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Abstract: An axiomatization of the so-called Teleparallel Equivalent to General Relativ-
ity is presented. A set of formal and semantic postulates are elaborated from where the
physical meaning of various key concepts of the theory are clarified. These concepts include
those of inertia, Lorentz and diffeomorphism invariance, and reference frame. It is shown
that Teleparallel Gravity admits a wider representation of space-time than General Rela-
tivty, allowing to define properties of the gravitational field such as energy and momentum
that are usually considered problematic. In this sense, although the dynamical equations
of both theories are equivalent, their inequivalence from a physical point of view is demon-
strated. Finally, the axiomatic formulation is used to compare Teleparallel Gravity with
other theories of gravity based on absolute parallelism such as non-local and f(T) gravity.

ar
X

iv
:1

70
8.

04
56

9v
1 

 [g
r-

qc
]  

15
 A

ug
 2

01
7

mailto:lcomb@iar.unlp.edu.ar


Contents

1 Introduction 1

2 Teleparallel Gravity 2
2.1 Geometrical background 2
2.2 Dynamics 4

3 Axiomatics 6
3.1 GR|| axiomatized 6

4 Discussion 8
4.1 Reference class 9
4.2 Recovering General Relativity 9
4.3 Change and geometry 10
4.4 Locality of the energy-momentum tensor for gravity 12
4.5 Inequivalence between GR and GR|| 14

5 On other teleparallel theories 15

6 Conclusions 17

A Axiomatization of General Relativity 17

B Energy-momentum tensor for a LIRF and a PIRF 19

1 Introduction

In 1928, Einstein attempted to formulate a unified theory of gravity and electromagnetism
[1] using the geometrical notion of teleparallelism (called Fernaparallelismus, in German),
a concept developed independently by Cartan a few years before. In this new theory, the
metric is replaced by the tetrad field eaµ, a 16-component object which would encode the 10
degrees of freedom of the metric and the 6 degrees of freedom of the electromagnetic field.
Even though Einstein was not able to find consistent fields equation for his theory, the idea
of an alternative representation for the gravitational interaction using torsion instead of
curvature was introduced. This theory, with field equations equivalent to those of General
Relativity (GR) and a different geometrical background, is now called the Teleparallel
Equivalent to General Relativity or the Teleparallel Framework of General Relativity (GR||).

GR|| admits a well-behaved (though gauge dependent) enhhergy-momentum tensor for
gravity [2]. Adopting the usual interpretation of tetrad fields as reference frames, Maluf
and collaborators have shown that the concept of gravitational energy in GR|| is consistent
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in many physical situations (see Ref. [3], [4] and [5]). Moreover, this approach has been
used by Mashhoon to formulate a non-local gravity theory [6]. Despite all these interesting
developments, a thorough comparison of GR and GR|| has not been made. In this paper,
we have constructed an axiomatization for GR|| with the aim of implementing a rigorous
comparison between both theories. We have analyzed and compared all key physical con-
cepts in GR and GR|| in a rigorous and systematic way. We have then analyzed the physical
interpretation of alternative teleparallel theories, such as f(T) gravity, that are currently
under investigation. We have restricted ourselves to the so-called pure tetrad approach to
GR|| where we assume a preferred frame to construct the teleparallel geometry. However,
there is an alternative approach based in the translation gauge interpretation [7], where the
local Lorentz invariance in maintained. A thorough discussion of the differences between
both approaches is outside the scope of this paper and will be treated elsewhere

Our paper is organized as follows. Firstly we present GR|| in a heuristic way in Section 2.
Then we proceed to develop the axiomatization of the theory in Section 3. Section 4 includes
a detailed comparison of both theories. We also include an exhaustive characterization of the
teleparallel energy-momentum tensor and a comparison between GR|| and other teleparallel
theories. Finally, we present our conclusions in Section 5.

2 Teleparallel Gravity

We begin this section revising the geometrical framework of GR||: the affine Weitzenböck
geometry. Then, we move to describe the main features of the field formulation of the
theory. From all these elements, we will construct a rigorous axiomatization.

2.1 Geometrical background

The dynamical object of GR|| is the tetrad, or vierbein. Given a pseudo-Riemannian mani-
foldM, a tetrad is an orthonormal basis field ea = eµa∂µ (a = 0, .., 3) of the tangent bundle
TM. The co-frame is denoted as ea, holding

eaµe
µ
b = δab . (2.1)

The tetrad encodes the metric structure of the manifold as

gµν = eaµe
b
νηab, (2.2)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric in Cartesian coordinates. We adopt
the distinction between Greek letters µ, ν, .. for space-time coordinate indices, and Latin
letters a, b, .. for Lorentzian tangent-space indices.

If the manifold admits a global smooth frame, then it is called parallelizable. The
transformation group of the tetrad that preserves orthonormality is SO(1, 3). In general,
these transformations Λab′(x) are point-dependent:

eb′(x) = Λ a
b′ (x)ea(x). (2.3)
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A useful characterization of the tetrad field is given by the Lie bracket:

[ea, eb] = Ωc
abec, (2.4)

where Ωc
ab ≡ eµaeνb∂[νe

c
µ] are the structural or anholonomy coefficients. The importance

of these coefficients lays on the Frobenius theorem [8]: iff these coefficients are null for a
smooth tetrad eaµ, there exists a coordinate system {xµ} such that

eaµ = δaµ. (2.5)

In order to formulate the dynamics of the theory we need to introduce an affine structure
in the manifold. For instance, GR is formulated with the only connection that is uniquely
fix by the metric, the Levi-Civita connection:

Γρµν :=
1

2
gρσ
(
∂µgνσ + ∂νgσ − ∂σgµν

)
. (2.6)

As it is well known, this connection is metric-compatible and torsion-free. In this way,
the field equations for GR are constructed from the Riemann curvature, which represents
the presence of gravitational interaction. On the other hand, given a smooth tetrad field
ea, we can induce on the manifold the Weitzenböck connection:

∗Γρµν := eρa∂νe
a
µ. (2.7)

It can be checked that (2.7) is a metric-compatible and curvature-free connection.
The absence of curvature indicates the presence of absolute parallelism on the manifold;
this means that two vectors in different tangent spaces are parallel if their projections on
the tetrad are proportional, regardless the path connecting both spaces. The covariant
derivative of a vector can be written as:

∗∇νV λ := ∂νV
λ +∗ ΓλµνV

µ = eλa∂ν(eaµV
µ) = eλa∂νV

a, (2.8)

i.e, V λ is parallel transported if V a is constant [9]. From 2.8 we also get that the tetrad is
trivially parallel-transported:

∗∇νeλa = 0. (2.9)

The fundamental tensor of the Weitzenböck geometry is the torsion tensor:

T ρµν := 2 ∗Γλ[µν] ≡ e
ρ
a

(
∂νe

a
µ − ∂µeaν

)
= gρσTσµν , (2.10)

which is antisymmetric in the last two indices. The Weiztenböck connection is linked with
the usual metric Levi-Civita connection by the so-called contorsion tensor

∗Γρµν = Γρµν +Kρ
µν , (2.11)

related to the torsion tensor as:

Kρ
µν =

1

2
gρσ
(
Tνσµ + Tµσν − Tσµν

)
= gρσKσµν , (2.12)
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and then
Uµ∇µUρ = 0→ Uµ ∗∇µUρ = Kρ

σνU
σUν . (2.13)

Let us note that the affine geometry induced on the manifold is an independent concept
of the metric structure (a fact first noted by Cartan [10]). In other words, given a metric
field, we can build several connections over it. This is a relevant issue for the proper
representation of what we call space-time (see Section 4).

The teleparallel condition, encoded in 2.9, is established for a certain preferred tetrad
ea(p). If we perform a local Lorentz transformation Λab′(p) of the frame, we preserve the
metric structure but the Weitzenböck parallelism is broken [11]. This leads to non covariant
transformations of all Weitzenböck tensors such as torsion:

Tµνρ[ea] = Tµνρ[eb′ ] + eµae
b
ρω

a
νb − ebνeµaωaρb, (2.14)

where ωaνb := Λac∂νΛcb is known as the flat Lorentz connection. The invariance of the
Weitzenböck geometry under global Lorentz transformation —but not under local ones—
entails a precise physical meaning once we assume that the tetrad frame represents a ref-
erence system (see Section 4.2). In the following, we review how to achieve a geometrized
theory of gravity based on a teleparallel geometry.

2.2 Dynamics

Analogous to curvature in the Riemannian geometry of GR, in teleparallel theories, the
Weitzenböck torsion is used to build the Lagrangian and to obtain the field equations
for the tetrad frame. Let us begin with a general Lagrangian constructed with quadratic
Weitzenböck scalars:

L = κ
(
a1T

ρ
µνT

µν
ρ + a2T

ρ
µνT

µν
ρ + a3T

ρ
µρT

νµ
ν

)
. (2.15)

being Tµσρ = gνσT
µν
ρ = gµαgβσgνρT

µν
α . This general teleparallel Lagrangian was first

studied by Hayashi et al. [12], who explored a set of theories called New General Relativity.
If we choose the constants as a1 = 1/4, a2 = 1/2 and a3 = −1, we obtain the Lagrangian
LT of GR||. This Lagrangian can be casted as:

LT ≡ κT = κΣρµνTρµν , (2.16)

where T := 1
4T

ρ
µνT

µν
ρ + 1

2T
ρ
µνT

µν
ρ − T ρµρT νµν is the torsion scalar and

Σρµν :=
1

2

(
Kµνρ − gρνT σµσ + gρµT σνσ

)
, (2.17)

is the superpotential. This particular choice of coefficients allows the following noteworthy
decomposition[11]:

T ≡ −R− 2∇µT νµν , (2.18)

where R is the Riemannian Ricci scalar. Since both scalars differ by a boundary term, the
dynamic equations of GR|| are equivalent to Einstein equations. The complete action of
GR|| is then:

S[ea] = −κ
∫

T
√
−g d4x+ SM . (2.19)
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Whereas the Ricci scalar has second-order derivatives on the metric, the teleparallel
Lagrangian has first derivatives on the tetrad field. This allows to use the Euler-Lagrange
equations:

∂L
∂eaρ

− ∂σ
∂L

∂(∂σeaρ)
=
δLM
δeaρ

, (2.20)

from which we get the Yang-Mill type equations

∂ν

(√
−g Σaλν

)
=

√
−g

4k

(
tλa + Θλa

)
, (2.21)

where we use
∂L

∂(∂σeaλ)
= −4κ

√
−g Σaλσ, (2.22)

−
√
−g tλa :=

∂L
∂eaλ

= −κ
√
−g eaµ

(
4ΣbcλT µ

bc − g
λµΣbcdTbcd

)
, (2.23)

being δLM/δeaρ :=
√
−g eaνΘν

ρ the matter energy- momentum tensor and tλµ = tλaeµa
the gravity energy-momentum tensor. Because of the local Lorentz invariance of the field
equations, there is a six-fold degeneracy in the theory given by the six parameters of the
local Lorentz transformation (rotations and boosts in tangent space). In other words, the
theory only fix the metric structure.

From the teleparallel field equations (2.21), considering the asymmetry of the superpo-
tential in the last two indices, we obtain the conservation law:

∂µ

[√
−g
(
tµa + Θµa

)]
= 0. (2.24)

This is a regular conservation law —not a local covariant one— from which we can
define conserved charges associated with gravity plus matter:

P a =

∫
D

(tλa + Θλa)dDλ ≡ 4κ

∮
∂D

ΣaλσdSλσ. (2.25)

Here, D is a 3-dimensional hypersurface and ∂D is its 2 dimensional boundary; we
have used Stoke’s theorem in the last step. The a = (0) component, the projection of the
energy-momentum onto the time-like component of the tetrad, is the total energy:

E = P (0) =

∫
D

(tλµ + Θλµ) e(0)µ dDλ. (2.26)

The teleparallel gravitational energy has been much investigated in recent years, being
a simpler and more straightforward approach than other geometric quasi-local treatments
of the gravitational energy [13]. The physical interpretation of the energy concept in GR||
depends on the role of the tetrad in the theory (see Ref. [5] and Ref. [14] for two different
approaches). This is also a relevant issue for understanding the alternative theories of
gravity that rely on the concept of absolute parallelism, such as f(T) and non-local gravity.

In the next section, we present an axiomatic formulation of GR||. We will then use
this axiomatization for comparing the teleparallel formalism with General Relativity and
proving the physical inequivalence between both theories.
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3 Axiomatics

Besides a formal set up, a physical theory is endowed with semantic assumptions that es-
tablish its physical content. These assumptions, however, are usually presented in heuristic
manner. If we wish to investigate the key concepts of a theory, the axiomatic format is
convenient (see Ref. [15]). The dual axiomatic method exactifies and systematizes the
physical and formal content in an axiomatic basis [16]. The axiomatic basis can be written
as

A = AF ∧ AS ∧ AP ,

where AF are the formal axioms—of purely mathematical content— AS are the semantic
axioms—relating mathematical constructs with factual objects— and AP are the physi-
cal axioms— expressing relations among constructs that represent physical entities, e.g.
the dynamical equations of the theory. All theories also assume a formal and ontological
background on which they are based.

A physical theory T is then a set of statements s closed under logic implication from
the axiomatic basis A, i.e,

T =
{
s : A → s

}
. (3.1)

The referents of the theory should be explicitly stated in the axioms. In this sense,
we can build different theories, or interpretations of a theory, holding the formal apparatus
and changing the semantic postulates.

In the case of GR||, a different formalism from GR is used. Since the dynamical equa-
tions are equivalent to Einstein’s equations, it is assumed that both theories are equivalent.
However, if the alternative formalism introduces new semantical axioms, novel aspects of
the physical system may appear that will only be represented in the new theory. A strict
equivalence between two theories would hold iff all axioms in each theory are obtained from
the other, i.e. A(GR||)←→ A(GR). The purpose of the next sections is to verify whether
this is true for GR and GR||. Also, we will use our axiomatization to show the scope and
relevance of the tetrad formalism in GR|| and other teleparallel theories.

3.1 GR|| axiomatized

In order to formulate a realistic axiomatization of GR||, we will first make explicit the
background concepts. Then we will establish the generating basis from which we will
construct the axiomatic formulation of the theory.

Background

The formal background of the theory includes first order logic, mathematical analysis, and
differential geometry. Let us note that space-time theories like GR are more fundamental
than other field theories since all matter fields ’live’ onto space-time, i.e. most physical
theories assume a background space-time in its foundations. In this sense, a dynamical
theory of space-time is more closely related to an ontological theory [17].
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Generating basis and definitions

The generating basis of GR|| is constructed with 10 elements

B = {ST ,Σ,K,M, {g}, {ea}, {Θ}, {φ}, {Λa
′
b }, κ}. (3.2)

The meaning of these symbols will be given in the axiomatic basis. First, we set out
the main definitions of Weitzenböck tensors used in the theory:

D1 T ρµν := eρa
(
∂νe

a
µ − ∂µeaν

)
is the torsion tensor

D2 Kρ
µν := 1

2g
ρσ
(
Tνρµ + Tµσν − Tσµν

)
is the contorsion tensor.

D3 Σρµν := 1
2

(
Kµνρ − gρνT σµσ + gρµT σνσ

)
is the superpotencial.

D4 tλµ := κ
(

4ΣbcλT µ
bc − g

λµΣbcdTbcd

)
is the energy-momentum tensor of space-time.

Axiomatic Basis

The axiomatic basis is given by A(GR||) =
16∧
i
Ai. We present the axioms divided in four

groups. The axioms are formal (FA), semantical (SA), or physical (PA)1

Axioms

Group I: Space-time

A1 (FA)M is a Hausdorff para-compact, C∞, 4-dimensional, real and pseudo-Riemannian
manifold.

A2 (FA) {g} is a family of rank-2 metric tensors, symmetric, and +2 signature. All
minor principals of the metric tensor gµν are negative.

A3 (FA) {φ} is a family of isometries: φ∗g = g.

A4 (SA) Space-time ST is the physical system represented by the equivalence class of
isometric diffeomorphism of a given metric, i.e. ST =̂ (M,g) 2

Group II: Matter

A5 (FA) Σ is a non-empty set of objects σ ∈ Σ.

A6 (SA) There is an element � ∈ Σ which denote the absence of physical system. For
all σ ∈ Σ other than �, σ denotes a physical system different from space-time.

A7 (FA) For each σ ∈ Σ there is a symmetric 2-rank tensor field Θ. In particular, there
is a one-to-one correspondance between � ∈ Σ and the null tensor field Θ = 0

1For other theories presented in a similar way see Refs. [18], [19], and [20].
2The symbol =̂ is used for the relation of representation. See Ref. [21] for details.
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A8 (SA) Θ represents the energy-momentum tensor of the physical system σ.

Gruop III: Reference system

A9 (FA) The tetrad {ea(x)} is an orthonormal basis of TpM in each point of the man-
ifold: eaµ(x)exν(x)ηab = gµν(x).

A10 (FA) K ⊂ Σ is a non empty family of objects K ∈ K. We call frames the elements
of K.

A11 (SA) A reference frame K is represented by a time-like congruence C and a tetrad
field {ea(p), p ∈ C} where eq(0) ≡ Uq is the tangent vector of the curve γq ⊂ C, i.e 〈C, ea〉
=̂ K.

A12 (FA) {Λb′a (x)} is a family of point-dependent Lorentz transformations.

A13 (SA) ∀K,K ′ ∈ K, ∃Λb′a (x) such that if 〈C′, ea′〉=̂K ′ and 〈C, ea〉 =̂K then Λb
′
a (x)eb′ =

ea, ∀p ∈ C ∩ C′.

A14 (SA) Let x a physical system and Px a given property of x. If Px is represented
with a tensor field P=̂Px, the values of this property in a reference frame K are obtained
from the projected tensor on the tetrad field, P · e =̂ Px(K).

Group IV: Dynamics

A15 (SA) κ ∈ R, where [κ] = LM T 2.

A16 (PA) A reference frame K is constrained by the Einstein Teleparallel equations:

∂ν

(√
−g Σaλν

)
=

√
−g

4k
eaµ

(
tλµ + Θλµ

)
.

4 Discussion

The axiomatic system constructed above for GR|| will allow us to analyze three relevant
topics: (i) the physical meaning of the teleparallel structure of the theory and its equivalence
to GR, (ii) the role of the tetrad field in characterizing a local energy-momentum tensor for
gravity, and finally (iii) the main differences between GR|| and other teleparallel theories.
We begin with the referents of the theory, i.e. what kind of physical systems the theory
describes.
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4.1 Reference class

The reference class of an axiomatized theory is closed [? ]. In the case of GR||, the class is
formed by space-time and ordinary matter:

R
( 15∧

i

Ai

)
=

15∧
i

R
(
Ai

)
= {Σ,ST }. (4.1)

We stress that in our axiomatic formulation, space-time is a physical entity endowed
with properties. These properties are associated with the topological character of the
manifold (e.g. compactness), with the metric, or with a mix of both (e.g. time-orientability).
Space-time is connected with the dynamical object of GR|| in two ways: the tetrad field
is defined over the manifold M and is related to the metric by the orthonormal relation
(A8). The latter implies that the dynamical equations of the theory impose restrictions
to the metric properties of space-time, and these restrictions are equivalent to Einstein’s
equations. A more elegant way to show the association among frames, the Lorentz group,
and the manifold, is through the fibre bundle framework of space-time, a path we will not
follow in this work [22].

Matter enters in the theory represented by the energy-momentum tensor and also in the
characterization of the reference frame (A8 and A10). The dynamics of fields and particles
must be supplemented by other theories, while GR|| (and GR) is only concerned with their
energy-momentum distribution.

Remark 1 A reference system is not another kind of matter in our axiomatization.
Group III of axioms only implies that local properties of physical systems are relative to
other physical systems. We followed the approach where the reference frame is represented
by an orthonormal basis field and not by a coordinate system [23]. What kind of physical
objects are convenient to be adopted as a reference frame is a question that requires further
analysis.

From axiomatization of GR (see A(GR) in Appendix A), we immediately verify that
both GR and GR|| share the same referents. It is then appropriate a thorough comparison
of both theories since they have identical domain.

4.2 Recovering General Relativity

While the metric field characterizes space-time, the tetrad field establishes how local prop-
erties behave. Both are linked by

gµν = eaµe
b
νηab. (4.2)

which means that a given space-time allows infinite reference frames related by local Lorentz
transformation. Conversely to all other teleparallel theories, GR|| equations are local
Lorentz invariant, equivalent to Einstein’s equations.

Theorem 1 GR|| equations for ea are equivalent to GR equations for gµν .
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An sketch of the proof is given in Ref.[11] and also in Ref.[3]. The equivalence of (2.21)
to Einstein’s equations gives the following corollary

Corollary 1 GR|| equations are diffeomorfic and local Lorentz invariant.

These two types of invariance have very different physical meanings.

� Diffeomorfism invariance is associated with the nature of space-time. Conversely to
Newtonian theories, space-time should not be regarded as an absolute stage where other
physical fields live. Instead, in GR, space-time is the equivalence class of the pair (M, gµν)

under active diffeomorphisms. One should be careful to assign physical meaning to points
p ∈ M or coordinates, since only their relation to gµν is meaningful3. As a consequence,
the field equations of the theory are coordinate-invariant.

� Local Lorentz invariance (LLI) becomes apparent only after we introduce the tetrad
field in our theory. Taking into account axioms A13,A14, and Corollary 1, LLI means that
space-time fixes all possible physical frames, i.e. all physical observers ’perceives’ the same
underlying space-time. Axioms A13 and A14 and their consistency with the field equations
via LLI is known as the Hypothesis of Locality. In words of Mashhoon, this hypothesis states
that ’an accelerated observer is pointwise inertial’, no matter the history of the observer
[25]. If we consider a space-time theory with no LLI field equations for ea, then either
Group I or Group III of axioms must be revised. We will return to this point in the last
section.

We have shown that a tetrad field associated with a reference system that is solution
of eqs. (2.21) fixes the metric and therefore space-time. Given the equivalence of A16 to
Einstein’s equations, all dynamical features of GR might be derived from GR||

Theorem 2 GR|| implies GR; A(GR||)⇒ A(GR).

Now, we move on to analyze the new features that the tetrad field introduces in GR||
and their relation to the teleparallel geometry.

4.3 Change and geometry

The concept of change is intimately associated with the nature of space-time. In order to
formulate general relativistic laws describing changes in physical properties we must take
into account that (i) the laws must be consistent with the adopted space-time representation
and the hypothesis of locality and (ii) these laws should characterize changes over space-
time. The first requirement states that the laws of physics should be diffeomorfic and

3As Rovelli states in Ref. [24], in the general relativistic point of view we only have ’fields over fields’.
However, it seems to us that space-time has very distinctive features from other matter fields. Because of
this, we have chosen the term ’space-time’ and not ’gravitational field’ to denote ST . We say then ’fields
over space-time’
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local Lorentz invariant. The second condition, related to the first one, imposes that these
changes ought to be formulated in a metric way (space-time is represented solely by the
metric and the manifold in our axiomatization (Group I)); a natural procedure to do this is
introducing a metric covariant derivative ∇, i.e. the Levi-Civita connection Γ. Other non-
metrical derivatives could introduce additional degrees of freedom (e.g. Einstein-Cartan
connections) or lack sufficient structure (e.g. Lie derivatives).

A reference frame system may be then analyzed by its covariant derivative ∇νeaµ, which
characterize how it behaves with respect to space-time. Let us consider the directional
derivatives of ea in the direction of another tetrad ec, which can be written as:

eνc∇νeaµ = Ka
bce

c
µ, (4.3)

where Ka
bc are the projected components of the contortion tensor [26]. Thus, the contortion

tensor can be identified with the Ricci rotation coefficients, usually used in the 1 + 3

orthonormal frame approach to characterize the kinematical properties of the tetrad field
[23]. The change of the tetrad over its time-like velocity component e(0) ≡ U is

Uν∇νeaµ = Ka
b(0)e

b
µ = φabe

b
µ, (4.4)

being φab := Kab(0) the antisymmetric acceleration tensor. In analogy to Faraday’s elec-
tromagnetic tensor, we can decomposed φab in a translational part a(i) := φ(0)(i) and a
rotational part φ(i)(j) = εijkΩ

k. If we take the dynamics of a free particle, say, from a vari-
ational principle, it is well known that it would follow the Riemannian geodesic equation

Uν∇νUµ = 0. (4.5)

This means that if the translational part of the acceleration a(i) tensor vanishes, the
reference frame is in free fall: the congruence is composed of geodesics of the Riemann geom-
etry. Furthermore, if the rotational part is null, the reference frame system is not rotating
(with respect to a Fermi-Walker transported frame). Thus we adopt the following definition

Definition 1 If the acceleration tensor φab is null over the congruence C, the reference
system frame is a pseudo inertial reference frame (PIRF).

Remark 2 The acceleration tensor is not covariant under local Lorentz transforma-
tions, as it is easily seen from their relation to the non-covariant torsion tensor [5]. Hence,
when we perform a general local Lorentz transformation onto a frame, all inertial properties
change unless the Lorentz transformation is global. Nevertheless, the relation of a physical
quantity from any reference system to another, e.g. from an inertial one to one that is
accelerated, is strictly local, consistent with the hypothesis of locality.

The Weitzenböck connection ∗Γ, on the other hand, defines a covariant derivative that
quantifies how a given tensor P changes with respect to a preferred tetrad frame. If this
quantity P is fixed on the tetrad, (i.e. if P · ea is constant) then its Weitzenböck derivative
is zero no matter the path chosen. This connection also defines an alternative concept of
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acceleration; for instance, a free falling path is, in general, accelerated in the Weitzenböck
geometry (see equation (4.6) below). The teleparallel force equation for a free falling particle
with velocity Uµ is

Uν ∗∇νUµ = FµT , FµT := Kµ
νρU

νUρ. (4.6)

Note that the term FT is a pseudo-force, i.e. frame-dependent. For instance, if we
choose a free falling frame comoving with the particle, from (4.4) we obtain Uν ∗∇νUµ = 0;
this means that the weak equivalence principle is still satisfied in GR||. On the other
hand, real interaction terms, such as the Lorentz force FL := FµνUµ, are always frame-
independent and imprint an absolute (Levi-Civita’s) acceleration to the system.

At this point, it is useful to introduce the following definition

Definition 2 A tensor field P associated with a physical system S is an intrinsic prop-
erty of S iff P[ea] = P[eb

′
], for any tetrad field.

Note that even if P is an intrinsic property, we can obtain the values of this property in
a given frame by projecting the tensor field onto the tetrads (A14). However, the relation
between frames of an intrinsic property is covariant and local. This is not the case of the
Weitzenböck torsion tensor, which is frame-dependent. The Riemann curvature tensor, on
the contrary, is an intrinsic property of space-time. For instance, if the curvature tensor
is zero in one frame, it is zero for all observers. Torsion, however, might be non zero even
in Minkwoski space-time, if we choose an anholonomous tetrad, e.g. one representing an
accelerating observer. We conclude that torsion is not a proper quantity to represent the
gravitational interaction in GR||; it characterizes kinematic properties of reference frames
(see Eq. 2.12) and it is constrained over a congruence by the field equations (29), i.e.
constrained by the underlying space-time.

4.4 Locality of the energy-momentum tensor for gravity

We have seen in the previous sections how the tetrad field and the teleparallel geometry
of GR|| encode a broader representation than the metric field. Let us return now to the
dynamics of the theory. The essential feature of GR|| field equations is the possibility of
deriving an energy-momentum conservation law for matter+gravity that is not attainable
in GR:

Theorem 3 Giving a tetrad field eµa , the teleparallel equations admit a conservation
equation for each a component:

∂λ∂ν

(√
−g Σaλν

)
= 0→ ∇λ(tλa + Θλa) = 0.

In this equation, we associate tλa to the energy-momentum tensor of space-time, con-
sistent with its Lagrangian definition (23). This teleparallel energy-momentum tensor has
been studied by several authors (see Ref. [27]). Our intention here is to characterize tµν

under our axiomatic formulation. The usual approach to define pseudotensors in GR is
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similar to the teleparallel case: the Ricci scalar is decomposed in a linear-derivative part L̃
and a total divergence,

R = L̃+∇µW̃µ,

to obtain a superpotential equation similar to (2.21):

∂σ(
√
−g Sµρσ) =

√
−g (τµρ + Θµρ). (4.7)

The main difference between these approaches and GR|| is that tλa is a well-behaved ten-
sor under coordinate transformations. This is true because GR|| has a first-order diffeomorphic-
invariant Lagrangian. In this sense, GR|| is a better theory to formulate an energy-
momentum tensor. Even though the teleparallel energy definition (26) is consistent in
many physical scenarios, the local behavior of the teleparallel energy-momentum tensor
remains unclear for two reasons: (i) the gauge freedom for choosing a tetrad field (non-
covariance under LLT) and (ii) its compatibility with the equivalence principle, that is,
that gravity does not manifest locally in a free-falling frame, for which local approaches to
define an energy-momentum density are usually discarded.

In contrast to the matter energy-momentum Θµν , the space-time energy-momentum
tensor tµa is not an intrinsic property, in the sense of Definition 2. This feature is expected,
because energy and momentum are frame-dependent properties and frame properties are
ultimately determined by space-time itself. The lack of a preferred reference frame in
curved space-time makes the energy-momentum tensor extremely degenerated as we will
show below. Thus, in the context of GR||, to characterize the tensor4 tµν we must first
completely characterize the frame (i.e. the tetrad field, see Group III).

It is often stated in the literature that a frame can be fixed if its kinematical properties
encoded in the acceleration tensor φab are fixed [3]. However, this is not entirely correct
since the full kinematics of a frame is contained in Ka

bc rather than φab. For example, the
contortion tensor contain the expansion θab and vorticity ωab of the congruence,

ωab := K(0)(ab), θab := K(0)[ab], (4.8)

as well as the spatial motion of the frame K(i)(j)(k). In other words, we should take into
account the whole congruence C and not just a path in order to describe properties of ex-
tended objects as fields. In order to illustrate the importance of this observation in the
teleparallel framework, it would be useful to introduce the distinction made in Ref. [28]
between Local Reference Frame and the Pseudo Inertial Reference Frame of Def. 1:

Definition 3 Given a congruence C with an associated tetrad field ea and a timelike
geodesic γ ⊂ C, the reference frame K is a local inertial reference frame (LIRF), associated
with γ if

ea |γ= ∂µ̂ |γ , (4.9)

where {xµ̂} are Fermi coordinates,

gµ̂ν̂ |γ= ηµ̂ν̂ |γ , ∂ρ̂gµ̂ν̂ |γ= 0. (4.10)
4Note that tµν is not the pseudotensor obtained writing the field equation as equation (4.7). In the

notation used in Ref[27], our tµν corresponds the contravariant version of hµajaν
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Thus, the congruence of a LIRF has zero torsion T µ̂ν̂ρ̂ |γ= 0 because the frame is
holonomous over the geodesic (this is true in all coordinate system). Outside this path
however, torsion is non-zero. We can prove in addition that this LIRF is composed of
accelerated curves outside γ, whose acceleration tensor is related directly to the Riemann
curvature [29]. Even though a LIRF and a PIRF can contain a same geodesic observer
moving over a path γ, we obtain in general:

tµνPIRF |γ= 0, tµνLIRF |γ 6= 0. (4.11)

This fact shows that even though the energy-momentum tensors are evaluated on the
same non-rotating geodesic path, they depend on the kinematic properties of the whole
congruence encoded in the contorsion tensor, and not only in its acceleration. We illustrate
this in a concrete example on a Schwarzchild space-time in Appendix B.

A LIRF is a special kind of frame where all accelerations and kinematical properties
of the congruence are related only to the curvature tensor. This frame seems to behave
appropriately since (i) it is zero on a given geodesic, according to the equivalence principle,
and (ii) is related to the Bel-Robinson tensor at second order (see Ref. [30]). Even though
we have used a LIRF to show and compare the local properties of the energy-momentum,
this frame is only useful to integrate physical quantities over a small region around the
geodesic. If we want to obtain the total energy of space-time over a time slice, we need to
use a general frame such as a PIRF. In these type of frames there are inertial contributions
to the total energy. These contributions are represented in the contortion tensor, which is
ultimately constrained by the underlying space-time—in our example in Ap. B, the frame
K ′ has non-null shear components. In short, if we want to study the energy of space-time
measured by an observer in some state of inertia, we still have infinite ways to choose this
observer in an extended region. This sort of degeneracy of tµν disappears if the theory fixes
completely the tetrad field or if a physical criterion for choosing the frame is founded.

4.5 Inequivalence between GR and GR||

Now, we summarize the two main points made so far in this work:

� GR|| has a dynamical object that encodes a broader representation than the metric,
i.e. the tetrad field representing a reference frame.

� GR|| dynamical equations allow to derive an energy-momentum conservation law for
matter plus gravity. The gauge freedom in the election of the energy-momentum tensor for
gravity and its non covariant character can be interpreted as the free choice of a reference
frame system.

In General Relativity, reference frames are absent from the core of theory and, for this
reason, a well-defined conservation of energy-momentum cannot be provided. We conclude:
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Theorem 4 Not all the axioms of GR|| can be derived from the axioms of General
Relativity, A(GR) ; A(GR||). Therefore, the theories are physically inequivalent.

GR and GR|| are both theories of space-time and matter. GR is only concerned with
intrinsic properties of space-time, whereas GR|| includes the notion of the reference frame
in the basis of the theory.

Our discussion was centered around the metric formulation of GR. However, there are
several fundamental tetrad formulations of GR (that is, with Riemannian geometry and
Einstein’s equations), for instance, those of Newman-Penrose (NP), Geroch-Held-Penrose
(GHP), and the so-called 1+3 orthonormal approach. A straightforward reconstruction of
GR adopting one of these formulations is not directly equivalent to the axiomatic scheme
presented in Sect. 3 because in most cases the physical interpretation of the tetrads is
different. For instance, in the NP and in the GHP formalisms null tetrads are used, and
hence they cannot be interpreted as reference frames as we did through Group 3 of axioms.
Even though the Einstein’s equations are included in the dynamics of these theories, in
all these cases there are more degrees of freedom than ordinary metric GR. The key point
for our analysis here is whether the new formalism introduces new physical features in the
basis of the theory.

In the case of GR||, the redundancy of the tetrad field is used to interpret these dy-
namical objects as reference frames. Together with the teleparallel field equations, this in-
terpretation is used to account for the conservation of the gravitational energy-momentum
tensor, that holds for each frame (in a non covariant way). On the other hand, in the 1+3
approach, the reference frame interpretation of tetrads may hold, but the geometrical set
up differs from GR||. In this way, the construction of a gravitational energy-momentum
tensor of this sort cannot be achieved in these formulations.

5 On other teleparallel theories

In recent years there has been an increasing interest in teleparallel theories. Two of the
theories that have atracted attention are the so-called f(T) [9] and non-local gravity [6].

In f(T) theories, the teleparallel Lagrangian of GR|| is modified analogously to f(R)

theories. The resulting teleparallel equations are of second order, contrary to the fourth
order equations of f(R)

∂σ

(√
−gΣaλσf ′(T)

)
=

√
−g

4κ

(
T λa + Θλa

)
, (5.1)

where T λµ := κ
(

4f ′(T)ΣbcλT µ
bc − gλµf(T)

)
is the modified energy-momentum tensor.

This theory has been widely applied to cosmology, where the observed acceleration of the
universe is explained without introducing dark energy. Contrary to GR||, the theory lacks
local Lorentz invariance[26], which means that different tetrads, related by local Lorentz
transformations, have different motion equations. In this sense, f(T) has more degrees of
freedom than GR||.
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It is an interesting question whether the tetrad field in this theory can represent a
reference frame in the same way as it was constructed in our axiomatization of GR||. The
main difference with GR|| is that each kind of observer would ’sense’ a different underlying
space-time since each tetrad field fixes a different metric. The transformation laws between
frames as well as the representation of space-time should be modified to encompass this
interpretation. In the current state of the theory, the tetrad field is only used to obtain
solutions of the field equations from which a metric field is obtained. The notion of the
tetrad field as denotating a reference frame has not been studied yet.

On the other hand, non-local gravity is more connected with the GR|| approach[6]. The
axioms of GR|| imply that frames are related in a local way, meaning that an accelerated
observer is pointwise inertial. Mashhoon has argued (following Bohr and Rosenfeld [31])
that in classical field theories, a property of a given field, e.g. the Faraday tensor Fµν ,
cannot be measured in a pointwise manner and an averaging procedure over the history
of the observer is needed. Hence the laws of physics must be rendered non-local (history-
dependent).

Following what was made in non-local electrodynamics, and using the close analogy
between GR|| and Maxwell equations, the non-local gravity equations are obtained changing
the superpotential:

Σµνρ → Hµνρ := Σµνρ +Nµνρ, (5.2)

where Nµνρ is an antisymmetric tensor involving the past history of the field. As an
interesting consequence of non-local gravity, it is possible to show that observational data
associated with dark matter might be explained as a non local effect.

In the teleparallel framework for gravitational theories, it is not clear whether we should
hold the metric representation of space-time ST . Instead, it seems more appropriate a
tetrad-only form given by ST T = (M, ea). Recently, it is was argued by Schucking [32]
that this tetrad-only representation, together with the elements of teleparallel geometry,
imply Einstein first equivalence principle: the equivalence between acceleration and gravi-
tation. For Schucking, this is explicit in the relation between the contorsion (i.e. the Ricci
coefficients) and torsion (which represents, in this view, the gravitational interaction)

However, in GR|| a pure tetrad representation of space-time is inadequate. Indeed,
a frame-independent (metric-Riemannian) structure is always present in the theory con-
straining the acceleration fields Ka

bc. Nevertheless, it is an interesting subject to explore to
what degree we can mimic curvature choosing specific frames, say, in flat space-time, and
what is the role of torsion. It is possible to show that the geodesic deviation equation in a
general frame is written as:

ξ̈a = (−R(0)a(0)b + C[ea]ab) ξ
b (5.3)

where C[ea]ab is zero for LIRF [23]. Thus, in a general frame over flat space-time we would
still measure geodesic deviation for some specific frames.
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6 Conclusions

Using our axiomatic formulation, we have shown that

(1) GR|| is not fully equivalent to GR. Whereas all features of GR can be obtained
from GR||, the opposite is not true. The tetrad formalism is used to introduce the refer-
ence frame in the foundations of GR||, allowing a consistent definition of a gravitational
energy-momentum tensor and its conservation that are not attainable in GR. This energy-
momentum tensor depends on the kinematic properties of the reference frame encoded in
the contorsion tensor.

(2) Both theories adopt a metric representation of space-time. In GR, the same metric
is the dynamical object of the theory; however, GR|| this part is played by the tetrad field.
The Levi-Civita connection is the right formal tool to quantify changes over space-time,
while the Weitzenboök connection measures how a given tensor changes with respect to a
preferred frame. This might not be true in other alternative space-time theories, where the
role of the tetrad field is different. For example, it is not clear whether f(T) gravity shares
the same physical interpretation of the tetrad as in GR||. Further developments in such
direction are needed.

Our axiomatization allowed us to explore some of the key physical concepts of GR||
and compare them with GR and other teleparallel theories in a systematic way. Summing
up, we found that is possible to construct two self-consistent theories describing the same
physical entities, with equivalent dynamics, but with a different representation power.
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A Axiomatization of General Relativity

Here, we provide an axiomatization of GR to compare with the axiomatic formulation of
GR|| in Section 3.

Generating basis and definitions

The generating basis of GR is constructed with fewer elements than GR||:

B′ = {ST ,Σ,M, {g}, {Θ}, {φ}, κ}. (A.1)

The meaning of these symbols will be given in the axiomatic basis. First, we set out
the main definitions of Weitzenböck tensors used in the theory:
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D’1 Rρµλν := ∂λΓρµν − ∂νΓρµλ + ΓρσλΓσµν − ΓρσνΓσµλ is the Riemann tensor.

D’2 Rµν := Rρµρν is the Ricci tensor.

D’3 R := Rµµ is the Ricci scalar.

D’4 Gµν := Rµν − 1
2gµνR is the Einstein tensor.

Axiomatic Basis

The axiomatic basis is given by A(GR) =
10∧
i
Ai. We present the axioms divided in three

groups. Note that Group I and II of axioms are exactly the same as in GR|| but the reference
system axiom group is absent. See Refs. [17], [20], and [15] for similar axiomatizations of
GR.

Axioms

Group I: Space-time

A1 (FA)M is a Hausdorff para-compact, C∞, 4-dimensional, real and pseudo-Riemannian
manifold.

A2 (FA) {g} is a family of rank-2 metric tensors, symmetric, and +2 signature. All
minor principals of the metric tensor gµν are negative.

A3 (FA) {φ} is a family of isometries: φ∗g = g.

A4 (SA) Space-time ST is the physical system represented by the equivalence class of
isometric diffeomorphism of a given metric, i.e. ST =̂ (M,g).

Grop II: Matter

A5 (FA) Σ is a non-empty set of objects σ ∈ Σ.

A6 (SA) There is an element � ∈ Σ which denote the absence of physical system. For
all σ ∈ Σ other than �, σ denotes a physical system different from space-time.

A7 (FA) For each σ ∈ Σ there is a symmetric 2-rank tensor field Θ. In particular, there
is a one-to-one correspondance between � ∈ Σ and the null tensor field Θ = 0

A8 (SA) Θ represents the energy-momentum tensor of the physical system σ.

Group III: Dynamics

A9 (SA) κ ∈ R, where [κ] = LM T 2.

A10 (PA) Space-time is constrained by the Einstein’s equations:

Gµν =
1

2κ
Θµν .
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The direct inclusion of axiom Group III in GR|| results in a redundancy given the
Riemannian structure Einstein’s equations (see A10) and our previous analysis in Section 4.
However, it might be necessary to include them if we want to analyze a quantum field theory
in curved space-time. A group of axioms introducing tetrad field can be non-trivial if we
change the axioms in Group III or the space-time representation. As was discussed before,
some tetrad formulations are very useful to find exact solutions or deal with cosmological
problems.

B Energy-momentum tensor for a LIRF and a PIRF

Let us consider a Schwarzchild space-time and an arbitrary radial geodesic γ∗ on it. Over
γ∗ we build two frames, a LIRF K, as in Definition 3, and a PIRF K ′, which congruence C′

is composed of radial non-rotating geodesic, φa′b′(p) = 0 for all p ∈M. We use an explicit
realization of K ′ presented in Ref. [5] as:

eµ(0) =


α(r)

−β(r)

0

0

 , eµ(1) =


α(r)β(r) cos(φ) sin(θ)

cos(φ) sin(θ)

cos(θ) cos(φ)/r

−csc(θ) sin(φ)/r

 ,

eµ(2) =


α(r)β(r) sin(θ) sin(φ)

sin(θ) sin(φ)

cos(θ) sin(φ)/r

cos(φ)csc(θ)/r

 , eµ(3) =


α(r)β(r) cos(θ)

cos(θ)

− sin(θ)/r

0,

 ,

with α(r) := 1/(1 − 2M/r) y β(r) :=
√

2M/r. We can easily check that this free falling
frame possess non-zero Weitzenböck torsion. Its kinematical properties are encoded in the
contortion tensor, whose non-null components represent the expansion of the congruence:

K(0)(1)(1) =

√
M

2r3
, K(0)(2)(2) = K(0)(3)(3) = −

√
2M

r3
.

The teleparallel energy-momentum tensor can be calculated from definition D4. After
some straightforward algebraic steps we obtain:

tµνPIRF =


− M2

2πr2(−2M+r)2
− (Mr )

3/2

2
√
2π(2M−r)r 0 0

− (Mr )
3/2

2
√
2π(2M−r)r − M

4πr3
0 0

0 0 M
8πr5

0

0 0 0 M
8πr5

 ,

The energy-momentum tensor is then symmetric, isotropic, and obviously non-zero
through a radial geodesic γ∗ ⊂ C′. On the other hand, in a LIRF K, the energy-momentum
tensor is zero on the radial geodesic γ∗

tµνLIRF |γ∗= 0 (B.1)
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since we have zero torsion on γ∗ (note that equation (B.1) is valid in all coordinate system).
We conclude that over the same radial geodesic path γ∗, the energy-momentum of gravity
is zero in K but non zero in K ′.

Since it is always possible to construct a LIRF, on any geodesic path, the field equations
of the theory can be written as:

∂ν

(√
−g Σaλν

)
|γ=

√
−g

4k

(
Θλa

)
|γ , (B.2)

where tλµ |γ= 0. This means that the matter energy-momentum is truly conserved over γ,

∂λΘλa |γ= 0 (B.3)

and there is no interaction between gravity and matter in this frame. The equivalence
principle in GR|| can be stated as the following: There is always a reference system KF

that contains a geodesic path γ over which the energy-momentum of gravity vanishes.
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