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Abstract: The aim of this paper is twofold: (1) to assess whether the construct of neural representations

plays an explanatory role under the variational free-energy principle and its corollary process

theory, active inference; and (2) if so, to assess which philosophical stance—in relation to the

ontological and epistemological status of representations—is most appropriate. We focus on

non-realist (deflationary and fictionalist-instrumentalist) approaches. We consider a deflationary

account of mental representation, according to which the explanatorily relevant contents of neural

representations are mathematical, rather than cognitive, and a fictionalist or instrumentalist account,

according to which representations are scientifically useful fictions that serve explanatory (and

other) aims. After reviewing the free-energy principle and active inference, we argue that the

model of adaptive phenotypes under the free-energy principle can be used to furnish a formal

semantics, enabling us to assign semantic content to specific phenotypic states (the internal states of a

Markovian system that exists far from equilibrium). We propose a modified fictionalist account—an

organism-centered fictionalism or instrumentalism. We argue that, under the free-energy principle,

pursuing even a deflationary account of the content of neural representations licenses the appeal to

the kind of semantic content involved in the ‘aboutness’ or intentionality of cognitive systems; our

position is thus coherent with, but rests on distinct assumptions from, the realist position. We argue

that the free-energy principle thereby explains the aboutness or intentionality in living systems and

hence their capacity to parse their sensory stream using an ontology or set of semantic factors.

Keywords: variational free-energy principle; active inference; neural representation; representationalism;

instrumentalism; deflationary

1. Introduction: Neural Representations and Their (Dis)Contents

Representations figure prominently in several human affairs. Human beings routinely use

representational artifacts like maps to navigate their environments. Maps represent the terrain to be

traversed, for an agent capable of reading it and of leveraging the information that it contains to guide

their behavior. It is quite uncontroversial to claim that human beings consciously and deliberately

engage in intellectual tasks, such as theorizing about causes and effects—which entails the ability to

mentally think about situations and states of affairs. Most of us can see in our mind’s eye situations
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past, possible, and fictive, via the imagination and mental imagery, which are traditionally cast in

terms of representational abilities.

In the cognitive sciences, neurosciences, and the philosophy of mind, the concept of representation

has been used to try and explain naturalistically how the fundamental property of ‘aboutness’ or

‘intentionality’ emerges in living systems [1]. Indeed, living creatures must interact with the world in

which they are embedded, and must distinguish environmental features and other organisms that are

relevant for their survival, from those that are not. Living creatures act as if they had beliefs about the

world, about its structure and its denizens, which guide their decision-making processes, especially

with respect to the generation of adaptive action. This property of aboutness is thus a foundational one

for any system that must make probabilistic inferences to support their decision-making in an uncertain

world, which are central to the special issue to which this paper contributes.

In this context, to provide a naturalistic explanation is to explain some phenomenon by appealing to

physical processes [2]. The strategy deployed by cognitive science has been to naturalize intentionality

by postulating the existence of physical structures internal to the agent that carry, encode, or otherwise

bear semantic content; classical accounts include Fodor [3], Millikan [4,5].

In the sciences that study the mind and in philosophy, representations are typically defined as

some internal vehicles—neural representations—that carry semantic content [6]. Representations are

thus physical structures that are internal to an organism; typically, states and processes unfolding

in their brains, which carry or encode representational content. The epistemic role played by neural

representations is to explain how creatures are able to engage with relevant features of their environment

and plan situationally appropriate, adaptive behavior [6,7]. The semantic content of a representation

is what the representation is about, that towards which it stands in an intentional relation—that “in

virtue of what they represent what they do, or get to be ‘about’ what they are about” ([8], p. 2390). The

problem of specifying the nature and origins of semantic content is known as the hard problem of

content [9,10].

There are several well-accepted constraints for the appropriateness of representational explanations:

such an account should (1) cohere broadly with the actual practices that are used in computational

cognitive science research; (2) allow for misrepresentation, i.e., the representation must be able to “get

it wrong”; (3) provide the principled method for attributing of determinate contents to specific states

or structures (typically internal to the system), and finally (4) be naturalistic, meaning that the account

of semantic content does not itself appeal to semantic terms when defining how the representational

capacity is realized by the physical system, on pain of circularity in reasoning [11,12].

A fundamental and thorny question is whether there is some construct of representation that

not only applies in all cases (i.e., to the construct of neural representations and to our more familiar,

deliberate, everyday representational activities), but that also really explains the intentional relation

between living creatures and their environment. An equally thorny issue involves the ontological

and epistemological status of neural representations: Do such things really exist? Do they have

explanatory value?

The aim of this paper is twofold. First, we aim to determine whether or not the construct of

neural representations plays an explanatory role in an increasingly popular framework for the study of

action and cognition in living systems, namely, the variational free-energy principle and its corollary

process theory, active inference. Second, if the postulation of neural representations is warranted

under the free-energy principle, we aim to assess which of the available philosophical positions about

the ontological and epistemological status of representations is most appropriate for the construct

under this framework. Since the issue to be determined cannot merely be decided by appeal to formal

frameworks, we first discuss the issue of representationalism.

In the remainder of this first section, we review the issues surrounding representationalism. In

the second section, we present and motivate the view of the brain under the free-energy principle, as a

self-organizing nonequilibrium steady-state enshrouded by a statistical boundary (called a Markov

blanket). In the following section, we consider non-realist accounts of neural representation: a
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deflationary account, according to which the contents of neural representations are mathematical,

and a fictionalist account, according to which representations are scientifically useful fictions. In

the fourth section, we propose to combine aspects of both these accounts, yielding a nuanced realist

account that defines semantic contents of representations formally—what one might call a deflationary,

organism-centered fictionalist interpretation of neural representations. We argue that even pursuing

a minimalist, deflationary account of the content of neural representations under the free-energy

principles licenses an appeal to a robust kind of semantic content, the kind at stake in the ‘aboutness’

or intentionality of cognitive systems. The ensuing position coheres broadly with, but rests on distinct

assumptions from, the realist one.

1.1. The Faces of Representationalism: Realism and Non-Realism

In the philosophy of mind, there are, roughly speaking, two main ways to think about the

ontological status of the neural representation construct, which have implications for the available

epistemological positions. One is realism about neural representations. This view combines two

positions: ontologically, that neural representations really exist (typically, that they are physically

instantiated in the brain); epistemologically, that they are scientifically useful postulates as well [6,13].

Non-realist positions also are available, which do not share all of these assumptions. Non-realists

are either agnostic about the reality of neural representations or explicitly reject the assumption.

Anti-realism says that neural representations do not exist. Several varieties of non-realism are available,

which have different epistemological implications. Eliminationism is the anti-realist view that the

construct of neural representation should be eliminated from scientific practice [14,15]. Instrumentalism

or fictionalism is the non-realist view that argues that neural representations are useful fictions: they are

a scientifically useful way of describing the world [11,12,16–19].

To get clear on which of these positions is most appropriate, it is useful to review the different

versions of the neural representation construct. The classical view of neural representations casts them

as symbolic structures that are realized by brain states and that are manipulated by rule-governed

processes. This follows from the computational theory of mind [3], according to which cognition is the

rule-governed manipulation of symbol-like, internal cognitive structures (i.e., neural representations).

In these classical accounts, the content of a representation is determined either by appealing to an innate

stock of concepts and mechanisms that ensure the accuracy and objectivity of what is represented [3,20];

by accounting for contents through the actions of a biological proper function [21–23]; or by referring

to the phenomenal content of our first-person experience of things in the world [24,25]. All such

accounts have in common a construct of neural representation as an internal symbol (or type) that gets

instantiated (or tokened) in the appropriate circumstances; what varies is how the appropriateness

condition gets implemented. There are also non-representational versions of the computational theory

of mind, which will not concern us here; see Miłkowski [26]; Piccinini [27].

Motivated by parallel distributed processing, connectionist models of neural representations

disagree with proponents of the classical approach over the nature of the representational vehicle; but

agree that the brain harnesses internal cognitive structures that act as the vehicles for content [28,29].

Rather than discrete symbolic structures, the connectionist argues that neural representations are

distributed representations; that is, that they accomplish their function of representing states of affairs

in terms of joint configurations of their activity.

Today, the most popular (and in our view, the most compelling) representationalist accounts

are of the connectionist type. They cast neural representations as structural representations. On this

account, neural representations are able to represent their target domain (i.e., to encode semantic

content about their target domain) because their neural vehicles encode exploitable structural similarities

shared with the target domain [8,30–32]. On this account, representations function much like maps:

they recapitulate the high-order structural features of that domain, for example, its statistical properties;

also see [33]. More specifically, structural representations encode information in a format that the

organism can exploit to guide its behavior, that can afford the detection of errors (i.e., that affords
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misrepresentation), and that can be used for ‘offline’ navigation [8,32,34–36]. Structural representations

operate iconically, via a process “in which the structure of internal representations in the brain come to

replicate the structure of the generative process by which sensory input impinges upon it” ([31], p.

1962).

1.2. Towards Anti-Realism: Deficiencies of the Realist View

Most research in the cognitive sciences and neurosciences tacitly operate on realist assumptions

about neural representation and design experiments that aim at explaining how our experience of, and

action in, the world is mediated by structured bodies of knowledge that are encoded in the networks

of the brain. The existence and explanatory value of neural representations is a basic premise of almost

any psychology textbook. For instance, one can read in The MIT Encyclopedia of the Cognitive Sciences:

“Psychology is the science that investigates the representation and processing of information” ([37], p. xl,

emphasis added).

Although realism about mental representation is the default mode of operation in most of the

cognitive sciences and neurosciences, it is not the consensus position. The motivation for adopting

an anti-realist, anti-representationalist approach comes from the observation that, despite enormous

efforts and scientific investment, representations have yet to be naturalized [6,9,38–42]. This is notably

because extant attempts to articulate a theory of neural representation have so far failed to provide

a naturalistic theory of semantic content that does not presuppose the very intentional relation and

representational content that it seeks to explain, securing point (4) discussed above. Thus, scholars

such as Ramsey [43] call for caution about the use of the construct. They argue that often, the appeal to

semantic content is a philosophical gloss that does not add any explanatory value:

“The roles provided by commonsense psychology are those that distinguish different types of

mental representations. What we need and what is not provided by commonsense psychology

is, more generally, the sort of physical condition that makes something a representational state, period.

In functional terms, we would like to know what different types of representations perhaps

have in common, qua representation. Neither commonsense psychology nor computationalism

tells us much about the sort causal/physical conditions that bestow upon brain states the functional

role of representing (at least not directly).” ([43], p. 6, emphasis added)

In the literature, it is quite common to see the selective responsiveness of neural tissue to a

given stimulus described as the representation or encoding of stimuli. This conceptualization is

adopted in the study of perception, particularly to highlight cellular specialization in detecting certain

features of the perceptual object [44–48]; in the study of memory [49,50] and motor activity [51–53]

as well. However, as Ramsey [6] notes, response-selectivity by itself cannot make a physical state

a representation. Many physical states have response-selectivity but are not representations. For

instance, the states of one’s skin vary with the weather (e.g., it gets darker the more it is exposed to the

sun), but we would not (intuitively) count one’s skin as a representation of the sun or weather.

We find approaches in the biological sciences and in the neuroscience less committed to the view

of cognition as a representational process taking place within the boundaries of the brain [54–58].

These views include perceptual and motor control theory [59,60]; robotics [61]; cybernetics [62–65];

and, arguably, the free-energy principle and active inference [56,57,66]. These accounts, which often

hail from embodied and enactive approaches in cognitive science [14,67–70], converge on the idea

that the primary aim of cognition is not internally reconstructing proxies for the structure of a hidden

world, but rather to adapt to and act in an environment.

In this setting, Sprevak [17] suggests that there appear to be two options. We can take a hard-headed

realist assumption that the naturalization of neural representations will eventually succeed. (Even

though no account has succeeded so far.) Alternatively, non-realism (eliminativism and fictionalism)

downplays the value of representation talk in cognitive science. Non-realists observe it is not possible to

define the content of a neuronal representation without conflating it already with the cognitive process:
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We borrow our semantics (and thereby, the content of the representation) from our scientific practice.

More precisely, if the supposed representational content cannot be determined without appealing to

what we know about the cognitive activity itself, then it is the cognitive activity that has explanatory

power. Conversely, if the explanation in terms of the cognitive activity suffices without appealing to an

experimenter-imposed semantics, then there is no reason to postulate representational content. This

may motivate restraining the use of neural representation use to an “informal gloss” [11,16].

The cost of eliminating the construct of neural representation altogether is that it requires a painful

revision of the mainstream representational paradigm in cognitive science. Indeed, we typically appeal

to neural representations to explain goal-directed, probabilistic inference, and decision-making. To abandon

this posit leaves us with the obligation to abandon some of the most powerful explanatory tools that

we can use. Is this legitimate?

1.3. Representations Under the Free-Energy Principle?

The object of this paper is more precisely the status of neural representations in Bayesian

neuroscience, known as the free-energy principle and active inference. In Bayesian neuroscience, the

brain is cast as a statistical organ or inference engine that minimizes its uncertainty about the state of

the world. In this family of theories, the brain is depicted as doing its predictive work by drawing

on probabilistic knowledge about its environment to explain the likely causes of the sensory signals

with which it is bombarded [36,64,71,72]—and to act in ways that bring about its preferred or expected

sensory states [73,74].

Some Bayesian approaches based on predictive coding algorithms for describing canonical

microcircuits in the cortex have strong representationalist commitments [8,31,32,34–36,73,75]. These

accounts argue that the Bayesian brain entails the postulation of structural representations. Thus,

neural representations are taken to be internal, map-like structures that are instantiated in the networks

of the brain and that encode exploitable information.

Several recent papers have discussed whether a realist interpretation of neural representations

is warranted under the free-energy principle [8,32,34,35,56]. Besides a few notable exceptions [76],

few papers have sought to evaluate the variety of non-realist arguments in light of the free-energy

principle. In this paper, we will argue that taking seriously two forms of the non-realist position (the

deflationary and fictionalist views) leads back to a nuanced form of realism that is apt to provide a

naturalistic basis for the study of intentionality.

Why concern ourselves with the ontological and epistemological status of representations? From

our point of view, one main reason to do so is that one’s position with regards to the status of

representations has implications for research in computational neuroscience; and to determine which

structures play the role of representation, and how they carry their semantic contents, is crucial for the

practice of neuroscience. One salient example is that of motor representations and motor commands in

the human brain [77,78]. Representationalist frameworks in computational neuroscience assume that

there exist structures in the brain that represent motor tasks. Optimal control theory is one of the more

popular frameworks for modelling that borrows such assumptions. This approach is underwritten

by strong assumptions about the nature of the models and signals that the brain processes in motor

control. The hypothesis in optimal control is that motor representations are brain structures that encode

explicit instructions to perform a task and that are specified in terms of intrinsic coordinates (i.e., in

terms of the contraction and stretching of muscle fibres). However, optimal control theoretic constructs

have been criticized and empirical evidence is lacking for explicit instruction-like motor commands in

the brain. For discussion, see Hipolito et al. [77]. Our framework offers an alternative characterization

of representational capacities, which are not premised on instruction-like motor commands. Instead,

we characterize the representational capacity as underwritten by an ontology of fictive states, and on a

process of active inference that realizes preferences about sensory data. Our deflationary perspective on

representational capacities does away with the problematic representational posits of optimal control,

while also shedding light on how semantic contents are acquired through histories of active inference.
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2. The Free-Energy Principle and Active Inference: From Information Geometry to the Physics of
Phenotypes

2.1. State Spaces, Nonequilibrium Dynamics, and Bears (Oh My)

Our paper will focus on a prominent Bayesian theory of action and cognition, the variational

free-energy principle, and its corollary, active inference [66,79]. The free-energy principle starts with

the observation that biological systems like living creatures have a phenotype. Living organisms

maintain their phenotypic integrity and resist the tendency towards thermodynamic equilibrium with

their ambient surroundings—that is usually dictated by the fluctuation theorems that generalize the

second law of thermodynamics [80,81]. Living creatures do so by upper bounding the entropy (the

dispersion or spread) of their constituent states. To get a better handle on this, in this section, we

introduce two formal notions: the state space and nonequilibrium steady states. A brief technical

treatment of what follows can be found in the Appendix A and Glossary of terms and expressions.

In physics, equilibrium and nonequilibrium are distinguished by the end-state towards which a

dynamics evolves. Equilibrium dynamics resolve when all the energy gradients have been consumed;

at which the point system is at thermodynamic equilibrium with its environment. For living creatures,

thermodynamic equilibrium is death. Living creatures are open systems that remain far from

equilibrium. How can we model this using formal resources?

The state or phase space formalism comes from dynamical systems theory and allows us to get a

formal grip on the predicament of living systems. A state or phase space is an abstract space that allows

us to model the time evolution of a system in terms of all the possible states in which it can find itself.

To construct a state space, we identify all the relevant quantities that can change in the system (i.e., all

the relevant variables) and then plot each variable on a dimension in an abstract space. This space is

called a state space. Every dimension of this space corresponds to a variable in the system; such that a

point in this space corresponds to a complete instantaneous specification of the system, since we assign

a value to every variable of the system; i.e., we assign a position to the system along every dimension.

A trajectory in this space, in turn, corresponds to the flow of the states of the system over time.

The state space formalism allows us to describe the time evolution of a system implicitly by

depicting trajectories through state space. This turns out to be crucial. If we draw a probability density

over all the states that a system can find itself, those combinations of states with the highest probability,

to which the system returns periodically, are known as a pullback attractor [66,82]. We can associate the

states (i.e., the regions of this space) in which a creature finds itself most of the time with its phenotypic

states.

The probability density that describes the system at its nonequilibrium steady state (i.e., its

phenotypic states) is aptly called the nonequilibrium steady state density. Such a probabilistic description

of the system’s dynamics can be interpreted in two mutually consistent and complementary ways.

First, the system can be described in terms of the flow of the system’s states—that are subject to

random fluctuations—in which case, we can formulate the flow in terms of a path integral formulation,

as a path of least action. Equivalently, we can describe the nonequilibrium steady-state in terms of

the probability of finding the system in some state when sampling at any random time. These two

descriptions are linked mathematically by the fact that at nonequilibrium steady-state, the flow is the

solution to something called the Fokker Planck equation that describes the density dynamics. This

dual interpretation will play a crucial role later.

2.2. Markov Blankets and the Dynamics of Living Systems

The free-energy principle builds on the dynamic systems theoretic approach, which concerns the

time evolution of systems, but now augmented with considerations about the statistical properties

and the measurability of those systems. The free-energy principle allows us to describe the flow

of a system’s states in one of two mathematically equivalent ways, statistical and dynamical—an

equivalence that is warranted by virtue of the conditional independence entailed by the presence of a
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statistical boundary (called a Markov blanket) and the existence of the system in a regime of steady

(phenotypic) states far from equilibrium.

For a system to exist (separately from the rest of the universe), it must be endowed with a degree

of independence from its embedding environment. A Markov blanket is a set of variables or states that

we use to stipulatively individuate a system in terms of what is part of it (internal states, denoted µ),

and what is not (external states, denoted η). The Markov blanket itself is defined as those states that

mediate interactions between the system and its embedding environment (active and sensory states,

denoted a and s). The Markov blanket is defined by the absence of certain connections: internal states

do not cause sensory states, and external states do not cause active states. See Figures 1 and 2.

The presence of a Markov blanket induces a conditional independence between internal and

external variables. The key word here is ‘conditional’: internal and external are not really independent

of one another—they just appear to be so if we discount their dependencies via the blanket states.

 

μ η

μ
η

Figure 1. The structure of a Markov blanket. A Markov blanket highlights open systems exchanging

matter, energy, or information with their surroundings. The figure depicts the Markovian partition of

the system or set of states into internal states (denoted µ), blanket states, which are themselves divided

into active states (a) and sensory states (s) states, and external states (η). Internal states are conditionally

independent from external states, given blanket states. Variables are conditionally independent of each

other by virtue of the Markov blanket. If there is no route between two variables, and they share parents,

they are conditionally independent. Arrows go from ‘parents’ to ‘children’. From Hipólito et al. [83].
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μ
η

ω
α

π

Figure 2. Markov blankets of life. This figure depicts a Markov blanket around a system of interest;

here, the brain. The figure associates the Markovian partition to internal (µ), blanket (b), and external

states (η); where blanket states can be active (a) or sensory (s) states, depending on their statistical

relations to internal and external states. Here, the flow of each kind of state (denoted with a dot) is

expressed as a function of other states in the partition (plus some random noise, denoted ω), as a

function of the independences that are harnessed by the Markov blanket. Autonomous states (α) are

those that follow a free-energy gradient. Particular states (here, denoted π) are those identified with

the system itself (internal and blanket states).

2.3. Information Geometries and the Physics of Sentient Systems

The core intuition behind the free-energy principle is that if a system is endowed with a phenotype

(i.e., a nonequilibrium steady state density) and has a Markov blanket, then there are two ways of

describing the flow of a system’s states that turn out to be equivalent: one rooted in the state space

description of the system that is formulated in terms of the flow or dynamics of the internal states; the

other rooted in a statistical interpretation of the same flow. The presence of a Markov blanket in such a

system ensures that both descriptions are coincidentally true or conjugate to each other [66,84].

This description of the system—in terms of movement in internal phase space—is the

system’s ‘intrinsic’ information geometry, which is closely related to measure theory and statistical

thermodynamics. Measure theory is a field of mathematics about how we can systematically assign a

number to subsets of a given set, where a measure or metric consists precisely in such an assignment; for

example, a probability measure assigns a probability value systematically to elements of a subset. We

can think of measures as capturing something about size, or distances in an abstract space. Generally,

an arbitrary set of points that compose a state space does not have a measure, and so no associated

notion of distance can be defined for that space. However, one can equip a space with a metric,

usually in the form of a matrix that describes how ‘far’ one has moved as a function of small changes

in position.

In Euclidean geometry, this metric is just an identity matrix, i.e., if I move 100 m along some

particular direction, then I will have moved a total of 100 m. This is not true, e.g., of movement on

a sphere: the planet Earth, for instance, has a circumference of approximately 40,000 km; if I move
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(approximately) 40,000 km in the same direction on Earth, I will not have moved at all in total relative

to the Earth’s surface (since I will be back where I started).

This notion of metric plays a special role when dealing with sufficient statistics and statistical

manifolds. Sufficient statistics are the minimal set of numbers that are needed to reconstruct or

parameterize a probability distribution (which contains an infinite number of points). For normal or

Gaussian distributions, these numbers are the mean and variance. A statistical manifold is a space in

which the coordinates are the sufficient statistics of a family of probabilities densities. For instance, the

sufficient statistics of a Gaussian distribution are its mean and variance, giving a two-dimensional

statistical manifold or state space. Given any position on this manifold, it is possible to reconstruct

the probability density (which assigns a probability to an infinite number of points). Trajectories on

a statistical manifold correspond to changes in the shape (i.e., the value of the parameters) of the

associated probability density.

Information geometry, in turn, is the field of mathematics dealing with measures or metrics on a

statistical manifold (information manifolds, typically endowed with a Fisher or Riemannian information

metric). In other words, information geometry allows us to define a metric for probability distributions

(or probability densities for continuous variables); that is, we can talk about distances between

probability densities. Furthermore, if we associate probability densities with probabilistic beliefs, we

now have a naturalized way of talking about the distance between beliefs.

With all this in place, we can appreciate what the free-energy principle brings to the table. Starting

from our state space description of the system, we can define a metric that allows us to speak about

distances between probabilistic configurations of a system’s internal states. Such a geometry is ‘intrinsic’

because it describes the structure of a system’s possible configurations in a manner that only refers

to internal states themselves (rather than the external states of the environment). The free-energy

principle says that so long as the system at hand is equipped with a nonequilibrium steady state density

and a Markov blanket is in play, then an additional—and mathematically conjugate—information

geometry can be defined [66,84]. These two information geometries can take the form of the following

(Fisher information) metrics, where the sufficient statistics correspond to expected thermodynamic

states and internal states, respectively:

g(λ) = ∇λ′λ′D[pλ′(µ)
∣
∣
∣

∣
∣
∣pλ(µ)]

∣
∣
∣
λ′=λ

g(µ) = ∇µ′µ′D[qµ′(η)
∣
∣
∣

∣
∣
∣qµ(η)]

∣
∣
∣
µ′=µ

intrinsic

extrinsic

This licenses a spectacular observation: namely, that internal states can be interpreted in terms of

their extrinsic geometry, i.e., as parameterising a probability density over external states. This simple

fact is a natural consequence of the conditional independences that define the Markov blanket. Put

simply, for every blanket state (i.e., joint sensory and active state) there is a conditional probability

density over internal and external states. Crucially, these are conditionally independent, by definition,

given the blanket state in question. This means that for every expected internal state, given the blanket

state, there must be a conditional probability density over external states. In turn, this means that the

expected internal state is a statistical manifold—equipped with an extrinsic information geometry.

This extrinsic information geometry describes the distance among probabilistic beliefs about external

states, which are parameterized by the expected internal states. In other words, expected internal states

constitute the sufficient statistics of beliefs about external states.

2.4. Phenotypes: A Tale of Two Densities

Essentially, the free-energy principle is a story about two probability densities [56]. The first is the

nonequilibrium steady state density itself, which harnesses the statistical structure of the phenotype.

The second, variational density, is parameterized or embodied by the internal states of the system. We

have seen that internal states constitute the sufficient statistics of probabilistic beliefs about external

states. Another way of looking at this is to say that internal states encode a probability distribution—the
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variational density—over the states of the external world that are generating sensory (and active) states.

Technically, that a system will evolve towards—and maintain—its nonequilibrium steady state means

that it minimizes the discrepancy between the variational density that it embodies and the probability

density over external states, given blanket states [66,84]. This discrepancy is the variational free-energy,

and the steady state flow that underwrites nonequilibrium steady-state becomes a gradient flow on

variational free-energy. In other words, it will look as if internal states are trying to optimize their

posterior beliefs about external states. When cast in terms of movement in the extrinsic geometry, one

can interpret existential behavior in terms of Bayesian belief updating. This all follows because the

expected internal states parameterize a conditional or Bayesian belief about external states.

Anthropomorphically, the system does not ‘know’ in what state it is in, but it will look as if it

is inferring the state of its external milieu ‘out there’, based on prior beliefs and its current sensory

states. The state of the external world is thus never directly perceived, it is instead something that

the organism infers and brings about actively through interactions with the world. In this sense, the

implicit inference is enactive, in the pragmatist sense of being for action [56,57,85]. When the organism

interacts with the world, it perturbs external states and consequent sensory states. These sensory

impressions couple back to internal states that attune to the world around them. Put otherwise, the

organism engages in a form of Bayesian inference (i.e., active inference), with respect to the state of its

ecological environment, based on the situated interaction.

Why inference? The free-energy principle says that living things exist in virtue of gradient flows

on an information theoretic quantity called surprisal. This is the solution to the Fokker Planck equation

that furnishes nonequilibrium steady-state. Crucially, the dynamics of internal (and active) states

at nonequilibrium steady-state can be cast equivalently as flowing down surprisal or free-energy

gradients. Free-energy scores the atypicality of sensory (and active) states, given a (generative) model

of how those data was generated [66,86,87].

The equivalence between surprisal and free-energy rests upon the fact that the (expected) internal

states parameterize beliefs about external states. When this variational density corresponds to the

density over external states, conditioned on blanket states, surprisal and free-energy are the same.

Crucially, free-energy is a functional (i.e., function of the function) of the variational density and an

implicit generative model. The generative model is just the nonequilibrium steady-state density over

external and blanket states. And can be regarded as a description of how external states generate

blanket states.

In what follows, we will treat the generative model as an implicit attribute of any nonequilibrium

steady-state that possesses a Markov blanket. The generative model is implicit because the only thing

needed to describe self-organization and belief updating are the free-energy gradients. This means

that the free-energy and its generative model are not evaluated or realised explicitly. This is sometimes

referred to as entailing a generative model. [56,88]. In short, the free-energy is a functional of two

densities, the generative model and the variational density encoded by internal states.

For people familiar with information theory, surprisal is also known as self-information, where

the long-term average of self-information is entropy. This means that nonequilibrium steady-state

flows counter the entropy production due to random fluctuations. In turn, this means that the kind of

inference implicit in the flow of autonomous states (namely, internal and active states) underwrites the

existential imperative to maintain a steady-state far from equilibrium.

What the free-energy principle says then, is that so long as a Markov blanket is in play at

nonequilibrium steady state density, gradient flows on surprisal (a function of states) are equivalent

to gradient flows on free-energy (a function of sufficient statistics), where the sufficient statistics

parameterize probability distributions over—or beliefs about—external states. This echoes the

reasoning above about the conjugate information geometries, in terms of dynamics and in terms of

statistics. Gradient flow here just means that the autonomous states (i.e., internal and active states;

see Figure 2) flow down variational free-energy gradients. And this, in turn, is just another way of

talking about action and perception. This scheme, naturalizing action and perception as the gradient
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flow of active and internal states (respectively) on variational free-energy, is known as active inference,

the corollary process theory of the free-energy principle.

The main take-home message is that the free-energy principle casts the phenotype in two

complementary ways: as a flow of states at nonequilibrium steady state (described via an intrinsic

information geometry) and a flow that entails belief updating (described via an extrinsic information

geometry). In virtue of the active states, the apparent role of internal states is not merely to infer the

causes of sensory data, but to generate appropriate patterns of interaction. This means that internal

states could parameterize beliefs about the consequences of action, and facilitate the consequences of

action for beliefs [66]. Generative models are thus not designed to merely do the interpretative work of

determining the true state of the world, they cover the consequences of acting on worldly states.

2.5. Living Models: A Mechanistic View on Goal-Directed, Probabilistic Inference and Decision-Making Under
the Free-Energy Principle

With this setup in place, we are in a position to appreciate how generative models allow organisms

to engage in goal-directed, probabilistic inference, and decision-making under the free-energy principle.

The free-energy principle is often cast as the claim that living systems just are generative models of

their environment [56,76,89–92]. We can now make sense of this seemingly enigmatic claim. The

free-energy principle says that organisms leverage the statistical structure of their acting bodies to

remain in their phenotypic states, where that typical structure is interpreted probabilistically, as a

joint distribution over all systemic states. Decision-making about what to do next is then based on

a probabilistic inference about “what I must be doing, on the assumption that I am a free-energy

minimizing creature.”

Hitherto, we have considered inference as an emergent property of self-organization to

nonequilibrium steady-state. The ensuing Bayesian mechanics is licensed by an equivalence between

surprisal and variational free-energy. In what follows, we can make a further move and describe

creatures or particles in terms of the generative model that defines free-energy. Once we have the

free-energy, we know the gradients. Once we have the gradients, we know the gradient flow. Once we

have the gradient flow, we can naturalize any embodied exchange with the environment.

A typical generative model is depicted in Figure 3. Here, hidden states (η) correspond to the

external states that are hidden from the internal states behind the Markov blanket. The crucial

thing to appreciate is that beliefs about hidden states correspond to a hypothesis—that the organism

embodies—about the causes of its sensations. These hidden states arguably have all the properties

that would make them the content of structural representations [8,31,32,34,35,56,93]. The hidden states

of the generative model are parameterized by the internal states of the system (e.g., the brain) and

encode exploitable information about external states that guide adaptive behavior. We will return to

this point later.

To summarize, the presence of a Markov blanket at nonequilibrium steady state allows us to

associate a living particle or creature with its internal and blanket states. The flow of the internal states

acquires a dual aspect, described by conjugate intrinsic and extrinsic information geometries. These

geometries inherit naturally from the Markovian structure of the partition. The intrinsic information

geometry describes the thermodynamic behavior of internal states (e.g., neuronal dynamics). However,

the internal states also are equipped with an extrinsic geometry, which pertains to the probability

distributions over, or beliefs about, external states that are parameterized by internal states. A gradient

flow of active and internal states on free-energy (action and perception), effectively implements active

inference; namely, inferring external states and planning what to do next. This completes our technical

review of the free-energy principle.
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η

π

Figure 3. A generative model. Here, sensory states are observed outcomes, denoted s. The generative

model represents external states as hidden states, denoted η. Depicted in this schema are the likelihood

mapping from hidden states (denoted A), prior beliefs about the probability of state transitions (B), and

the prior beliefs about initial (hidden) states (D). The G term is an expected free-energy that drives

policy selection (π) in elaborated generative models that entail the consequences of action (not shown

here). The form of this generative model assumes discrete states and steps in time shown from the left

to the right. This kind of generative model is known as a hidden Markov model or partially observed

Markov decision process.

3. Deflationary and Fictionalist Accounts of Neural Representation

Having reviewed the technical core of the free-energy principle, we turn to the question of which

interpretive frame—from cognitive science—is best positioned to make sense of its representational

commitments (or lack thereof). Since realist accounts have been reviewed extensively elsewhere, we

focus on two novel non-realist accounts.

3.1. A Deflationary Approach to Neural Representation

In this section, we examine an interesting position that accommodates aspects of realism and

non-realism; namely, the function-theoretic, deflationary account of representation [11,16]; for a related

but distinct account focused on the contents of the brain, but which does not appeal to information

geometry under the free-energy principle, see Wiese [94]. We argue that a suitably amended version of

this position yields the best interpretation of representations under the free-energy principle.

A deflationary account of representation [11,16] blazes a path between realism and non-realism:

it is realistic about the existence of neural representations as information processing mechanisms

that can be characterized using computational methods, but anti-realist about the cognitive contents

of these representations. The deflationary account is the view that semantic contents ascribed by

scientists merely have an facilitatory role in the explanation of a cognitive capacity; and that whatever

aspect of content is explanatorily useful can be specified mathematically. The account builds upon two

premises: (1) that representations are not individuated or picked out by their contents, but instead by

the mathematical function that it helps to realize; (2) that this content is not essentially determined by

a naturalistic relation between states and the structure of the target (i.e., some target domain in the

world), but instead by what the mathematical contents are.

Thus, a deflationary account of representations argues (1) that a computational theory of a

cognitive capacity must provide a functional theoretic characterization of that capacity, where (2) for the

sake of scientific practice, this can be accompanied by an ‘intentional gloss’ or semantic interpretation:

“content is the ‘connective tissue’ linking the sub-personal mathematical capacities posited in the

theory and the manifest personal-level capacity that is the theory’s explanatory target” ([11], p. 253).



Entropy 2020, 22, 889 13 of 29

The deflationary account argues that the explanatory work accomplished by representational

theories of cognition consists in providing mathematical (functional-theoretic) analyses of a given

capacity; and that this computational theory is, more often than not, accompanied by a cognitive

or intentional interpretation, which plays a heuristic role, not a strong explanatory one [11,16]. On

this account, the contents of a cognitive capacity can be explained naturalistically by appealing to

the mathematical functions that are realized by a system. This mathematical content is essential to

the computational characterization of the physical process, “if the mechanism computed a different

mathematical function, and hence was assigned different mathematical contents, it would be a different

computational mechanism” ([11], p. 252). This allows for a computational description of the system

that is not yet related to a cognitive activity in a certain environment.

Determining content is, on this account, relatively easy, as the mathematical functions deployed

in computational models can be understood independently of their use by the system being studied,

i.e., independently of the process that is modeled. This happily responds to the most common lacuna

of naturalistic representational theories, which is to presuppose the very content they seek to explain

by appealing to scientific practice. The characterization of the mathematical content of a neural

representation is harnessed in the computational theory proper, which is composed of five elements ([11],

see Figure 3):

1) A mathematical function that is realized by the cognitive system;

2) Specific algorithms that the system uses to compute the function;

3) Representational structures that are maintained and updated by the mechanism;

4) Computational processes that are defined over representational structures.

5) Ecological component: physical facts about the typical operating conditions in which the

computational mechanism typically operates.

To this, it is often added a heuristic cognitive content [11]. This cognitive content corresponds to

observer-based ascriptions of semantics to neural vehicles, often based on reliable covariations between

the responsiveness of neural tissue and stimuli presented to that tissue in experimental settings. On

the deflationary account, these cognitive contents are an “intentional gloss” on the mathematical

characterization provided by the computational theory, which does all the heavy lifting, in explaining

the capacity or process under investigation. The environmental properties that scientists take to the

mechanism to be representing, on this account, are not an essential characterization of the device

or computational theory. Rather, they are simply ascribed to facilitate the explanation of a relevant

capacity, i.e., they are an intentional gloss on the mathematical content.

The pressures inherent to the problem of the determination of content brings the proponents

of non-realist views to downplay the role traditionally attributed to cognitive content [11,12]. On

these views, and against the dominant view in the cognitive sciences, neurosciences, and philosophy,

cognitive content is not the mark of cognition and does not stand in a naturalistic relation between

internal states or vehicles of a representation and the structure of the target domain that it models.

Specifically, the cognitive components that relate the computational mechanism to actual things in the

world are not part of an essential characterization of cognitive activity on the deflationary account;

they help define the explanandum but do not figure in the explanation itself. Instead, cognitive or

semantic content is merely ascribed by experimenters to facilitate the explanation of a relevant capacity.

In a nutshell, what we intuitively take to be the bona fide semantic content of a representation turns

out to be a mere gloss that only has a heuristic role in the construction of a scientific explanation.

This runs the risk of trivializing cognitive content—and the intentional relation that it purports to

naturalize. The deflationary model does offer an approach to explanation in the sciences of the mind

that is perspicuously informative and explanatorily useful to guide research practices in neuroscience.

But this comes at a cost. In the deflationary account of content, the role attributed to cognitive

content becomes so weakened that it is no longer essential to characterizing the cognitive activity;

the only explanatory use of cognitive content is to help scientists systematically make sense of the
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normal operating conditions in which mathematical descriptions of various mechanisms are deployed.

Ultimately, taking the deflationary option seems to undermine the supposed motivation for positing

mental representations in the first place, and turns out to dovetail with radical enactivism [9,15].

3.2. Fictionalism and Models in Scientific Practice

Other accounts are available that have a non-realist and perhaps less resolutely anti-realist

flavor [17,76]. Fictionalist or instrumentalist accounts in the philosophy of science suggest that scientific

models are useful fictions: they are not literally true, but “true enough,” or good enough to make

useful predictions about, and act upon, the world. A fictionalist account of neural representations

suggests that they are useful functions used by scientists to explain intentional behavior: they are

models used by scientists.

In the philosophy of science, model-based approaches [95–98] suggest that the work of science

consists in the comparison of different sorts of models. The notion of “empirical adequacy” or,

heuristically, of the “true enough” occupies a center stage in the debate in epistemology and the

philosophy of science [96–101]. This notion allows some degree of divergence between what the model

postulates and what we find in reality; it entails that models need not be veridical representations of

states of affairs. Scientific progress often rests on idealization, and successful models often deliberately

contain “felicitous falsehoods” that, while not depicting the world as it “really is,” do have value and

explanatory power. Examples of this kind of heuristic use of models include the ideal gas model in

statistical mechanics and the Hardy–Weinberg model in genetics, both of which occupying central

roles in their respective disciplines, but which are not literally true descriptions.

On this account, models play a significant role in the understanding of a subject matter, not despite

the fact they do not accurately reflect the world’s causal structure, but precisely because they are only

“true enough”—they allow researchers to focus on the features that are relevant to the hypothesis being

tested, by excluding non-relevant features [96,97]. It is worth noting that modeling is a non-reductive

context of inquiry, i.e., a target system that is studied using modeling methods does not have to be

reduced to what is modeled [102].

The aim of an explanation is to generate understanding [99,103,104]. Our appreciation of the

explanatory role of models in the practice of science does not depend on a realist interpretation of

models [98]. Models are useful, sometimes independently of their capacity to explain a phenomenon.

If a model provides explanations that do not accurately represent the causes of their target system, it

does not necessarily follow that these explanations are not real explanations [99]. In science, models

can be used, for instance, to build new models [105]. There are non-explanatory uses of models, i.e.,

uses that do not leverage their representational capacities per se [106]. Models can play an explanatory

role despite not accurately representing the properties of the target domain [107].

A subtle question is whether the generative models that figure in the free-energy principle and

active inference are to be interpreted in a realist or instrumentalist way. That is, are the generative

models of the free-energy principle models used by experiments to explain the behavior of cognitive

systems, or are such models literally being leveraged by organisms to remain alive and to act adaptively?

This ambiguity has been highlighted in a recent paper [76]. We turn to this issue next, as we critically

amend the deflationist conception of neural representation.

4. A Variational Semantics: From Generative Models to Deflated Semantic Content

4.1. A Deflationary Account of Content Under the Free-Energy Principle

In this last section, we combine elements of the deflationary and the instrumentalist accounts

of neural representations to propose a kind of organism-centered fictionalism or instrumentalism. We

expand upon the ecological component of deflated mathematical content, which we argue leads to

a naturalistic theory of intentionality: a formal theory of semantic content based on the free-energy

principle. The key to formulating a robust mathematical theory of semantic content, one capable of
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naturalizing intentionality, is to notice that the free-energy principle essentially tells a story about the

mutual attunement between a system and its environment.

In our view, the deflationary view of representational contents downplays the role of the fifth,

ecological component of the computational theory proper. We argue that formulating the ecological

component using the resources of the free-energy principle allows us to salvage the intentionality of

semantic content—and thereby recover a robust conception of content tied to the domain to which it

is intentionally related (or about)—without appealing to the artificial intentional gloss of cognitive

content. The resulting view is of a semantics that emerges naturally from the fact that the system we

are considering is equipped with a dual information geometry of states and beliefs.

The formalism that underwrites the free-energy principle licenses a crucial observation: namely,

that the mathematical structures and processes in play are defined over a state space and, implicitly,

over an associated belief space or statistical manifold [93]. The mathematical framework of the state

space formalism means that the system’s dynamics are defined over states of the system; and that as a

consequence of the associated extrinsic information geometry, we can always associate a semantics to

this intrinsic description.

This semantics comes from the ‘beliefs’ built into the extrinsic information geometry. The term

‘belief’ is used in the sense of ‘belief propagation’ and ‘Bayesian belief updating’, which are just ways

of talking about probability distributions or densities. ‘Beliefs’ in Bayesian terms are posteriors and

priors, corresponding to the probability distributions (a world of possible states) that are shaped by

physically realized states (i.e., the internal states that parameterize distributions over external states).

In general, although we use the term ‘beliefs’ to describe the probability densities defined over external

states, it is generally recognized that these densities are not themselves the same as propositional

beliefs. In brief, propositional beliefs have truth conditions; that is, they are the kind of thing that

can be true or false [15]. The probability densities at play here are not of this kind; they represent the

manner in which variables covary. This does not imply truth-conditionality, which means that they

are non-propositional.

It is often noted that one does not obtain semantic content from mere systematic

covariation [6,15,108]. However, this argument can be defeated by noting that, under the free-energy

principle, for any living system, there is an implicit semantics at play that is baked into the system’s

dynamics. Importantly, that is just saying that the system’s internal dynamics have a probabilistic aspect

(and extrinsic information geometry) that connects it to an embedding system. Via the Markovian

partition, we can always associate this trajectory of states on internal (statistical) manifold to a

semantics—a formal semantics that falls out of the systemic dynamics and that can be characterized

purely mathematically.

Thus, we obtain a bona fide formal semantics from interactions between the system and its context,

as well as the histories of environmental interactions between an organism and its niche. What follows

from our account is a somewhat more ‘realistic’ deflationary position, a weakly deflationary position

according to which the content of a representation is indeed the mathematical function that it realizes,

but where this computational theory proper entails an implicit semantics.

4.2. From a Computational Theory Proper to a Formal Semantics

Let us now take stock. We have retained the general description of representational content from

the deflationary account. We now use this deflationary model to specify the computational theory

proper that leads to a formal semantics via the free-energy principle.

The computational theory proper has five components, which we can map to elements of the

free-energy formulation. (1) Under the free-energy principle, the mathematical function that is realized

by the (gradient flows of the) cognitive system is a free-energy functional that measures the divergence

between the posterior and variational densities. (2) The specific algorithms that the system uses to

compute this function is gradient descent on variational free-energy. (3) Echoing the literature on

structural representations, the representational structures that are maintained and updated by the
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mechanism are the internal states of the system. (4) The computational processes that are defined over

these representational structures, and which update and maintain them, are implemented as active

inference. (5) Finally, the ecological component is provided by the dual information geometry.

Figures 4 and 5 reformulates Egan’s [11] account deflationary account of content in light of the

free-energy principle. We amend the deflationary account to highlight that it provides us with a fully

naturalistic, mathematical account of the origin of semantic content, in terms of a calculus of beliefs

and intentions that is the counterpart of the intrinsic description of the flow of internal states. Note that

the external states that figure in the generative model implicitly define the ecological component—and

this, purely mathematically. This overcomes the problem of naturalizing intentionality by appealing

purely to well understood mathematical and physical processes and properties.

 

Figure 4. The deflationary account of the content of a representation. This figure depicts the main

components of the semantic content of neural representations according to the mathematical-deflationary

account of content [11]. The computational component of the representational content (the

computational theory proper) is interpreted in a realist sense. The computational component of

the content comprises (1) a mathematical function, (2) specific algorithms that realize this function in

the system, (3) physical structures that bear representational contents; (4) computational processes

that secure these contents, and (5) normal ecological conditions under which the system can operate.

The cognitive content is taken in an anti-realist sense, as a kind of explanatory gloss that only

has an explanatory, instrumentalist role, as the interpretation given to the neural representation by

the experimenter.

 

Figure 5. A formal semantics under the free-energy principle. Bayesian cognitive science does not have to

commit to the classic notion of representation carrying propositional semantic content. The free-energy

principle allows us to formulate a formal semantics. “Representations” under the free-energy principle
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are, in essence, formalized under the physics of flow (e.g., dynamical systems theory) and information

geometry, and they are better understood as internal structures enabling the system to parse its

sensory stream (i.e., as an ontology). Here, we relate the main components of the deflationary account

of content [11] to the free-energy formulation. The mathematical function that underwrites the

free-energy principle is a variational free-energy functional. The specific algorithm is gradient descent

(i.e., flow) on this free-energy functional, which defines the gradients on which the system ‘surfs’

until it reaches a nonequilibrium steady state. Representational structures (i.e., the structures that

embody or carry out these processes) correspond to the internal states of a system and associated

intrinsic information geometry. The computational process itself is active inference, which provides an

overarching framework to use the generative model for policy (action) selection. Finally, the ecological

component is defined by the implicit semantics that is entailed by the dual (intrinsic and extrinsic)

information geometries: via the associated extrinsic information geometry, the system looks as if it

behaves as a functional of beliefs about external states.

4.3. Phenotypic Representations? Ontologies?

Our last move is to leverage the fictionalist account to nuance the claim that the account just

rehearsed vindicates the neural representations construct. This nuance is on two counts: with regards to

the terms ‘neural’ and ‘representations’.

First, the term ‘neural’ should be replaced by ‘phenotypic’, to reflect the expanded realization

base of the vehicles of deflated, mathematical content under the free-energy principle. The spirit

of deflated neural representationalism is vindicated by the free-energy principle. We can indeed

assign mathematical content to structures that are internal to an agent, which come to encode or

carry semantic content when the right ecological conditions are in play (thanks to the dual aspect

information geometries of living systems). However, the internal states that play this role are very far

from classical representations in the symbolic or connectionist traditions. They essentially comprise

all internal states of a system and so are not strictly neural. This has the consequence that the neural

representationalist intuition is vindicated by its traditional adversary, the embodied-enactive approach

to cognition: if there is anything like structural representations under the free-energy principle, they

correspond to the system’s bodily states and are harnessed, maintained, and updated through histories

of adaptive action.

Second, with respect to the term ‘representation’, we note that under the free-energy principle,

the deflated representational structures may best be understood as the ontology that system brings to

bear in understanding its environment; that is, the set of hypotheses or categories that it uses to parse

the flow of its sensory states.

Heuristically, we say that the free-energy principle licenses the claim that the system believes that

this or that environmental factor is causing its sensory impressions. In light of the discussion above, it

appears more accurate to say that, when it is in its usual ecologically valid operating conditions, a

system equipped with such a partition that exists at nonequilibrium steady state will act in a way that

looks as if it has an intentional relation with some features of its environment. We now know what this

“as if” character amounts to: it refers to the duality of information geometries and thereby the duality

of possible descriptions (in terms of a flow towards nonequilibrium steady state and in terms of belief

updating under a generative model).

The free-energy principle descends from a modeling strategy called generative modeling. In this

scheme, we write down alternative probabilistic models of the process that caused our data, and we

score the probability of each model as a function of how well it explains the variance in our data. This

score is the variational free-energy. Crucially, as discussed in the previous section, these models are

hypotheses about the structure of the process that caused our data. The hidden or latent (c.f., external) states

in these models are essentially guesses about the causes of sensory data. Crucially, they need not reflect

the existence of anything in reality [66,84,109]. This is a subtle but important point. The external states

exist only relative to the generative model and accompanying phenotype, and only play a role so long

as they subtend the generation of adaptive, contextually appropriate behavior.
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What is being described by the formalism that underwrites the free-energy principle, then, is

less a story about how an internal reconstruction of the external world is constructed in the brain, as

traditional (symbolic and connectionist) accounts of neural representations would have it. What is at

stake is more like the ontology with which a system is equipped [110]. An ontology, in this sense, is the

set of semantic structures (a large part of which are learned through experience from immersion in

specific contexts) that a living creature uses, implicitly or explicitly, to parse and order the flow of its

sensory states [111–114].

We are effectively combining the deflationary account and the fictionalist or instrumentalist account

to provide an interpretation that might be called organism-centered functionalism. The organism’s

phenotype—its moving and acting body—is a nonequilibrium steady state density that can be

interpreted as a manifold towards which the flow of system’s states settles on average and over time;

and also as a joint probability distribution over all the variables of the system. The organism’s behavior

is driven by these density dynamics: by the tendency to settle towards its nonequilibrium steady state

density, which is implemented as a gradient descent on variational free-energy (a.k.a. active inference).

This is just another way of saying that the actions selected by the organism are driven by the

statistical structure of its phenotype and interactions with the environment. The organism leverages

its own statistical structure in driving its action selection. This dovetails with embodied-enactive

approaches to cognition and effectively constitutes a new take on morphological, developmental, and

evolutionary computation [115,116] and knowledge-driven skillful action [77].

While our aim here was to explore the consequences of non-realist approaches to cognition,

we note that the pragmatist interpretation that we propose may be compatible with certain realist,

structural representationalist accounts, where content is determined by functional isomorphism, thereby

illuminating the role of structural representations using a form of functional role semantics [8,32,81].

These accounts are explicitly developed in a direction that does not require the represented system to

actually exist in reality, which coheres with the account of ontologies just presented. The free-energy

principle warrants the claim that there are phenotypic states that carry semantic content; here, we

articulated a computational theory proper for such mathematical semantics. What we call these states,

at the end of the day, may be a matter of preference.

5. Conclusions

In this paper, we aimed to assess whether the construct of neural representations plays an

explanatory role under the variational free-energy principle, and to determine which philosophical

position about the ontological and epistemological status of the representations construct is most

appropriate for that theory. We examined non-realist approaches, rather than the more commonly

discussed realist ones. We started by a deflationary account of mental representation, according to

which the explanatorily relevant contents of neural representations are mathematical, and a fictionalist

account, according to which representations are scientifically useful fictions. We hope to have shown

that under the free-energy principles, even quite minimalist, deflationary accounts of the kind of

content carried by neural representations warrant an appeal to a semantic content, which echoes (while

being distinct from) the realist position. We hope to have shown that, by drawing on a modified

fictionalist account, the formal semantics derived from the free-energy principle can provide us with

an explanation of the aboutness or intentionality of living systems.

Much hangs philosophically on what it means to represent some target domain, specifically in

terms of the relation between mental states and the physical states that realize them. The relations

between the free-energy principle and classical positions in the philosophy of mind (e.g., physicalist

monism, dual-aspect monism, and Cartesian dualism) have been explored at length elsewhere [84].

We will only comment on which of these seems to cohere most with our account. Briefly, of the

philosophical perspectives on the relation between mental and physical states, ours here is most

consonant with functionalism and the concept of multiple realization that it entails. Functionalism

is the view that the features that characterized mental states are not the intrinsic features of that



Entropy 2020, 22, 889 19 of 29

state, but rather the functional (e.g., input-output) relations between that state and other states of

the system [117,118]. Multiple realization is the view that the same (mental) macrostate state can be

realized variously by different configurations of (physical) microstates, so long as they implement

the appropriate functional (e.g., computational) relations [118]. The proximity between our view

and functionalism is based on the technical detail of how the semantic content is realized under the

free-energy principle, via the assignment of fictive external states to internal states implied by the

dual information geometry of the free-energy principle. As discussed above, the free-energy principle

licences the claim that, for every blanket state, we can identify an average of internal states that we can

associate with the parameters of a probability density over (fictive) external states. The crucial thing to

note is that it is the average of internal states that can be so associated. This means that the probability

density over external states can be realized by an equivalence class of internal states, which end of

parameterizing the same belief.

An outstanding issue is whether the framework on offer is able to account for the issue of

misrepresentation. Any candidate representational structure must at least in principle be able to

misrepresent the state of affairs that it represents. This has long been a sticking point in the discussion

on representation [119]. In a nutshell, because misrepresentation is possible (e.g., recognizing one

object as another that it is not), an account of representation needs to allow for misrepresentation while

also specifying what makes the representation about one object versus another—if it can be induced

by both objects [3,120]. It has been pointed out, in our view correctly, that the information theoretic

measures used under the free-energy principle are measures of mere covariance, which are insufficient

to account for misrepresentation [108]. We think that this picture is incomplete. A future direction

for more fully addressing this issue begins by noting that variational free-energy scores the degree to

which sensory data conforms to hypotheses about what caused it. Variational free-energy is a not just

any measure of information, but instead measures the discrepancy between the current sensory data

and the sensory data expected under some ontology or hypothesis, which lends it an irreducibly semantic

aspect. High free-energy indicates that the hypothesis does not ‘explain’ the data, or that some other

hypothesis would fare better. Thus, the model of semantics on offer might be able to account for

misrepresentation and the search for alternative hypotheses.

Our primary concern in this paper was to show that phenotypic states can come to acquire

semantic contents of a deflationary (mathematical) sort via active inference. Of note is that this semantic

content is not equivalent to the kind of propositional content that is at play in language use, nor does

our account explain the manners in which human agents use language and narrative to fashion and

remake themselves as agents [121,122]. While this issue is, at least arguably, beyond the scope of

this paper, we generally agree with the claim that the move from semantic to propositional content

requires that agents engage in specific kinds of content-involving practices. These are practices like

truth-telling [9,15] and story-telling [123], which build greatly upon the basic representational or

semantic capacity of agents by enabling more elaborate, storied, forms of self-access that would not be

possible without language.

Where does this leave us with regard to our initial questions? The upshot of our discussion

is that, under the free-energy principle, there indeed are structures internal to an organism that act

as the bearers of semantic content. These structures can be specified mathematically in terms of

computational theory proper, as held by the deflationary account. However, by virtue of the dual

information geometries in play under the free-energy principle, this purely mathematical account

comes with an implicit semantics: the set of hypotheses about underlying causal factors (or the ontology)

with which the system parses and makes sense of its sensory stream. This might be seen as vindicating

the structural representationalist account discussed in the introduction, albeit with a critical twist: those

structures that bear content are not merely neural representations, but indeed phenotypic representations

(if they are representations at all), for it is all the internal states of an organism, given the Markovian

partition, that bear this content.
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Appendix A

A.1. The Langevin Formalism and Density Dynamics

One can express a random dynamical system in terms of the flow of states over time that are

subject to random fluctuations (please see glossary for a definition of variables):

.
x(τ) = f (x, τ) +ω( 1) (A1)

This is a general specification of (Langevin) dynamics that underwrites nearly all of

physics [124–126]; in the sense that most modern physics is premised on the Langevin formalism

and the ensuing descriptions of the flow of a system’s states under random fluctuations. This can be

equivalently described in terms of density dynamics—via the Fokker Planck equation or Schrödinger

equation—or the path integral formulation. From these descriptions, nearly all quantum, statistical

and classical mechanics can be derived.

We are interested in systems that have measurable characteristics, which means that they possess

an attracting set or manifold, known as a random or pullback attractor [82]. This means that if we

observe the system at a random time, there is a certain probability of finding it in a particular state.

This is the nonequilibrium steady-state density [126].

One can now use standard descriptions of density dynamics to express the flow of states as a

gradient flow on self-information or surprisal [127–130]. This flow is the steady-state solution to Fokker

Planck equation that accompanies (A1) [131–135].

f (x) = (Q− Γ) · ∇ℑ(x)

ℑ(x) = − ln p(x)
(A2)

This equation says that, on average, the states of any random dynamical system with an attracting

set evince a gradient flow on surprisal; namely, the negative logarithm of the nonequilibrium

steady-state density [136,137]. The gradient flow effectively counters dispersion due to random

fluctuations, such that the probability density does not change over time. See Figure 4.
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Figure A1. Density dynamics and pullback attractors. This figure depicts the density or ensemble

dynamics of random dynamical systems that can be described via the Langevin equation. The left

panel depicts the time evolution of two states, as a strange attractor. A point in this space assigns to the

system a position along each dimension, and so assigns a value to each state. Here, each dimension

represents one of the two states, and the trajectory plots the evolution of states over time. The right panel

represents an arbitrary random attractor (a pullback attractor). One can think of this pullback attractor

in two ways. First, the attractor can be cast as representing the trajectory of systemic states over time

(in this case, two states are represented). The crucial feature of this trajectory is that—after sufficient

time has passed—it will revisit specific regions of state space, which make up the pullback attractor

itself. The second interpretation is probabilistic: it casts the attracting set as a probability density over

the states in which the system can be found when it is sampled at random. The Fokker-Planck equation

allows us to describe the evolution of this probability density. This, in turn, licences a solution to the

Fokker-Planck equation. The consequence of this is that we can establish a lawful relationship between

the probability density and the flow of states at any point in the system’s state space. This solution

describes the flow of systemic states in terms of gradients of log density or surprisal and in terms of

the amplitude of random fluctuations. In turn, the Helmholtz decomposition allows us to express the

nonequilibrium steady-state solution in terms of two orthogonal components. One of these is a curl-free

gradient flow that depends on the amplitude of random fluctuations Γ. This component rebuilds

probability gradients, effectively countering the effect of random fluctuations on states (i.e., countering

their dispersion). The other component is a divergence-free (or solenoidal) flow that circulates on

isoprobability contours and that depends upon an antisymmetric (skew) matrix Q. The figure depicts

the flow around the peak of a probability density that has a Gaussian or normal form. See [66,137,138]

for technical details.

The above equation holds (nontrivially) for the internal, blanket, and external states. If we just

focus on internal and active (i.e., autonomous) states, we have the following flows. Note that as in (A2)

Qαα and Γαα denote antisymmetric and leading diagonal matrices, respectively.

fα(π)= (Qαα − Γαα)∇αℑ(π)

α=
{
a,µ
}

π= {s,α} =
{
b,µ
}

(A3)

This means anything a system with a Markov blanket must evince the above gradient flows. In

turn, this means that internal and active states will look as if they are trying to minimise the same

quantity; namely, the surprisal of states that constitute the thing, particle, or creature. These are the

internal and blanket states, i.e., particular states.
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A.2. Bayesian Mechanics

If internal and external states are conditionally independent, then for every given blanket state

there is an expected internal state and a conditional density over external states. In other words, there

must be a one-to-one relationship between the average internal state of a particle (or creature) and a

probability density over external states, for every given blanket state. This means that we can express

the posterior or conditional density over external states as a variational density that is parameterised by

internal states:
qµ(η)= p(η

∣
∣
∣b) = p(η

∣
∣
∣π)

µ(b), E[µ
∣
∣
∣b]

(A4)

This allows us to interpret the flow of autonomous states α = {a,µ} (i.e., action and perception) as

a gradient flow on variational free energy.

fα = (Qαα − Γαα)∇αF(b)

F(b) , Eq[ℑ(η, b)]
︸       ︷︷       ︸

energy

−H[qµ(η)]
︸    ︷︷    ︸

entropy

= ℑ(b)
︸︷︷︸

surprisal

+ D[qµ(η)
∣
∣
∣

∣
∣
∣p(η
∣
∣
∣b)]

︸               ︷︷               ︸

bound

= Eq[ℑ(b
∣
∣
∣η)]

︸       ︷︷       ︸

inaccuracy

+ D[qµ(η)
∣
∣
∣

∣
∣
∣p(η)]

︸             ︷︷             ︸

complexity

= ℑ(b)

(A5)

This functional can be expressed in several forms; namely, an expected energy minus the entropy

of the variational density, which is equivalent to the self-information associated with blanket states (i.e.,

surprisal) plus the KL divergence between the variational and posterior density (i.e., bound), which, in

this instance, is zero by (A4). In turn, this can be decomposed into the expected log likelihood of blanket

states (i.e., accuracy) and the KL divergence between posterior and prior densities (i.e., complexity).

The second thing that (A4) brings to the table is an information geometry and attending calculus of

beliefs. From now on, we will associate beliefs with the probability density above that is parameterised

by (expected) internal states. Note that these beliefs are non-propositional, where ‘belief’ is used

in the sense of ‘belief propagation’ and ‘Bayesian belief updating’ that can always be formulated as

minimising variational free energy [139–141]. To license a description of this conditional density in

terms of beliefs, we can now appeal to information geometry [135,142–144].

Note the variational free energy—and its gradients—are functionals of a generative model ℑ(η, b) =

− ln p(η, b) in the form of a surprisal over external and blanket states. This means that the nonequilibrium

steady-state density over the states can be read as a generative model that underwrites autonomous

gradient flows.

A.3. Information Geometry and Beliefs

Any statistical manifold is necessarily equipped with a unique metric tensor, known as the Fisher

information metric [135,142,145].

dℓ2= gi jdµ
idµ j

g(µ)= ∇µ′µ′D[qµ′(η)
∣
∣
∣

∣
∣
∣qµ(η)]

∣
∣
∣µ′=µ = Eq[∇µ ln qµ(η) ×∇µ ln qµ(η)]

(A6)

Here, dℓ is the information length associated with small displacements on the statistical manifold

dµ = µ′ − µ induced by a probability density qµ(η). The information length scores the number of

different probabilistic or belief states encountered in moving from one part of a statistical manifold

to another.
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If we return to the independencies induced by the Markov blanket, Equation (A4) tells us

something fundamental. The (expected) internal states have acquired an information geometry,

because they parameterise probabilistic beliefs about external states. In short, there is a unique

geometry in some belief space that can be associated with the internal (physical) state of any particle or

creature. Furthermore, we know that the gradient flows describing the dynamics of internal states can

be expressed as a gradient flow on a variational free energy functional (i.e., function of the function) of

beliefs: see (A5).

Recall from above, that an information geometry is a property of any statistical manifold. The

parameters of the probability density over the internal states are thermodynamic variables λ (e.g.,

pressure) that underwrite thermodynamics or statistical mechanics [145,146]. We will refer to the

accompanying information geometry as an intrinsic geometry, because pertains to the internal states

per se. From our point of view, this means there are two information geometries in play with the

following metrics:

g(λ)= ∇λ′λ′D[pλ′(µ)
∣
∣
∣

∣
∣
∣pλ(µ)]

∣
∣
∣
λ′=λ

g(µ)= ∇µ′µ′D[qµ′(η)
∣
∣
∣

∣
∣
∣qµ(η)]

∣
∣
∣
µ′=µ

intrinsic

extrinsic
(A7)

First, there is an intrinsic information geometry based upon thermodynamic variables. This forms

the basis of statistical mechanics in physics. At the same time, there is an information geometry in

the space of internal states that refers to belief distributions over external states. This is the extrinsic

information geometry that inherits from the Markovian conditions that define, stipulatively, autonomous

states (via their Markov blanket). The extrinsic geometry is conjugate to the intrinsic geometry, in the

sense that they supervene on the same Langevin dynamics.

Glossary

(Note: a.u. stands for arbitrary units, e.g., metres (m), radians (rad), etc.)
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Expression Description Units

Variables

ω(τ) Random fluctuations
a.u.

(m)

x =
{
η, s, a,µ

}
∈ X

Markovian partition into external, sensory, active, and

internal states

a.u.

(m)

α =
{
a,µ
}
∈ A Autonomous states

a.u.

(m)

b = {s, a} ∈ B Blanket states
a.u.

(m)

π =
{
b,µ
}
∈ P Particular states

a.u.

(m)

η ∈ E External states
a.u.

(m)

Γ = µmkBT Amplitude (i.e., half the variance) of random fluctuations J·s/kg

Q Rate of solenoidal flow J·s/kg

ℓ =
∫

dℓ : dℓ2 = gi jdλ
jdλi Information length nats

gi j = E
[
∂ℑ
∂λi
∂ℑ
∂λ j

]

Fisher (information metric) tensor a.u.

Functions, functionals and potentials

E[x] = Ep[x] =
∫

xpλ(x)dx Expectation or average

pλ(x) : Pr[X ∈ A] =
∫

A
pλ(x)dx

Probability density function parameterised by sufficient

statistics λ

qµ(η)
Variational density – an (approximate posterior) density

over external states that is parameterised by internal states

F(b) ≥ ℑ(b)
Variational free energy free energy – an upper bound on

the surprisal of particular states
nats

Operators

∇xℑ(x) =
∂ℑ
∂x =

(
∂ℑ
∂x1

, ∂ℑ∂x2
, . . .
)

Differential or gradient operator (on a scalar field)

Entropies and potentials

ℑ(x) = − ln p(x) Surprisal or self-information nats

D[q(x)
∣
∣
∣

∣
∣
∣p(x)] = Eq[ln q(x) − ln p(x)] Relative entropy or Kullback-Leibler divergence nats
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