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The prognosis for newly diagnosed glioblastoma (GBM) 

remains dire despite years of intensive basic,  translational, 

and clinical research. Over the past 30 years, there have 

been only 4 FDA approvals for systemically administered 

therapies for GBM: lomustine, carmustine, temozolomide, 

and bevacizumab. The first 3 drugs are simple alkylat-

ing agents approved over a decade ago with partial brain 

penetration, while bevacizumab is a monoclonal antibody 

that binds vascular endothelial growth factor (VEGF) and 

prevents VEGF receptor activation on capillary endothe-

lial cells. Bevacizumab is effective at controlling edema 

in some GBM patients, but clinical trials have not dem-

onstrated a convincing impact on patient survival.1–3 In 

contrast, in the last decade there has been tremendous 

progress in developing highly effective, targeted therapies 

for most other non-CNS solid malignancies. Specifically, 

28 molecularly targeted agents have gained FDA market-

ing approval since 2006 for breast (n = 8), lung (n = 13), and 

melanoma (n  =  7) (https://www.cancer.gov/about-cancer/

treatment/drugs/cancer-type). While there are many poten-

tial factors that contribute to the striking lack of progress in 

developing effective therapies for GBM, we propose that 

limited and heterogeneous drug delivery across the blood–

brain barrier (BBB) is a major cause of treatment failure for 

otherwise promising novel therapies in GBM.

The BBB provides both physical and biochemical barriers 

to drug delivery into normal brain (Fig.  1).4,5 Continuous 

tight and adherens junctions between brain capillary 
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Abstract

The blood–brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the 

importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as 

glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially 

all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of 

drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, 

overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact 

BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically ef-

fective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to 

support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will 

only be possible if these regions of tumor are adequately treated.
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endothelial cells prevent paracellular diffusion, and as a re-

sult, molecules in the bloodstream can enter the brain only 

by transiting across endothelial cell luminal and abluminal 

plasma membranes.6,7 This physical barrier markedly lim-

its brain distribution of many oncologic drugs, including 

monoclonal antibodies, antibody-drug conjugates, and 

hydrophilic molecules that do not readily cross lipid bilay-

ers. For lipophilic molecules that readily diffuse across 

plasma membranes, various transmembrane efflux trans-

porters in endothelial cells function as a biochemical bar-

rier by actively transporting drugs into the capillary lumen. 

P-glycoprotein, breast cancer resistance protein, and or-

ganic anion transporters are especially important efflux 

pumps within the BBB that limit accumulation of small-

molecule targeted therapies.7,8 Between the biochemical 

and physical barriers presented by the normal BBB, many 

anticancer agents have significantly impaired distribution 

into normal brain parenchyma (Table  1). Thus, the BBB 

is unequivocally important for exclusion of the vast ma-

jority of approved and experimental oncologic drugs from 

normal brain.

A variety of pathologic conditions, including brain 

tumors, can disrupt the integrity of the BBB. This BBB dys-

function is most commonly detected on conventional con-

trast-enhanced MRI following intravenous administration 

of gadolinium-based contrast agents. In regions of phys-

ically disrupted BBB, the hydrophilic contrast molecules 

diffuse out of the vessel lumen and accumulate within the 

extravascular extracellular space, manifesting as contrast-

enhancing hyperintense regions on T1-weighted (T1W) 

sequences in nearly all GBM.9 These contrast-enhancing 

regions are associated with dense tumor and are the typ-

ical target for surgical resection. However, beyond the 

contrast-enhancing region, essentially all GBM have a re-

gion of non-enhancing edema that is evident on imaging 

as increased signal intensity on T2-weighted (T2W) or T2W 

fluid attenuation inversion recovery (FLAIR) imaging. This 

imaging feature reflects a combination of cellular infiltra-

tion and vasogenic edema.10–13 The presence of vasogenic 

edema reflects a more subtle dysregulation of the BBB that 

allows abnormal accumulation of fluid within the brain 

parenchyma but is insufficient to allow accumulation of 

contrast. As discussed in detail below, there is unequivocal 

evidence that all GBM have tumor cells infiltrating this 

edema volume and that these cells have a profound influ-

ence on the ultimate efficacy of therapy.

Numerous studies support the importance of maximal 

surgical resection to prolong survival of patients with 

GBM.13–16 Indeed, some have proposed resecting a margin 

of surrounding “normal” brain from non-eloquent regions, 

if clinically feasible, to minimize the residual disease 

burden.13,17 Nevertheless, GBM is ultimately not a surgi-

cally curable disease. Even with complete resection of all 

radiographic abnormality (both T1W contrast-enhancing 

and T2W FLAIR volumes), recurrence is inevitable. This 

sobering reality has been appreciated since the early twen-

tieth century, when pioneering work by Scherer demon-

strated infiltration of glioma cells into otherwise normal 

brain,18,19 and Dandy and colleagues demonstrated that 

even removal of the entire ipsilateral hemisphere (hemi-

spherectomy) was followed by recurrence in the contra-

lateral hemisphere.20,21 In conjunction with this natural 

history, several image-guided surgical sampling studies 

have demonstrated significant tumor cell infiltrates present 

in 80%–100% of biopsies obtained in regions of T2W/T2W 

FLAIR abnormality (reviewed by Matsuo et al22). Sampling 

one or more centimeters beyond the T2W/T2W FLAIR ab-

normality also demonstrates a smaller fraction of biop-

sies containing tumor cells.11,12 Collectively, these surgical 

data provide indisputable evidence that a clinically mean-

ingful tumor burden exists beyond tumor volume defined 

radiographically by contrast enhancement and support 

the concept of GBM as a whole-brain disease.23 To achieve 

significant improvement in progression-free survival, and 

especially to achieve a cure, at least some component of 

a multifactorial approach to therapy must address the non-

contrast-enhancing tumor burden infiltrating the brain.

While conventional T1W contrast-enhanced MRI pro-

vides gross qualitative assessment of BBB disruption, 

this technique fails to resolve the degree to which the 

BBB is disrupted, which can vary from patient to patient 

and within different regions of the same tumor. Instead, 

advanced techniques such as dynamic contrast enhanced 

(DCE)-MRI can quantitatively measure the transport con-

stant of contrast molecules across different contrast-

enhancing regions using pharmacokinetic modeling and 

dynamic imaging acquisition to estimate vascular per-

meability.9,24 Numerous studies have shown extensive 

intratumoral heterogeneity of DCE parameters within 

Fig.  1 Illustration of key components of the BBB that provide 
physical (tight and adherens junctions) and biochemical (trans-
porter-mediated efflux) barriers to brain penetration of antiglioma 
agents.
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T1W contrast-enhancing tumor regions reflecting varying 

degrees of BBB disruption and vascular permeability.25–27 

For tumor regions that are devoid of contrast, other 

advanced and emerging MRI techniques are needed to 

characterize tumor extent using tumoral imaging pheno-

types that are independent of BBB integrity,28 such as tumor 

cell density on diffusion-weighted imaging (DWI),29 white 

matter infiltration on diffusion tensor imaging (DTI),30,31 or 

diffusion kurtosis imaging (DKI),32 metabolic profiling on 

MR spectroscopy (MRS),33,34 and microvessel volume on 

dynamic susceptibility-weighted contrast-enhanced (DSC) 

MRI.35,36 Highlighting the issue of non-contrast-enhancing 

tumor volumes, an analysis of 21 previously untreated 

GBM patients by DWI demonstrated a significant volume 

of hypercellularity extending beyond regions of T1W con-

trast enhancement (mean volume 7.3 cc, minimum volume 

0.2 cc, maximum volume 59.8 cc) in all patients.37 Similar 

radiotherapy planning studies using MRS demonstrate 

significant extension of metabolically detectable tumor 

beyond T1W contrast-enhancing regions.38–40 Finally, con-

sistent with the Response Assessment in Neuro-Oncology 

guidelines, isolated progression of the T2 signal on serial 

head MRI is a strong predictor of subsequent radiographic 

progression within the contrast-enhancing volume.41,42 

Collectively, these observations reinforce the fact that 

contrast enhancement is not an accurate delimiter of gross 

tumor burden in GBM.

Complementary PET techniques have been used to de-

lineate the tumor extent in GBMs. Several large neutral 

amino acids (11C-methionine; 18F-fluoro-ethyl tyrosine 

[FET]; 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine [FDOPA]) 

are actively transported into the brain across the BBB and 

preferentially accumulate in brain tumor tissue.43,44 Using 

PET imaging of these tracers, several studies demonstrate 

that a significant fraction of the PET-defined tumor volume 

(59%–71%) extends beyond the contrast-enhancing lesion 

in the majority (68%–100%) of GBM patients (Fig. 2).22,45,46 

Collectively, these MR and PET imaging studies demon-

strate that a majority of GBMs have gross tumor burden 

with an intact BBB that extends beyond the contrast-

enhancing tumor volume. Combined with the surgical ex-

perience, these data support our central contention that 

all GBM have a clinically significant tumor burden “pro-

tected” by an intact BBB.

In conjunction with evidence that all GBM have regions 

of microscopic and gross tumor burden with an intact BBB, 

there are significant clinical data demonstrating the nega-

tive impact of inadequate drug distribution on control of 

microscopic tumor burden in the context of brain metas-

tases. Small-cell lung cancer is highly sensitive to doublet 

Table 1 Heterogeneous brain distribution of antiglioma agents in clinical and preclinical studies*

Drug Tumor Tissue-to-Plasma Ratioa Efflux Transporter  
Substrate Status  
(e.g., P-gp, Bcrp)

References

Contrast Enhancing Non-Enhancing Normal (“distant”) 
Brain

Temozolomide — 0.20 (0.41) Yes 65–67

Methotrexate 0.30 0.063 (0.11) Yes 68,69

Carboplatin 0.054 to 0.49 — 0.17 (0.031) — 49,70,71

Cilengitide 3.39 — — — 72

Erlotinib 0.35 (0.51) (0.10) (0.02 to 0.09) Yes 73,74

Imatinib 1.35 — (0.16) Yes 75,76

Gefitinib 26.4 — (0.10) Yes 77,78

Estramustine 15.8 (4.6) — (3.5) — 79,80

Idarubicin 15.6 3.75 — Yes 81,82

Ranimustine (MCNU) 2.54 — 0.16 — 70

Tauromustine (TCNU) 0.51 0.56 — — 83

Liposomal daunorubicin 2.16 to 7.11 2.02 to 7.88 1.1 to 4.55 — 84,85

Mitoxantrone 34 — (0.25) Yes 86,87

Paclitaxel 7.35 — (0.5) Yes 88–90

Etoposide 0.19 to 0.36 0.13 — Yes 91–94

Teniposide 0.19 to 2.39 0.029 to 0.19 — — 91,95,96

Temsirolimus 1.43 — — Yes 97,98

*The review article by Pitz et al64 previously reported the tissue-to-plasma ratios observed in human brain tumors (high-grade glioma). This table 
provides additional data, including the preclinical brain penetration data (in parentheses) and efflux transporter substrate status.
Abbreviations: P-gp, P-glycoprotein; Bcrp, breast cancer resistance protein. Blank areas (—), not reported in the literature. 
aDetermined from the area under the concentration-time curve ratio and/or a single-time concentration ratio. Data provided are clinical or 
preclinical.
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chemotherapy with cisplatin and etoposide, and in limited 

stage disease treated with cisplatin/etoposide and local-

ized chest irradiation, approximately 25% of patients can 

be cured.47 However, small-cell lung cancer has an excep-

tionally high propensity to metastasize to the brain,48 and 

because neither cisplatin nor etoposide has significant 

distribution into normal brain,49–51 the ultimate brain fail-

ure rate is as high as 80%. As a result, several large rand-

omized clinical trials have demonstrated that prophylactic 

cranial irradiation in patients with no evidence of disease 

in the chest or brain at completion of chemo/radiother-

apy reduces the risk of failure in the brain by over 50%.52,53 

Similarly, cranial or craniospinal irradiation has been used 

in pediatric patients with high-risk acute lymphoblastic 

leukemia to prevent central nervous system tumor recur-

rences before modern intrathecal chemotherapy regimens 

were developed.54–56 In the context of precision medicine 

strategies, similar patterns of brain-only failure have been 

observed in patients with human epidermal growth factor 

receptor 2–amplified breast cancer and anaplastic lymph-

oma kinase–translocation lung cancers treated with highly 

effective but brain impenetrant targeted therapies.57–59 

These clinical experiences, with both cytotoxic and tar-

geted therapies, demonstrate that poor brain distribution 

can result in an inadequate treatment of subclinical depos-

its of tumor cells in the brain. While there are no direct clin-

ical data demonstrating the impact of poor drug delivery 

on patterns of failure in GBM, extrapolation of the clinical 

data in brain metastases suggests that poor drug delivery 

into regions of GBM with an intact BBB will limit efficacy of 

therapy in these regions. Stated differently, a central tenet 

of oncology is that a cure is possible only if an effective 

therapy is delivered with adequate exposure to the entire 

population of targeted cells, and failure to adequately 

deliver therapies into regions of GBM that have an intact 

BBB will preclude a chance for cure.

In this context, is there any role for testing drugs with 

poor penetration across an intact BBB in patients with GBM? 

Following standard of care surgery, radiation, and temozo-

lomide therapy, the predominant failure pattern for GBM 

patients is within the high-dose radiation volume that is cen-

tered on the region of contrast enhancement.60–62 Anecdotal 

reports of drugs with very limited brain distribution (vemu-

rafenib, ABT-414) demonstrate that at least a subset of GBM 

patients may benefit from such therapies (Gan et al, ASCO 

meeting 2015).63 While we would predict that these agents 

would be ineffective in lesions with extensive tumor infiltra-

tion beyond the contrast-enhancing region, there are a sub-

set of “nodular” GBM with a dominant contrast-enhancing 

lesion and limited surrounding edema volume (Fig. 3).11,13 

If therapeutic levels of a poorly brain penetrant but other-

wise effective drug are effectively delivered into tumor 

regions with a disrupted BBB, we might speculate that those 

patients with a nodular imaging phenotype, with the dom-

inant tumor burden contained within the contrast-enhanc-

ing region, may derive greater tumor control benefits than 

those patients who have a greater tumor burden outside of 

the enhancing region. However, these strategies ultimately 

Fig. 2 Illustrative case for a patient with significant tumor burden beyond contrast-enhancing regions. Sequential imaging with (A) T1W + con-
trast, (B) T2W FLAIR, (C) FDOPA PET (cyan contour), and (D) PET/CT fusion demonstrate significant regions of an FDOPA-positive GBM without con-
trast enhancement on MRI. Location of a stereotactic biopsy is marked with a magenta contour. Samples were processed for photomicroscopy of 
hematoxylin and eosin at (E) 100x magnification and (F) 400x magnification showing hypercellularity. (G) Ki-67 staining of the same sample, imaged 
at 100x magnification shows a high proliferative index (>20%).
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will fail without an effective approach to address the non-

contrast-enhancing portion of the tumor.

Accepting the importance of drug distribution across 

an intact BBB into brain is a critical first step in develop-

ing effective therapies for GBM and must be a key consid-

eration in any clinical trial design for newly diagnosed or 

recurrent GBM. Acknowledging interspecies differences in 

the biochemical functions within the BBB, pharmacokin-

etic and pharmacodynamic analyses of drug delivery into 

normal rodent brain and corresponding relevant ortho-

topic tumor models may provide initial data regarding po-

tential limitations of drug delivery encountered in patients. 

Within phase I  tolerability studies, embedding phase 0 

clinical designs to assess drug distribution and pharmaco-

dynamic effects using either image-guided surgical sam-

pling or functional imaging assessments can specifically 

address drug penetration and efficacy in tumor regions 

with an intact BBB (T2W FLAIR) versus disrupted BBB 

(T1W + contrast). Decisions to move forward with clinical 

efficacy testing in phase II/III trials then can be made based 

on a combined understanding of mechanism of action, 

drug potency, and intra- and intertumoral heterogeneity 

of drug distribution. Especially for drugs with relatively 

poor brain distribution, consideration of intra- and inter-

patient heterogeneity in BBB disruption, as approximated 

by contrast enhancement, and the fractional tumor burden 

within and beyond regions of contrast enhancement, will 

be instrumental in failure analysis of negative clinical trials 

and for identifying regimens that are effective in subsets 

of patients. Moreover, the clinical realities of the contri-

bution of the BBB to treatment failure in GBM argue for 

renewed efforts to develop BBB-penetrating agents, opti-

mize BBB-disruption technologies, and refine implantable 

drug delivery technologies that bypass the BBB and de-

liver therapeutic concentrations throughout an infiltrating 

tumor volume.

Key Conclusions

•  GBM is highly infiltrative and is a whole-brain disease.

•  All GBM have clinically significant regions of tumor with 

an intact BBB.

•  Failure to deliver an effective therapy to all regions of 

GBM will result in treatment failure.
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