Sallenger and collaborators. While land subsidence
increases SLR rates in the bay relative to global SLR, the
acceleration results support Sallenger et al.’s proposition
that an additional contribution to SLR from climatic changes
in ocean circulation is affecting the region. Citation: Ezer,
T., and W. B. Corlett (2012), Is sea level rise accelerating in the
Chesapeake Bay? A demonstration of a novel new approach for
analyzing sea level data, Geophys. Res. Lett., 39, L19605,
doi:10.1029/2012GL053435.

1. Introduction

[2] Communities along the shores of the Chesapeake Bay
(CB), such as Norfolk, VA, have seen an increase frequency
of flooding in recent years. Because of sea level rise (SLR),
high tides or storm surges that caused little concern in the
past, now result in a higher risk of flooding. Water level
measurements in the CB in fact show that the relative sea
level has been rising much faster than the globally mean
absolute sea level trend. Past studies suggest that �53% of
the relative SLR in the region may be attributed to local land
subsidence [Boon et al., 2010, hereinafter BOO10]. How-
ever, the recent study by Sallenger et al. [2012, hereinafter
SAL12], suggests a significant additional contribution to
SLR from changes in ocean dynamics; SAL12 shows evi-
dence for “hotspots” of accelerated SLR between Cape
Hatteras and Cape Cod that may relate to warming of the
sub-polar North Atlantic and slowing down of the Atlantic
Meridional Overturning Circulation (AMOC). Note that the
SLR acceleration rates reported by SAL12 are significantly
higher than global acceleration rates reported by others

[Holgate, 2007; Church and White, 2011; Houston and
Dean, 2011]. Therefore, whether SLR is accelerating and
by how much are highly contentious issues. Separating the
SLR trend from decadal and multi-decadal oscillations is
challenging. Local observations are also affected by spatial
variations from local land subsidence, long-term post glacial
rebound [Tamisiea and Mitrovica, 2011] and contributions
from ocean dynamics [Levermann et al., 2005; SAL12]. For
example, along the North Atlantic coast, models [Ezer,
2001] and observations [Sweet et al., 2009] found correla-
tions between weakening of the Gulf Stream transport and
increasing coastal sea levels; a result that can be explained
by changes in sea level gradient across the Gulf Stream.
[3] Future projections and coastal risk assessments depend

on whether SLR will continue at the same pace, at a reduced
pace (i.e., SLR deceleration) or at a faster pace (i.e., SLR
acceleration), so it is important to calculate SLR rates as
accurately as possible and identify potential rate changes.
However, the long-term sea level trend in tide gauge data is
embedded in variations on many different time scales, from
daily tides to the seasonal cycle, as well as interannual and
decadal oceanic variations. Low-pass filters can remove
seasonal and decadal variability and curve-fitting methods
can be used to estimate trends, but the filtering may impact
the calculated trend (BOO10). With these methods, at least
60-year record is needed for obtaining accuracy in SLR of
�0.5 mm y�1 with a 95% confidence level or obtaining
accurate acceleration rates [Douglas, 2001; BOO10]. Stan-
dard curve fitting methods often show conflicting results
even for long sea level records such as in Baltimore, MD
(110 years) where Houston and Dean [2011] calculated a
small deceleration of 0.003 mm y�2, but SAL12 calculated
acceleration of 0.044 mm y�2 since the 1950s; note however
that in the lower Chesapeake Bay both Houston and Dean
and SAL12 show positive SLR acceleration that agrees with
our results. Those difficulties in calculating SLR trends and
acceleration motivated this study, which will help future
research in this field. The analysis method presented here can
separate the trend from many oscillating modes, including
long term cycles with periods longer than the record itself
where only part of the cycle is captured by the data.
[4] The analysis method is based on Empirical Mode

Decomposition, EMD, and Hilbert-Huang Transformation,
HHT [Huang et al., 1998], together with bootstrap simula-
tions [Mudelsee, 2010]. The EMD/HHT method is espe-
cially useful for nonstationary and nonlinear time series, and
has been used for different geophysical applications, such as
earthquakes, hydrological and atmospheric data [Rao and
Hsu, 2008] and oceanic internal waves [Ezer et al., 2011].
The method decomposes any time series data into a finite
number (�10) of intrinsic mode functions with time-variable
amplitudes and frequencies. In most of the applications
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mentioned above the method has been applied to study the
EMD modes with high frequency. However, here a new
(to our knowledge) application for sea level trend, using
the method to separate oscillatory modes from the trend,
is demonstrated. The calculated sea level trend can take any
shape (i.e., the method is non-parametric) and there are no
pre-determined cycles or time-scales that are removed (e.g.,
as in other filtering and harmonic methods), so one cannot
predict ahead of time what shape the trend will take. If all
stations show similar trend functions, it will indicate that they
have been affected by the same process. Conversely, if the
trends are very different from each other, it will indicate that
local impacts from land motion, river flow or coastal
dynamics are at play. Comparisons are made with results
obtained from standard curve fitting methods.
[5] The paper is organized as follows. First, in section 2,

the data and the analysis method are described, then in
section 3, the results are presented, and finally, in section 4,
discussions and conclusions are offered.

2. Method

[6] Monthly mean sea level records from 8 tide gauge
stations in the CB were obtained from NOAA’s “verified
data” (http://tidesandcurrents.noaa.gov/). The stations are
spread from the Chesapeake Bay Bridge Tunnel (CBBT) at
the mouth of the bay to the city of Baltimore in the north

(Figure 1). Record length ranges from 37 years (CBBT) to
110 years (Baltimore, MD). Most of these stations have been
used in previous studies of SLR (e.g., BOO10 and SAL12).
[7] The analysis method is based on Empirical Mode

Decomposition and Hilbert-Huang Transform [Huang et al.,
1998]; the EMD/HHT method is especially useful for
applications that require time-series analysis of nonstation-
ary records. A time series is decomposed into a finite num-
ber (�10) of intrinsic oscillatory modes using the local
maxima or minima envelop. The Hilbert Spectral analysis
provides for each mode a time-dependent frequency and
amplitude. Therefore, a time series of monthly sea level data
at a particular station, h(t), is decomposed into P modes of
amplitude functions, Ai(t), and frequency functions, Fi(t),
where i = 1, 2, .., P; the sum of all the modes reconstructs the
original data, h(t) = [A1(t) + A2(t) + … AP(t)]. Each mode
may represent different oceanic processes from the highest
frequency (HHT mode 1) to the lowest frequency oscillating
mode (HHT mode P-1). The remaining non-oscillating mode
(HHT mode P) is the residual, i.e., AP(t), or the trend in the
case of SLR. The analysis is demonstrated for the data in
Sewells Point in Figure 2, where P = 9 (note that due to gaps
in the early years, the analysis starts in 1948). Modes 1–3
(combined for clarity) represent annual to bi-annual vari-
ability, modes 4–8 represent 3–5 year interannual variations,
modes 7–8 represent a multi-decadal �35-year cycle. Mode

Figure 1. The location of the tide gauge stations (red circles) and the topography of the Chesapeake Bay (darker blue repre-
sents deeper waters). The period of measured sea level in each station is indicated in the inset.
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9 represents the remaining sea level trend. The focus of this
study is on the trend (i.e., the last HHT mode), but it is clear
that the analysis also provides a tool to study forcing
mechanisms for other modes (which will be the focus of
follow up studies).
[8] The HHT analysis is a more general filtering technique

than fitting methods and thus the trend can take any mono-
tonic shape that is not oscillating. Therefore, to demonstrate
that the HHTmethod is useful for sea level studies we need to
show that the method is robust within an acceptable statistical
confidence level and that the trends are comparable with
results obtained by other methods. The statistical confidence
interval is calculated using a standard bootstrap method
[Mudelsee, 2010]. The idea is to randomly resample the data
many times in order to calculate error bars and confidence
intervals. If a record includes M monthly data points, the sea
level obtained from the HHT last mode P (i.e., the “trend”) is
AP(t) and the monthly anomaly relative to the trend is ɛ(t),

AP tð Þ ¼ AP
m ¼ HHT hmð Þ; ð1aÞ

ɛm ¼ hm � AP
m; m ¼ 1;::;Mð Þ: ð1bÞ

The bootstrap resampling approach is as follows. Step 1: an
“artificial” sample sea level record is created by randomly
sampling the anomalies from the original record,

h*m ¼ AP
m þ ɛ j; j ¼ rand 1;…;Mð Þ: ð2Þ

Step 2: the HHT analysis is performed on the artificial data
and an artificial trend is obtained,

AP*
m ¼ HHT h*m

� �
; m ¼ 1;::;Mð Þ: ð3Þ

Step 3: the process (2)–(3) is repeated N times and then for
each point m on the timeline the mean 〈AP*〉 and the standard
deviations s are calculated from all the artificial HHT results.

Figure 2. An example of the HHT analysis for the monthly
sea level record at Sewells Point (thin green line). The
observed record is decomposed into 9 modes, shown are
the combined “high-frequency” modes 1 to 3 (thin blue line
at the bottom), the “interannual-to-decadal” modes 4 to 9
(heavy blue line), the “multi-decadal” (�25 y period) modes
7 to 9 (heavy red line) and the remaining residual or “trend”
mode 9 (heavy black line).

Figure 3. (a) An example of the bootstrap simulations of
sea level at Sewells Point (last HHT mode) using N = 100
iterations; the green lines are individual simulations, the
black line is the ensemble mean, the blue and red lines are
the standard deviation and 95% CI, respectively. (b) SLR
(in mm y�1) from N = 5000 bootstrap iterations (mean is
solid red and CI is dashed lines). The actual trend calculated
from the real data (HHT mode 9 in Figure 2) is shown in thin
black line. A bootstrap calculation for linear regression is
shown in blue for N = 1000 iterations (the ensemble mean
and the actual trend are indistinguishable for this case).
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The confidence interval around the mean can then be calcu-
lated [Mudelsee, 2010], using standard statistics such as
Student-t distribution, t, for say 95% confidence level,
CI = [〈AP*〉� tsN�1/2, 〈AP*〉 + tsN�1/2]. If the HHT analysis
is robust, the mean 〈AP*〉 will converge as the number of
iterations increases and the actual trend AP will be within
the CI. Figure 3a demonstrates the bootstrap process for

Sewells Point for N = 100 iterations. The green lines are the
individual simulations of equation (3), the black line is the
mean 〈AP*〉 and the range of s and CI are shown in blue and
red, respectively. The SLR rate can be calculated from the
slope of the mean in Figure 3a and is shown in Figure 3b
(red solid line). To achieve a mean SLR rate that is statisti-
cally significant at 95% confidence within �0.5 mm y�1,
requires about N = 5000 simulations (Figure 3b). The results
show almost a steady increase in SLR, i.e., a constant positive
acceleration. The SLR calculated from the real data (black line
in Figure 3b), has slightly smaller acceleration than the mean,
but within the 95% CI lines, indicating that the method is
statistically sound given the observed variability. Similar
bootstrap calculations with a linear regression fitting for the
same data (blue lines in Figure 3b), requires less than 1000
simulations to achieve the same CI; the linear regression
represents the mean SLR rate. The CI of the HHT analysis

Figure 4. (a) The monthly sea level (in m) in the CB sta-
tions relative to the levels of 1980, as obtained from the last
HHT mode. Colors in the blue to red range represent station
locations from the upper to lower bay. (b) The SLR rates (in
mm y�1) calculated from the slope of the lines in Figure 4a.
The vertical bars represent the range of �2 standard devia-
tions of the decadal means, from the 1930s to the 2000s.

Figure 5. (a) Comparison between the SLR average rates
(blue circles) and change of rates (blue lines with up/down
arrows indicating acceleration/deceleration trends) obtained
from the HHT analysis and the average rates and 99% CI
(in red) obtained from a linear regression by BOO10.
(b) Comparison between the SLR average acceleration
obtained from the HHT analysis (blue) and the mean accel-
eration and variability (�2 standard deviations) calculated
from a 60-year (1950–2009) quadratic regression fitting
by SAL12 (red “X” and lines). The HHT acceleration in
Lewisetta (1974–2011) is compared with the average accel-
eration for 1970–2009, as calculated for the “hotspots” by
SAL12 (green).
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indicates that SLR rates before 1970 are statistically differ-
ent than the SLR rates after 1990.

3. Results

[11] Figure 4a summarizes the changes of sea level in the
8 CB stations, as obtained from the last HHT mode of each
station; these changes represent the instantaneous mean sea
level after all the oscillatory modes are removed. Qualita-
tively, it is clear that the sea level is rising faster now than in
the past, this is especially apparent in the long records such
as those in Baltimore and Annapolis. The change in sea level
over the past �30 years, from 1980 to 2011, is almost the
same for 5 out of 8 stations (Baltimore, Annapolis, Solomon
Island, Lewisetta and CBBT), however, in two stations the
changes in sea level are somewhat different than in other
stations (Figure 4b). At CBBT the current SLR rate is high,
but the rate seems to be almost constant with slight decrease
over the past 30 years, while at Lewisetta the SLR seems to
increase much faster than at any other location. The records
in these two stations are less than half the length of the other
stations, so the calculations are less accurate. However, there
is also the possibility that SLR rates have changed signifi-
cantly in recent decades (SAL12). Gloucester Point and
Kiptopeke are located at similar latitudes across the CB
(Figure 1) and have different SLR pattern (Figure 4b), which
suggests possible differences in local land subsidence.
The analysis indicates recent SLR rates of �6 mm y�1 in
the lower bay (CBBT, Sewells Point and Kiptopeke) and
�8 mm y�1 in the upper bay (Baltimore, Annapolis and
Solomon Island), and bay-wide rate changed from�1–3 mm
y�1 in the 1930s to �4–10 mm y�1 in 2011 (within 2 stan-
dard deviations).
[12] The EMD/HHT results are compared with SLR rates

obtained from linear regression by BOO10 (Figure 5a) and
SLR acceleration rates obtained from quadratic regression
by SAL12 (Figure 5b). The SLR trends show acceleration
for all the stations except CBBT; the CBBT record at the
mouth of the CB is relatively short and the tide gauge is
located on a man-made island to support bridge infrastruc-
ture, so land subsidence and ocean dynamics there are
expected to be different than coastal stations. Both, our
analysis and BOO10’s show similar spatial variations, with
increasing mean SLR rates from the upper bay at Baltimore
southward to Lewisetta, a drop in rates, and then another
increase from Kiptopeke to CBBT (Figure 5a). The mean
acceleration obtained from the HHT analysis (blue circles
in Figure 5b) is simply the average slope of each line in
Figure 4b; the latter is the slope of the last HHT mode in
Figure 4a. SAL12 calculated acceleration rates from a
quadratic regression for 40-year records (1970–2009), for
50-year records (1960–2009), and for 60-year records (1950–
2009), and they found considerably larger acceleration in
1970–2009 than in 1950–2009 (SAL12, supplementary
Figure S4). Four stations (Baltimore, Solomon Island, Kip-
topeke and Sewells Point) had results similar to SAL12’s, but
the Annapolis results show significantly higher acceleration
(0.095 mm y�2) than SAL12’s (0.016 mm y�2); in our cal-
culations Annapolis is more similar to nearby Baltimore,
both in trend (Figure 5a) and acceleration (Figure 5b). The
acceleration at Lewisetta (0.257 mm y�2) is unusually higher
than any other station (see also Figure 4b); this station has

a relatively short record starting in 1974 so it was not
included in SAL12’s analysis. However, acceleration in
Lewisetta is better compared with the average acceleration
calculated by SAL12 for 1970–2009, �0.1–0.25 mm y�2

(green line in Figure 5b).

4. Summary and Conclusions

[13] A new method to analyze sea level data and calculate
instantaneous SLR rates and accelerations is introduced. The
method is demonstrated for sea level data from the Chesa-
peake Bay, an area of increasing risk of coastal flooding due
to high SLR. Standard methods often filter a few selected
oscillations such as the seasonal cycle (which is well known)
or decadal variability (mostly unknown), and then calculate
SLR trends by linear regression or SLR acceleration by
quadratic fitting. The proposed EMD/HHT method [Huang
et al., 1998] extracts a trend from noisy data by systemati-
cally filtering out up to �10 oscillating non-stationary
modes, including low frequency modes with periods as long
as twice the record length (which is not possible with stan-
dard spectral and harmonic methods). The hypothesis behind
our study is that the remaining non-oscillating last HHT
mode represents the mean sea level trend. Note that the
oscillating modes that are removed here (Figure 2) are also a
useful product to study seasonal, interannual and decadal
variability (they will be discussed in separate studies).
Bootstrap calculations show that the method is robust and
statistically sound.
[14] Our results are consistent with SLR rates calculated

by BOO10 and the recent SLR acceleration rates calculated
by SAL12, and show a statistically significant increase in
SLR rates from �1–3 mm y�1 in the 1930s to �4–10 mm
y�1 in the last decade. The spatial pattern of SLR rates
within the CB may relate to land subsidence (BOO10), but
since post-glacial subsidence has a very long time scales it
does not affect SLR acceleration (SAL12), so the similar
acceleration found here in 5 of 8 records supports SAL12’s
hypothesis that climatic changes in the North Atlantic cir-
culation may impact the region’s sea level. The calculated
acceleration rates of �0.05–0.1 mm y�2 in most of the CB
stations are larger than previous global estimates [Church
and White, 2011; Holgate, 2007; Houston and Dean,
2011], but are very similar to the high-acceleration “hot-
spots” in the North Atlantic coast (SAL12). The main pur-
pose of this study was to introduce and test the new analysis
tool. Together with other methods it will help to better
understand the processes affecting coastal SLR such as the
impact from ocean dynamics and from subsidence, and also
will help to improve future projections of SLR and coastal
risk assessments.

[15] Acknowledgments. ODU’s Climate Change and Sea Level
Rise Initiative (CCSLRI) and its director, L. Atkinson, as well the Center
for Coastal Physical Oceanography (CCPO) and its director J. Klinck,
provided motivation, advice and partial support for this study. C. Grosch
suggested the bootstrap calculations and G. McLeod helped with some
figures. K. Doran and A. Sallenger provided us with their data. Co-author
W. B. Corlett recently received a BA in oceanography and coastal engineer-
ing from ODU and was supported by various scholarships for his undergrad-
uate research. T. Ezer is partly supported by grants from NOAA.
[16] The Editor thanks the two anonymous reviewers for their assis-

tance in evaluating this paper.

EZER AND CORLETT: SEA LEVEL RISE IN CHESAPEAKE BAY L19605L19605

5 of 6



References
Boon, J. D., J. M. Brubaker, and D. R. Forrest (2010), Chesapeake Bay land
subsidence and sea level change, in Applied Marine Science and Ocean
Engineering, Rep. 425, pp. 1–41, Va. Inst. of Mar. Sci., Gloucester Point.

Church, J. A., and N. J. White (2011), Sea-level rise from the late 19th to
the early 21st century, Surv. Geophys., 32, 585–602, doi:10.1007/
s10712-011-9119-1.

Douglas, B. C. (2001), Sea level change in the era of the recording tide
gauge, in Sea Level Rise: History and Consequences, Int. Geophys. Ser.,
vol. 75, edited by B. C. Douglas, M. S. Kearney, and S. P. Leatherman,
chap. 3, pp. 37–64, Elsevier, New York.

Ezer, T. (2001), Can long-term variability in the Gulf Stream transport be
inferred from sea level?, Geophys. Res. Lett., 28(6), 1031–1034,
doi:10.1029/2000GL011640.

Ezer, T., W. D. Heyman, C. Houser, and B. Kjerfve (2011), Modeling and
observations of high-frequency flow variability and internal waves at a
Caribbean reef spawning aggregation site, Ocean Dyn., 61(5), 581–598,
doi:10.1007/s10236-010-0367-2.

Holgate, S. J. (2007), On the decadal rates of sea level change during the
twentieth century, Geophys. Res. Lett., 34, L01602, doi:10.1029/
2006GL028492.

Houston, J. R., and R. G. Dean (2011), Sea-level acceleration based on U.S.
tide gauges and extensions of previous global-gauge analyses, J. Coastal
Res., 27(3), 409–417, doi:10.2112/JCOASTRES-D-10-00157.1.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C.
Tung, and H. H. Liu (1998), The empirical mode decomposition and the
Hilbert spectrum for non stationary time series analysis, Proc. R. Soc.
London, 454, 903–995, doi:10.1098/rspa.1998.0193.

Levermann, A., A. Griesel, M. Hofmann, M. Montoya, and S. Rahmstorf
(2005), Dynamic sea level changes following changes in the thermoha-
line circulation, Clim. Dyn., 24(4), 347–354, doi:10.1007/s00382-004-
0505-y.

Mudelsee, M. (2010), Climate Time Series Analysis: Classical Statistical
and Bootstrap Methods, 474 pp., Springer, Dordrecht, Netherlands.

Rao, A. R., and E.-C. Hsu (2008), Hilbert-Huang Transform Analysis of
Hydrological and Environmental Time Series, Water Sci. Technol. Libr.,
vol. 60, 248 pp., Springer, Dordrecht, Netherlands.

Sallenger, A. H., K. S. Doran, and P. Howd (2012), Hotspot of accelerated
sea-level rise on the Atlantic coast of North America, Nature, Clim.
Change, doi:10.1038/nclimate1597, in press.

Sweet, W., C. Zervas, and S. Gill (2009), Elevated east coast sea level
anomaly: June–July 2009, NOAA Tech. Rep. NOS CO-OPS 051,
40 pp., Natl. Ocean Serv., Silver Spring, Md.

Tamisiea, M. E., and J. X. Mitrovica (2011), The moving boundaries of sea
level change, Oceanography, 24(2), 24–39, doi:10.5670/oceanog.2011.25.

EZER AND CORLETT: SEA LEVEL RISE IN CHESAPEAKE BAY L19605L19605

6 of 6


