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Abstract

In all Friedman models, the cosmological redshift is widely
interpreted as a consequence of the general-relativistic phe-
nomenon of expansion of space. Other commonly believed
consequences of this phenomenon are superluminal recession
velocities of distant galaxies, and the distance to the parti-
cle horizon greater than c t (where t is the age of the Uni-
verse), in apparent conflict with special relativity. Here, we
study a particular Friedman model: empty universe. This
model exhibits both cosmological redshift, superluminal veloc-
ities and infinite distance to the horizon. However, we show
that the cosmological redshift is there simply a relativistic
Doppler shift. Moreover, apparently superluminal velocities
and ‘acausal’ distance to the horizon are in fact a direct con-
sequence of special-relativistic phenomenon of time dilation,
as well as of the adopted definition of distance in cosmology.
There is no conflict with special relativity, whatsoever. In
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particular, inertial recession velocities are subluminal. Since
in the real Universe, sufficiently distant galaxies recede with
relativistic velocities, these special-relativistic effects must be
at least partly responsible for the cosmological redshift and
the aforementioned ‘superluminalities’, commonly attributed
to the expansion of space. Let us finish with a question re-
sembling a Buddhism-Zen ‘koan’: in an empty universe, what
is expanding?
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1 Introduction

What is the physical interpretation of the cosmological redshift?
It is well known that, although in general “the redshift cannot be
thought of as a global Doppler shift, it is correct to think of the ef-
fect as an accumulation of the infinitesimal Doppler shifts caused by
photons passing between fundamental observers separated by a small
distance”.[10] In all Friedman cosmological models, the Universe is
isotropic and homogeneous for a privileged set of so-called Fundamen-
tal Observers (FOs) co-moving with matter, all measuring the same
cosmic time. The cosmological redshift can be thus thought of as a
result of relative motions of the FOs along the photon’s trajectory.

An alternative, and widespread, interpretation of the cosmologi-
cal redshift is that it is a direct consequence of the general-relativistic
phenomenon of expansion of space. In all homogeneous and isotropic
(i.e., Friedman) cosmological models, distances between various galax-
ies grow by the same factor, called the scale factor, a, which is a
function of only the cosmic time, τ : a = a(τ). The wavelength of the
emitted photon, λ, undergoes redshift, z, which is simply related to
the values of the scale factor at the time of emission, τe, and obser-
vation, τo,

λo

λe
≡ 1 + z =

a(τo)
a(τe)

. (1)

A seemingly natural interpretation of the above equation is that space
expands, and the wavelengths of photons grow accordingly in time.
But why is then, say, Brooklyn, not expanding? Quoting Lineweaver
& Davis [6], “In ‘Annie Hall’, the movie character played by the
young Woody Allen explains to his doctor and mother why he can’t
do his homework. ‘The universe is expanding. . . The universe is ev-
erything, and if it’s expanding, someday it will break apart and that
would be the end of anything!’. But his mother knows better: ‘You’re
here in Brooklyn. Brooklyn is not expanding!’” Certainly. But how
can a tiny photon partake in the global expansion of the universe, if
something as big as Brooklyn does not?

In his textbook ‘Cosmological Physics’, John Peacock calls the
idea of expanding space “perhaps the worst misconception about the
big bang”. “Many semi-popular accounts of cosmology contain state-
ments to the effect that ‘space itself is swelling up’ in causing the
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galaxies to separate. This seems to imply that all objects are being
stretched by some mysterious force: are we to infer that humans who
survived for a Hubble time would find themselves to be roughly four
meters tall? Certainly not. Apart from anything else, this would
be a profoundly anti-relativistic notion, since relativity teaches us
that properties of objects in local inertial frames are independent of
the global properties of spacetime.” However, expanding space is a
deeply rooted myth (e.g., [8, 4, 5]) and such myths die hard. The fol-
lowing properties of the Friedman models are commonly attributed
to general-relativistic expansion of space:

1. Cosmological redshift;

2. Superluminal recession velocities of distant galaxies;

3. Distance to the horizon greater than c t, where c is the speed
of light and t is the age of the Universe.

Expansion of space is regarded as general-relativistic because the
properties 2. and 3. seem to be in sharp conflict with special rela-
tivity. In particular, with respect to property 3., it is argued that
photons travel locally with the speed of light, but space expands,
providing an additional stretching of the distance. With respect to
property 2., we can often read that “the velocity in Hubble’s law is
a recession velocity caused by the expansion of space, not a motion
through space. It is a general-relativistic effect and is not bound by
the special-relativistic limit”.[6]

In this paper, as a counterexample to the idea of expanding space
we study the model of an empty universe. It is a rather particular
Friedman model, since it is devoid of matter, in a classical sense.
However, we will see that it exhibits all properties 1.–3. It is a good
counterexample to the idea of expanding space because its spacetime
is simply the Minkowskian spacetime of special relativity (SR). The
spacelike section of the Minkowskian spacetime is Euclidean (i.e.,
flat) static space. In the empty model, expanding are only fictitious,
massless (so non-interacting) FOs, all in constant relative motion.
Without them, there would be no expansion at all. After all, how
to define motion without any object of reference? This suggests that
what really matters is the cosmic substratum (here, massless by as-
sumption) and its relative motions.
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One can make a coordinate transformation, transforming the un-
derlying metric of the empty model from its Minkowskian form to
the form expressed in the local coordinates of FOs.[10, 7] Then it
turns out to be an open Friedman model: its spacelike section is neg-
atively curved space of hyperbolic geometry, evolving in time. There
is no absolute space already in SR. However, according to any inertial
observer, space is flat and static. We see that in general relativity
(GR), even the curvature of space,[13] or its dynamical state (static
or evolving) is not an invariant of an arbitrary coordinate transfor-
mation. On the other hand, using the latter form of the metric it
is straightforward to derive properties 1.–3. of the empty model. On
this basis one may still argue that although general-relativistic expan-
sion of space is not absolute, it is a fact in the privileged coordinates
of FOs.

To show that even this line of reasoning is incorrect, here we de-
rive properties 1.–3. of the empty model using only special-relativistic
concepts. In particular, we do not use the notion of a metric at all.
We demonstrate that in this model, the cosmological redshift is a
relativistic Doppler shift. Furthermore, we show that the conflict of
properties 2. and 3 with SR is only apparent. In fact, they are a
direct consequence of special-relativistic phenomenon of time dila-
tion, as well as of the adopted definition of distance in cosmology.
In other words, at least in the empty model, properties 1.–3. are in
accordance with SR, and are fully explicable as the results of real mo-
tions in space. Therefore, at least in this case, the existence of these
properties cannot be regarded as an argument for general-relativistic
expansion of space. Alternatively, there is at least one Friedman
model, in which expansion of space, in detachment from expanding
matter, is certainly an illusion.

This paper is organized as follows. In Section 2 we show that in
the empty model, the origin of the cosmological redshift is entirely
kinematic. In Section 3 we derive the temperature of the cosmic
microwave background at redshift z. In Section 4 we derive a formula
for the recession velocities of distant objects. In Section 5 we study
the distance to the particle horizon. Conclusions are in Section 6.
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2 The cosmological redshift

What happens to a photon traveling through an empty universe?
A simple (and correct) answer is that nothing. Quoting the lyrics of
a song by Grzegorz Turnau, “in fact, nothing happens and nothing
occurs till the very end”.[14] The end occurs when the emitted photon
is finally absorbed by an observer’s eye, a photographic plate, or a
CCD device. This absorption reveals that the frequency of the photon
is redshifted. The only possible interpretation of this redshift is a
Doppler shift, due to relative motion of the emitter and the absorber.

In an empty universe, these motions can be described entirely by
means of the Milne kinematic model. In this model, the cosmic arena
of physical events is the pre-existing Minkowski spacetime. In the
origin of the coordinate system, O, at time t = 0 an ‘explosion’ takes
place, sending radially Fundamental Observers (FOs) with constant
velocities in the range of speeds (0, c). Let’s place a source of radiation
at the origin of the coordinate system.[15] At time te the source emits
photons, which at time to reach a FO moving with velocity v, such
that

vto = c(to − te). (2)

The observer sees them redshifted, due to the Doppler effect. The
special-relativistic formula for the Doppler effect is

1 + z =
(

1 + β

1− β

)1/2

, (3)

where z is the photons’ redshift and β ≡ v/c. From Eq. (2) we have

β = 1− p−1, (4)

where p ≡ to/te, hence

1 + z = (2p− 1)1/2. (5)

We emphasize that time t is measured in the inertial frame of the
source, i.e., by a set of synchronized clocks (with that at the origin),
remaining in rest relative to it. The observer traveling with velocity
v relative to the source, carries his own clock which shows his proper
time, τ . This clock delays relative to time t:

t = γ(v)τ , (6)
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where γ(v) = (1 − β2)−1/2; hence to = γ(v)τo. On the other hand,
the clock at the source measures its own proper time, hence te = τe.
This yields

p =
to
te

= γ(v)
τo

τe
, (7)

The instants of time τe and τo are measured by the FOs respectively
at the point of emission and observation of photons, so they are the
instants of cosmic time.

From Equation (4) we have γ(v) =
[
p−1(2− p−1)

]−1/2, or

p =
[
p−1(2− p−1)

]−1/2 τo

τe
. (8)

Solving this equation for p we obtain

p =
1
2

[
1 +

(
τo

τe

)2
]

. (9)

Using the above in Equation (5) yields finally

1 + z =
τo

τe
. (10)

The scale factor, a, of the Robertson-Walker form of the metric for
an empty universe grows linearly with time: a(τ) = τ/τo. For this
form of the metric, the cosmological redshift is in general 1 + z =
a(τo)/a(τe), so for an empty universe, 1 + z = τo/τe. Equation (10),
derived using only special-relativistic concepts, coincides with this
formula. We see thus that in the empty model, the origin of the
cosmological redshift is entirely kinematic ([10, 1]; see also [12]).

3 Temperature of the CMB

One can sometimes hear that the temperature of the cosmic mi-
crowave background (CMB), measured at redshift z, is a strong ob-
servational evidence for expansion of space. For all Friedman mod-
els, this temperature is predicted to be (1 + z)To, where To is its
present value, as indeed observed.[11] If only matter expanded, this
temperature would be expected to be just To (Bajtlik, private com-
munication). To see that the last statement is wrong, let us analyze
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the redshift of photons in the rest frame of the source. At time td,
corresponding to the time of decoupling of photons from matter, the
source emits photons of temperature Td towards the observer. At
time tc they reach a molecular cloud. Some of them are absorbed by
the cloud, providing a thermal bath for its atoms and molecules, of
temperature Tc. The remaining photons are not disturbed and reach
the observer at time to. What is the value of the temperature Tc?
In the empty model, the redshift of unabsorbed photons, zCMB, is
related to the velocity of the observer relative to the source, βo, by
Equation (3). Similarly, Equation (3) also relates the redshift of the
cloud relative to the source, zc, to its velocity, βc. The redshift of the
observer relative to the cloud, or the cloud relative to the observer, is

1 + z =
(

1 + β′

1− β′

)1/2

, (11)

where β′ is the relative velocity of the observer and the cloud. From
the special-relativistic law of addition of velocities,

β′ =
βo − βc

1− βoβc
. (12)

We thus have

(1 + z)2 =
1− βoβc + βo − βc

1− βoβc − βo + βc
=

(1 + βo)(1− βc)
(1− βo)(1 + βc)

=
(1 + zCMB)2

(1 + zc)2
,

(13)
or

1 + zc =
1 + zCMB

1 + z
. (14)

Since Tc = Td/(1 + zc), the above equation yields

Tc =
1 + z

1 + zCMB
Td = (1 + z)To. (15)

In other words, in the empty model the local temperature of the CMB
photons at a source of redshift z is (1 + z)To, in agreement with GR.
Specifically, Equation (15) immediately follows from Equation (1):

1 + zCMB =
ao

ac

ac

ae
= (1 + z)(1 + zc), (16)
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coinciding with Equation (14). Thus the local coordinates of FOs are
more convenient for calculations than the Minkowskian coordinates,
which we have used. However, we have obtained the same result.
This is not surprising since Equation (15) involves three observables:
Tc, To, and z. Regardless of specific definitions of coordinates in a
given coordinate system, their consistent application should lead to
the same result in terms of observables.

As a corollary of this section, the temperature of the CMB pho-
tons at redshift z is a strong observational evidence for expanding
universe, but, at least in the empty model, it is fully consistent with
real motions of matter.

4 Superluminal recession velocities

In an empty universe one can use global Minkowskian coordinates
of distance and time, r and t. We recall that FOs emanate from
the origin r = 0 at t = 0, and travel with constant velocities. The
trajectory of a FO is simple in Minkowskian coordinates: r = vM t,
where vM is its Minkowskian velocity. (Analysis in the preceding
section involved Minkowskian velocities.) Any velocity of any FO is
calculated along its trajectory. The Minkowskian velocity of a given
FO is

v =
dr

dt

∣∣∣∣
r=vM t

=
d(vM t)

dt
= vM . (17)

Minkowskian coordinates define what Milne called ‘private space’ of
an observer.

However, in cosmology we usually measure distances on the hy-
persurface of constant proper time, τ , of all FOs. Along the line of
sight to a distant object we consider a hypothetical series of closely
spaced FOs, and as the distance we adopt a sum of all distances mea-
sured by them to their nearest neighbours. In Milne’s terminology,
this measurement is performed in ‘public space’. Since all FOs are
in motion relative to the observer at r = 0, the distances and time
they measure are subject to special-relativistic phenomena of length-
contraction and time-dilation. For a given FO at the point r in the
moment t, his clock shows time τ , that is dilated relative to time t.
Using Equation (6), t = γ(vM )τ , or

t = γ(r/t)τ. (18)
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We recall that time t is measured in the inertial frame of the FO at
the origin, i.e., that is measured by a set of synchronized clocks (with
that at the origin), remaining in rest relative to it. Similarly, the
observer at r measures the distance dl (at τ) that is different from dr
measured by the central FO. Specifically,

dl|τ =
dr|τ

γ(r/t)
. (19)

Note that a hypothetical ruler of length dl is stationary not in the
frame O(r, t), but in the frame O′(r′, t′ = τ), so the above equa-
tion may appear at first sight in contradiction with classical special-
relativistic length contraction of a moving body. The reason why in
this equation, derived from the Lorentz transformation between the
two frames, the distance divided by γ is not dl but dr is that these
distances are measured not at constant t, but at constant τ .[10] In
fact, Equation (19) is the classical length-contraction formula for the
frames O and O′ with exchanged roles.

From Equation (18) we obtain t2 = τ2 + r2/c2. Substituting this
in Equation (19) yields

dl|τ =
dr|τ√

1 + r2/c2τ2
. (20)

Integrating Equation (20) for a constant τ we have

l|τ =
∫ r

0

dr̃|τ√
1 + r̃2/c2τ2

, (21)

hence [7]

l = cτ sinh−1(r/cτ). (22)

Thus, ‘public-space’ distance, l, is length-contracted compared to
‘private-space’ distance, r. After the proper-time interval dτ , FOs
again measure distances to their nearest neighbours, and the cumu-
lative distance is l(τ + dτ). The ‘public-space’ velocity of the FO
with Minkowskian velocity vM is thus vrec = dl/dτ , again calculated
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along its trajectory. We have

vrec =
d

dτ

[
cτ sinh−1(r/cτ)

]∣∣∣∣
r=vM t

=
d

dτ

[
cτ sinh−1

(
vM t

cτ

)]
=

d

dτ

[
cτ sinh−1 (βMγM )

]
, (23)

where in the last equality we have used Equation (6); here βM =
vM/c, and γM = γ(vM ). Since in an empty universe, vM of a given
FO remains constant, we see that ‘public-space’ distance to this ob-
server (l) grows linearly with ‘public-time’ (τ). Therefore, simply

vrec = c · sinh−1 (βMγM ) : (24)

also ‘public-space’ velocity of any FO remains constant.
Redshift of photons emitted by a given FO is related by Equa-

tion (3) to its Minkowskian (i.e., inertial) recession velocity. This
yields γM = (1 + z)/(1 + βM ). After simple algebra, we obtain

vrec = c · sinh−1

[
z(1 + z/2)

1 + z

]
, (25)

or
vrec = c · ln(1 + z). (26)

The last step can be easily verified by showing that Equation (26)
implies

sinh(vrec/c) =
z(1 + z/2)

1 + z
, (27)

thus it reproduces Equation (25).
Solving Equation (3) for vM we obtain

vM = c
(1 + z)2 − 1
(1 + z)2 + 1

. (28)

Comparing Equation (26) with (28) we see that ‘public-space’ reces-
sion velocity of any FO is a different function of redshift than its
‘private-space’ (or inertial) velocity. These velocities are equal only
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to second order in redshift (v ' z[1 − z/2 + O(z2)]), because time-
dilation and length-contraction factors are unity plus terms which are
of second order in βM , so in z. In almost all Friedman models, ob-
jects with sufficiently large redshifts recede from the central observer
with superluminal velocities (greater than c). For example, in an
Einstein-de Sitter universe (Ωm = 1 and ΩΛ = 0), the ‘public-space’
recession velocity as a function of redshift is

vrec = 2 c
[
1− (1 + z)−1/2

]
, (29)

hence vrec > c for z > 3.[9] In particular, the velocity of the so-
called particle horizon (corresponding to infinite redshift) is 2c. In
an empty universe, ‘public-space’ recession velocities are not only su-
perluminal for sufficiently large redshifts; they are even unbounded.
Does it imply violation of special relativity in cosmology? Of course
not. Apart from anything else, deriving Equation (26) we have used
nothing except special relativity! Constancy of the speed of light,
and subluminality of the motion of massive bodies, applies only to
inertial frames. However, ‘public-space’ distance is a hybrid of dis-
tances measured in different inertial frames, all in relative motion.
Since the resulting vrec is not measured in any single inertial frame,
there is no violation of special relativity.[2]

Specifically, ‘public-space’ distance is measured at constant proper
time of FOs. Time-dilation formula tells us that according to the
central observer, this measurement is done at the instant of time
ti = γ(vi)τ , where vi is the Minkowskian velocity of the i-th FO.
Since more distant FOs have greater velocities, it is obvious that for
two different FOs, ti 6= tj . Therefore, according to the central ob-
server, different (sub)distances are not measured simultaneously. Si-
multaneity is a crucial condition of special-relativistic measurements
of distances to and sizes of bodies in motion. Waiving this condi-
tion may have important consequences and indeed, it does have! The
problem with the real Universe is that it is filled with matter and
expanding, so there are no global inertial frames. Then, measuring
distance (along geodesics) on the hypersurface of constant proper
time of FOs is something most natural to do. We should, however,
bear in mind the ‘costs’ of such a definition of distance. One of them
are apparently superluminal recession velocities of distant galaxies.
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5 Particle horizon

From the Robertson-Walker (RW) form of the metric for an empty
universe it is straightforward to derive the comoving radial distance,
x ≡ a(τo)l/a(τ), to a source lying at redshift z,

x = cH−1
o ln(1 + z) . (30)

We note in passing that since vrec = Hox, we have vrec = c ln(1 + z),
in agreement with Equation (26). By definition, x = lo = l(τo).
Writing vrec = dl/dτ , from Equation (26) we immediately obtain

l = cτ ln(1 + z) , (31)

hence lo = cτo ln(1 + z). The central observer observes other FOs
receding with constant velocities, so for a given FO, its Minkowskian
distance is ro = vto, or v = Horo, where Ho = t−1

o : this is the Hubble
law in Minkowskian coordinates. The central observer measures his
proper time, so to = τo. We have thus τo = to = H−1

o , hence lo =
cH−1

o ln(1 + z), in agreement with Equation (30).
Equation (1) for the cosmological redshift shows that the limit

z → ∞ corresponds to the limit τe → 0, so infinitely redshifted
photons were emitted just at the Big Bang. The current distance to
their source is called the particle horizon (at a given instant of time,
we cannot see further sources). For example, the present value of the
particle horizon in an Einstein-de Sitter universe is 2cH−1

o = 3cτo,
where τo is the present age of the universe. This value seems to
imply that the horizon recedes with superluminal velocity. Indeed, in
Section 4 we have noted that the present value of the ‘public space’
horizon’s velocity in this model is 2c (see Eq. 29). We will return to
this topic later on.

Returning now to the empty model, from Equation (31), the
present value of the particle horizon in an empty universe is

lim
z→∞

lo = cH−1
o lim

z→∞
ln(1 + z) = ∞. (32)

Therefore, the empty model does not have the particle horizon, or
has it at infinity. Why? This is a direct consequence of the special-
relativistic phenomenon of time dilation. The present value of the
‘public-space’ distance to any object is measured at the proper time
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τo. Time-dilation formula tells us that according to the central ob-
server, this measurement is done at the instant of time to = γ(vM )τo,
where vM is the Minkowskian velocity of the receding object. The
limit z →∞ implies vM → c, hence to →∞. In other words, in the
inertial system of the central observer, a source with z = ∞ travels
at the speed of light, so it is infinitely time-dilated, so it needs infi-
nite time t to acquire any non-zero (finite) value of its proper time.
Travelling with the velocity of light, after infinite time it is infinitely
far away, even in terms of the ‘public-space’ distance l.

In the Einstein-de Sitter model, the universe decelerates, so rel-
ative to the central observer, any initially ultra-relativistic source
slows down. This causes ‘almost’-luminal sources (with vM → c, so
z → ∞) to become significantly subluminal. This makes the time-
dilation effect finite, or makes the proper time of the FO sitting on
the source to flow. Since it takes finite time to to acquire the value
of the proper time τo, the distance travelled is also finite. It is in-
teresting to note that for the currently favoured cosmological model,
Ωm = 0.3 and ΩΛ = 0.7, the radius of the particle horizon is approxi-
mately 3.4cτo,[3] not much greater than the value for the Einstein-de
Sitter model (3cτo). This is consistent with the fact that the current
acceleration of the Universe started fairly recently (in this particular
model, at z ' 0.7).

Another model in which the particle horizon is infinite is the de
Sitter model (Ωm = 0, ΩΛ = 1.0), where lo = cH−1

o z. A de Sitter uni-
verse constantly accelerates, so it is not surprising that the divergence
of lo as a function of z is stronger here than in the empty model, since
here an ultra-relativistic source becomes even more ultra-relativistic.

6 Conclusions

In this paper, as a counterexample to the idea of expanding space,
we have studied the dynamics of the empty model. We have shown
that the cosmological redshift is there a result of the real motion of
the source, i.e., a Doppler shift. We have verified that the local tem-
perature of the CMB photons at a source of redshift z is a factor
of (1 + z) greater than its present value, in agreement with GR. We
have shown that the recession velocities of distant galaxies are only
apparently superluminal, due to the adopted definition of distance in
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cosmology and the effect of special-relativistic time dilation. Alter-
natively defined, inertial velocities are subluminal. The effect of time
dilation is also responsible for infinite distance to the particle horizon
in this model. Specifically, the distance is infinite because the proper
time of a fundamental observer moving with the speed of light does
not flow, so it never acquires a non-zero value, necessary to perform
the measurement of the distance. (It is always ‘too early’ to send
any communication photons.) The particle horizon exists (i.e., the
distance to it is finite) for models with a period of initial deceleration,
i.e., for which Ωm > 0.

The empty model shares all properties of the Friedman models,
that are commonly considered as an evidence for general-relativistic
expansion of space (see Section 1). However, in the empty model
these properties are shown to be in agreement with SR and are fully
explicable as the effects of real, relativistic motions in space. There-
fore, there is at least one Friedman model, in which expansion of
space, in detachment from expanding matter, is an illusion. Actu-
ally, there is a whole class of such models: with the mean matter
density much smaller than the critical density, and vanishing cosmo-
logical constant. In these models (at least since some instant of time)
expansion is approximately (but with arbitrary accuracy) kinematic,
and spacetime is approximately the static Minkowski spacetime. The
empty model is an asymptotic state of any open model with ΩΛ = 0.
Therefore, in any such universe, during its evolution, expanding space
should somehow, mysteriously, disappear. The proponents of expan-
sion of space must be able to describe this process of disappearance.
The simplest scenario for disappearing expanding space, that comes
to the mind of the author, is that it has never existed. There is nei-
ther absolute space, nor expanding space. All that matters is the
cosmic substratum and its relative motions. A truly Buddhist en-
lightenment.
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A Calculation of the redshift in ‘private space’

As mentioned in Section 1, for all Friedman models the cosmo-
logical redshift is an accumulation of the infinitesimal Doppler shifts
caused by relative motions of closely spaced fundamental observers
along photons’ trajectory. In general, this accumulation does not sum
up to a global Doppler shift, i.e., due to solely the relative motion of
the source and the observer. The reason for this is that in a non-
empty universe photons also undergo a gravitational shift (e.g., [10]).
In section 2 we have shown that in the empty model, the cosmolog-
ical redshift is a global Doppler shift. To do this, we have used the
special-relativistic formula for the Doppler effect, Equation (3), and
shown that it leads to the correct expression for the redshift. (That
is, the same as obtained in this model from general Eq. 1.) In this
Appendix we will derive this equation, summing up the infinitesimal
Doppler shifts of photons passing between neighbouring fundamental
observers. Equation (3) involves the inertial relative velocity of the
emitter and the observer. Therefore, in our calculation we will use
global Minkowskian coordinates.

At the origin of the coordinate system, let’s place a source of
radiation. We will thus perform our calculations in ‘private space’
of the source. (The calculation in ‘private space’ of the observer is
similar.) At time te the source emits photons, which at time t reach
a fundamental observer (FO1) moving with velocity v, such that

vt = c(t− te). (33)

Time t is measured in the global inertial frame of the source, i.e., it
is measured by an infinite set of synchronized clocks (with that at
the origin), remaining in rest relative to it. In the rest frame of the
observer FO1, a neighbouring (the one more distant from the source)
fundamental observer (FO2) moves with infinitesimal velocity ∆v′,
hence an infinitesimal (so non-relativistic) Doppler shift is

∆ν′

ν′
= −∆v′

c
, (34)

where ν′ is the photons’ frequency at FO1. The velocity of FO1
relative to the source is V = r/t, where r is its distance from the
source at time t. Similarly, the velocity of FO2 relative to the source
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is v = (r + ∆r)/t. According to the relativistic law of composition of
velocities, the velocity of FO2 relative to FO1 is

∆v′ =
v − V

1− vV/c2
=

∆v

1− v2/c2
+O[(∆r)2], (35)

where ∆v ≡ v−V = (dv/dt)∆t. From Equation (33), dv/dt = c te/t2.
Furthermore, 1− v2/c2 = (te/t)(2− te/t), hence

∆v′ =
c∆t

2t− te
, (36)

or

−
∫ νo

νe

dν′

ν′
=

∫ to

te

dt

2t− te
. (37)

Integration yields

ln
νe

νo
=

1
2

ln (2to/te − 1) , (38)

or, finally,
νe

νo
= (2to/te − 1)1/2. (39)

Equation (39) exactly coincides with Equation (5), which, in turn, is
a direct consequence of Equation (3).

As a corollary, we can calculate an accumulation of the infinites-
imal Doppler shifts either in the local coordinates of fundamental
observers (‘public space’), or in the global Minkowskian coordinates
of any selected FO (his ‘private space’). The local coordinates of fun-
damental observers are actually more convenient, because in them,
instead of Equation (35), we have simply ∆v′ = H ′∆r′. Whatever
is our choice, however, we obtain the same result. Moreover, a cal-
culation in ‘private space’ is necessary to provide a proper physical
interpretation of this result: a global Doppler shift.
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Dr Chodorowski’s article is interesting, to the point, and well
written. It gives Author’s comments on the often discussed problem,
whether the cosmological expansion may be mimicked by motion in
Minkowski spacetime.
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I do not agree with several Author’s interpretations, but I value
very much his way of discussing the problem. His arguments are
intelligent and based on his solid knowledge of the subject. His ex-
planations are pedagogically very clear.

While I think, that some of Chodorowski’s ideas are wrong, they
are serious and readers will benefit from knowing them. The Author
clearly states that these are his own opinions, and presents different
opinions too, with interesting critical comments.

The article is pleasant to read because of the Authors charming
(but disciplined) style and his very good command in English.

I strongly recommend this article for publication. It may be pub-
lished in its present form.
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