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Abstract. Birch (Betula) trees and forests are found across much of the temperate and
boreal zones of the Northern Hemisphere. Yet, despite being an ecologically significant genus,
it is not well studied compared to other genera like Pinus, Picea, Larix, Juniperus, Quercus, or
Fagus. In the Himalayas, Himalayan birch (Betula utilis) is a widespread broadleaf timberline
species that survives in mountain rain shadows via access to water from snowmelt. Because
precipitation in the Nepalese Himalayas decreases with increasing elevation, we hypothesized
that the growth of birch at the upper timberlines between 3900 and 4150 m above sea level is
primarily limited by moisture availability rather than by low temperature. To examine this
assumption, a total of 292 increment cores from 211 birch trees at nine timberline sites were
taken for dendroecological analysis. The synchronous occurrence of narrow rings and the high
interseries correlations within and among sites evidenced a reliable cross-dating and a
common climatic signal in the tree-ring width variations. From March to May, all nine tree-
ring-width site chronologies showed a strong positive response to total precipitation and a
less-strong negative response to temperature. During the instrumental meteorological record
(from 1960 to the present), years with a high percentage of locally missing rings coincided with
dry and warm pre-monsoon seasons. Moreover, periods of below-average growth are in phase
with well-known drought events all over monsoon Asia, showing additional evidence that
Himalayan birch growth at the upper timberlines is persistently limited by moisture
availability. Our study describes the rare case of a drought-induced alpine timberline that is
comprised of a broadleaf tree species.

Key words: alpine timberline; Betula utilis; central Himalayas; climate sensitivity; dendroecology;
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INTRODUCTION

Near the distribution boundaries of tree species,

climate strongly controls tree physiological and popula-

tion dynamic processes (Malanson 2001, Körner 2003,

Holtmeier and Broll 2005, Nagy and Grabherr 2009).

Based upon notable similarities in various temperature

parameters at treelines worldwide (Jobbágy and Jackson

2000, Grace et al. 2002, Körner and Paulsen 2004), it

was proposed that the growing season temperature

limits tree growth both at arctic and at alpine treelines/

timberlines (e.g., Körner and Paulsen 2004, Wieser and

Tausz 2007, Voelker 2011). This has been supported by

dendroclimatic studies (e.g., Jacoby and D’Arrigo 1989,

Payette et al. 1989, Villalba et al. 1997, Camarero et al.

2000, Mäkinen et al. 2000, Frank and Esper 2005,

Luckman and Wilson 2005, Liang et al. 2009, Salzer et

al. 2009, Ettinger et al. 2011) as well as by seasonal

cambial activity studies (e.g., Rossi et al. 2008, Seo et al.

2013). However, tree growth at timberlines not only

depends on the growing season temperature, but also

occasionally on winter temperatures that can cause frost

drought in evergreen conifers (Oberhuber 2004, Mayr et

al. 2006, Elliott 2012). In exceptional cases, timberline

trees can even suffer from drought stress during the

growing season (Tranquillini 1979, Leuschner 1996,

Yang et al. 2013). Drought-induced alpine timberlines

can be found not only on tropical and warm-temperate

oceanic islands like on Mt. Teide, Tenerife (Leuschner

1996, Gieger and Leuschner 2004), but also at high-

elevation subtropical treelines in Mexico (Biondi 2001),

northwestern Argentina (Morales et al. 2004), and the

central Andes (Daniels and Veblen 2004, Lara et al.

2005). However, little is known about whether such

cases can also be observed at alpine timberlines in mid-

latitudes, such as in the Himalayas and on the Tibetan

Plateau, where the highest natural timberlines in the

Northern Hemisphere can be found (Fang et al. 1996,

Miehe et al. 2007, Liang et al. 2011).
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Dendroclimatic studies in high-elevation forests

across the Tibetan Plateau indicate that the growth of

conifers is primarily limited by temperature in the

previous winter and/or in the current summer (Bräuning

2001, Cook et al. 2003, Liang et al. 2008). In particular,

the growth of juniper, fir, and spruce trees at alpine

timberlines in semihumid and humid areas on the

southeastern Tibetan Plateau tends to be inhibited by

low summer temperature (Gou et al. 2008, Liang et al.

2009, Zhu et al. 2011). In contrast, at alpine timberlines

in semiarid areas on the northeastern Tibetan Plateau,

growth of juniper is primarily limited by low winter

temperature (Liu et al. 2005, Zhu et al. 2008, Shao et al.

2010). However, soil moisture availability can also

become a constraint on tree growth at the upper

timberlines on arid sites on the northern Tibetan Plateau

(Yang et al. 2013).

Up to now, coniferous tree species have mostly been

studied at timberlines, whereas birch (Betula), as an

ecologically important and widespread broadleaf alpine

and latitudinal timberline genus, remained mainly out of

focus. At the northern timberline in Sweden (Eckstein et

al. 1991, Kullman and Öberg 2009) and at the alpine

timberlines in northeast China (Yu et al. 2005) and

central Japan (Takahashi et al. 2005), birch growth is

reported to be primarily controlled by temperature. As

Himalayan birch (Betula utilis D. Don) dominates a

wide area of the Himalayas (Zobel and Singh 1997), it is

necessary to investigate constraints on the growth of this

species as well. Himalayan birch forms an abrupt

treeline from 3900 to 4200 m above sea level (asl). Such

treelines are rare globally and have not been well studied

(Harsch and Bader 2011). Due to its poor accessibility

and difficulties in tree-ring cross-dating, little is known

about its growth performance (Bräuning 2004, Bhatta-

charyya et al. 2006, Dawadi et al. 2013).

The objectives of our study, therefore, were to

initialize a tree-ring network for Himalayan birch at its

upper timberline in the central Himalayas and to

identify the climatic factor(s) determining its radial

growth. Based on the fact that precipitation in the

Himalayas decreases with increasing elevation above

2000–3000 m asl (Putkonen 2004, Ichiyanagi et al.

2007), we posit that the growth of birch at timberline

might be more strongly limited by poor moisture

availability than by low temperature.

METHODS

Study area and climate

Our study sites were located in high-elevation nature

reserves (Sagarmatha, Langtang, and Manaslu) along

three valleys in central Nepal and near well-known

mountain peaks, such as Mount Everest (8848 m),

Langtang Lirung (7246 m), and Manaslu (8150 m; Fig.

1). These reserve areas can be reached with an off-road

vehicle or a small airplane. However, accessing the

highest birch forests takes another 4–6 days of climbing,

which likely contributes to the dearth of studies on this

species.

The Himalayas are situated in a transition area

between subtropical and temperate mountains (Ichiya-

nagi et al. 2007). The Nepalese climate is influenced by

both maritime and continental factors, with the eastern

and central parts of the country being exposed to the

flow of the southeast monsoon (Putkonen 2004). The

Tropical Rainfall Measuring Mission (TRMM) satellite,

since its launch in November 1997, shows altitude-

dependent variations in precipitation in the Nepal

Himalayas (Fig. 2; NASA GES DISC; data available

online).7 Consequently, TRMM estimates of annual

precipitation indicate an increase from lowland areas up

to around 2000 m, followed by a decrease northward

with increasing elevation. In the mid-elevation belt,

between 2000 and 3000 m, annual precipitation is

slightly higher than 2000 mm, and at around 4000 m it

ranges from 750 to 1000 mm. Precipitation also varies at

smaller scales depending on the local wind circulation

and on whether a site is located on a windward or

leeward slope (Barr 2008).

Instrumental records in the Langtang and Khumbu

valleys as well as in the Mt. Everest area confirm the

general pattern of altitude-dependent precipitation (Barr

2008). Annual precipitation is around 3500 mm in the

Langtang valley (from 1600 to 2600 m; Dhar and

Nandargi 2000), and around 780 mm (recorded from

2005 to 2008) at Kyangjing (3920 m), which is close to

our birch timberline site LT1. South of Mt. Everest, at

2600 m, the annual sum of precipitation ranges from

2300 to 2600 mm. Precipitation then decreases to 1000

mm or less from 3450 to 3850 m, whereas on the

Khumbu Glacier (5300 m) it is only 450 mm (Dhar and

Nandargi 2000). As recorded by the high-altitude

Pyramid meteorological station (5050 m), 12 km

southwest of Mt. Everest, the average annual precipita-

tion was 465 mm from 1994 to 1999 (Bollasina et al.

2002) and 343 mm from 2005 to 2008; very little

precipitation fell from December to April during these

periods (Fig. 3).

Annual maximum, mean, and minimum temperatures

at Kyangjing are around 9.48C, 3.78C, and �0.28C,

respectively; the temperature in the warmest month

(July) is around 9.88C, i.e., close to the 108C isotherm,

which is generally taken to estimate the treeline position

(Tranquillini 1979). The mean temperature during the

growing season from May to September is 8.28C, which

is within the range of the average gridded growing

season temperatures at timberlines (Voelker 2011).

Study species

Himalayan birch is endemic to the Himalayas and

occurred at elevations up to 1800 m during the Pliocene

(;5–2.5 million years before present), a period of

7 http://disc.sci.gsfc.nasa.gov/daac-bin/tcc.pl
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global-scale cooling and drying, but today it grows

above 3000 m (Vishnu-Mittre 1984), and is generally

found in rain-shadow locations. Between 3500 and 3900

m, Himalayan birch grows in forests mixed with Abies

spectabilis. Pure Himalayan birch forests, with an

understory of Rhododendron campanulatum up to 3 m

tall, occur between 3900 and 4200 m, where they are

quite undisturbed due to the difficult access. In the open

terrain above treeline, Rhododendron anthopogon and

Cassiope fastigiata up to 30 cm high are dominant.

We focused on undisturbed pure Himalayan birch

forests in a forest belt from 3900 to 4150 m, which form

an abrupt treeline without a krummholz zone (Fig. 4).

The mean total coverage in this vegetation zone

amounts to more than 30%. Despite some birch

seedlings and saplings under the forest canopy, recruit-

ment was generally low.

Tree-ring sampling, cross-dating, and standardization

Increment cores were taken at nine Himalayan birch

timberline sites from 3900 to 4150 m in Sagarmatha

(four sites), Langtang (two sites), and Manaslu (three

sites), where natural Himalayan birch timberlines are

highly representative of those in the central Himalayas

(Table 1). Apart from one site (SKB3) at a southeast-

facing slope in the Sagarmatha National Park, all other

sites are located in the rain shadow on southwest- or

west-facing slopes. All sites are characterized by a thin

layer of rocky soil. At each site, 15–30 dominant birch

trees between 8 and 12 m in height and 50 and 80 cm in

diameter were selected for coring, and one to two cores

were taken from each tree. Some cores were excluded

due to unclear tree-ring boundaries. Altogether, we

included 292 cores from 211 living trees.

Tree-ring widths were measured to an accuracy of

0.01 mm using a LINTAB measuring system (Rinntech,

Heidelberg, Germany); locally missing rings were given

a value of zero. Ring boundaries in birch are faint and

delineated by one cell row of terminal axial parenchyma

(Fig. 5), which is often filled with brownish extractives.

Boundaries were more easily distinguished when the

core surface was kept moist. The quality of cross-dating

and measurements was checked using the program

COFECHA (Holmes 1983).

The tree-ring width series of each individual tree was

transformed to a dimensionless time series by the

program ARSTAN (Cook 1985) using a smoothing

spline of 67% of the series length. The ‘‘two-thirds

spline’’ approach to standardization removes growth

trends related to the geometry of adding radial

increments on an increasing stem diameter and to stand

dynamics (Cook and Peters 1981). The resulting time

series of each site were averaged into site standard

chronologies.

FIG. 1. Location of Himalayan birch sampling sites and climatic research unit (CRU) grid points, as well as high-elevation
meteorological stations at Kyangjing in the Langtang valley and at Pyramid in the Mt. Everest area in the Nepal Himalayas.
Elevation is given in meters above sea level (asl).

September 2014 2455BIRCH TIMBERLINE LIMITED BY MOISTURE



Analyses

Several descriptive statistics, including mean series

intercorrelation (RBAR) and expressed population signal

(EPS; Briffa and Jones 1990) were used to qualify the

site chronologies within a common interval from 1840 to

2009. RBAR is the mean correlation coefficient among

the tree-ring series of a site, while EPS assesses the

degree to which a site chronology represents a hypo-

thetical chronology based on an infinite number of

cores; an EPS �0.85 is often taken to identify the

reliable part of a tree-ring chronology (Briffa and Jones

1990). Principal component analysis (PCA) was con-

ducted using all nine site chronologies to identify the

extent of common growth variation through time. PCA

decomposes the total variance of all tree-ring widths into

its principal components; the first principal component

(PC1) accounts for as much of the variability in the data

as possible.

To determine the climate–tree-growth relationships,

correlations with bootstrapped confidence intervals

(Biondi and Waikul 2004) were calculated between the

nine site chronologies and their PC1 (as predictands),

and monthly climate data (as predictors) obtained from

the CRU TS 3.0 (climatic research unit, time-series data

sets, version 3.0; Mitchell and Jones 2005) at 0.58 spatial

resolution from 1950 to 2009. An average of climate

data sets from eight CRU grids was used to represent the

regional monthly mean temperature and monthly sums

of precipitation. These values showed high correlations

with the instrumental records at Pyramid (5050 m) from

1994 to 2008 (for temperature, r¼ 0.92, n¼ 180 months,

P , 0.0001; for precipitation, r¼ 0.82, n¼ 180 months,

P , 0.0001). Thus, the regionally averaged gridded

temperature and precipitation data reflected the climatic

conditions in our study area well. The climate/growth

correlation analysis was performed for a 15-month

period from the previous July to the current September.

Partial correlation was used to measure the linear

relationship between two variables, such as tree-ring

widths and pre-monsoon precipitation, after having

excluded the effect of a third variable, such as pre-

monsoon temperature.

RESULTS

Cross-dating, occurrence of locally missing rings, and

chronology statistics

Of the 211 Himalayan birch trees, three were more

than 400 years old, while 19 were more than 300 years

old. Mean tree-ring width was 0.81 6 0.53 mm (mean 6

SD). Narrow rings occurred in 1710, 1813, 1954, 1967,

1968, 1974, 1975, 1995, 1999, 2000, 2003, and 2004 (Fig.

6), thus showing a distinct accumulation in the 20th and

in the beginning of the 21st century. However, there

were also earlier periods characterized by sustained low

growth, e.g., from 1756 to 1767, 1789 to 1795, and 1809

to 1821, as reflected in the regional chronology (RC; Fig.

6).

From a total of 56 157 tree rings identified by cross-

dating across all sites, 414 (0.74%) were locally missing.

During the past 300 years, locally missing rings were

most frequent in the most recent six decades, with the

strongest examples in 1954 (6.0%), 1968 (7.9%), 1974

(6.1%), 1975 (4.1%), 1995 (7.6%), 1999 (14.7%), 2000

(12.1%), 2003 (17.1%), and 2004 (18.1%; Fig. 7). This

phenomenon does not appear to be age-dependent. For

example, the locally missing rings in 2004 were fairly

evenly distributed over all age classes, from 70 to 370

years, and no significant (P . 0.05) age-dependent

trend was found. In particular, the three trees older

than 400 years did not have a locally missing ring in

2004 (Fig. 7). Locally missing rings occurred more

often at leeward sites than at windward sites. In the

Langtang valley, the southwest-facing slope (site LT4)

receives more solar radiation and might experience

stronger evaporation than the west-facing slope (site

LT1). As a result, more rings were locally missing at

LT4 (2.02% missing rings) than at LT1 (0.51%). The

percentages of locally missing rings in the Sagarmatha

National Park sites were 0.5% at SKB1 and SKB2 in

the rain shadow on a southwest-facing slope, 0.24% at

SKB3 on a windward southeast-facing slope, and

0.14% at SKB4 on a northwest-facing slope with

potentially less evaporation.

The occurrence of locally missing rings was signifi-

cantly correlated with warm and dry conditions during

the pre-monsoon season (Fig. 8). In particular, the

frequency time series of locally missing rings showed a

significant and negative correlation with pre-monsoon

precipitation (r ¼ �0.31, P , 0.05, n ¼ 60) and a

significant and positive correlation with pre-monsoon

temperature (r ¼ 0.30, P , 0.05, n ¼ 30). Partial

correlation coefficients for the same relationships were

still significant (r¼ 0.26/0.28, P , 0.05) when the effects

of temperature or precipitation, respectively, were

excluded.

RBAR within each of the nine tree-ring site chronol-

ogies ranged from 0.28 to 0.35. Interseries correlation

within the sites ranged from 0.48 to 0.56, and was 0.42

between all 292 tree-ring series. EPS values of �0.85

occurred between 1710 and 1840 m across all sites

(Table 1, Fig. 6). The first principal component (PC1) of

all nine chronologies represented 49.0% of the variation

in the 1840–2009 common period. All chronologies load

positively on PC1.

Climate–tree-growth relationships

Variation in growth of timberline Himalayan birch

was most strongly correlated with pre-monsoon mois-

ture availability, as shown by consistently positive

correlations with precipitation from March to May;

significant correlations (P , 0.05) were calculated for at

least one of these three months at the nine sites (Fig. 9).

Summing precipitation from March to May resulted in

significant correlations with all chronologies, although

correlations were stronger on southwest-facing slopes (P
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, 0.001) compared to a site on windward southeast-

facing slope (SKB3; P , 0.05) and an additional site on

a northeast-facing slope (MPB1; P , 0.05). All

chronologies showed negative correlations with temper-

ature from March to May, with significant coefficients

for May at LT4, April at SKB2 and MPB1, and March

and April at SKB3. The partial correlation still showed a

significant correlation (P , 0.05) between the SKB2 and

LT4 site chronologies and temperature by excluding the

effect of precipitation during the pre-monsoon season.

Unexpectedly, the correlation between temperature and

precipitation during the pre-monsoon season was

insignificant (r ¼�0.20, P . 0.05).

PC1 was strongly and positively correlated with pre-

monsoon precipitation from 1950 to 2009 (r¼ 0.55, P ,

0.0001; Fig. 8). In contrast, PC1 was negatively

correlated with the mean temperature from March to

May (r ¼�0.31, P , 0.05).

FIG. 2. Spatial distribution of (A) annual precipitation (mm/d) and (B) pre-monsoon precipitation (mm) in the study area,
based on Tropical Rainfall Measuring Mission composite climatology data.
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DISCUSSION

Growth response of Himalayan birch to climate

at timberline

Abrupt treelines, as in our case the Himalayan birch

treeline, are often thought to be rather unresponsive to

climate (Cuevas 2000, Danby and Hik 2007, Harsch and

Bader 2011). But we found just the contrary to be true;

Himalayan birch growth responded directly to the

availability of moisture during the pre-monsoon season.

These findings give further support that early-year

moisture matters to this species. Shrestha et al. (2007)

reported that the regeneration of Himalayan birch

depends on the amount of snow melting in spring. This

growth response clearly differs from the behavior of

high-elevation conifers close to or in the belt of

maximum precipitation at ;3000 m in the central

Himalayas (Cook et al. 2003). The response of

Himalayan birch to climate also differs from the

response of most alpine and arctic timberline trees,

where growth is primarily limited by low temperature

(Bräuning 2001, Oberhuber 2004, Zhu et al. 2011). In

our study, Himalayan birch responded similarly to trees

at timberlines in the subtropics (Leuschner 1996, Biondi

2001, Morales et al. 2004) and in the central Andes of

Chile (Daniels and Veblen 2004, Lara et al. 2005), where

less precipitation means stronger solar radiation and

evaporation. The similarity in our findings to those at

subtropical and tropical treelines is reasonable, given

that our Himalayan birch sites are nearing the average

value (;4150 m) of subtropical/tropical treelines

(Voelker 2011). Himalayan birch also shares this

similarity with an alpine juniper shrub whose growth is

strongly limited by moisture in the early growing season

at an extremely high elevation of up to 4800 m in central
FIG. 4. Birch forests forming abrupt treelines in the (A)

Sagarmatha and (B) Manaslu conservation areas.

FIG. 3. Monthly mean temperature and sum of precipitation at the Pyramid station (278570 N, 86812.60 E, 5050 m asl), based on
the average from 2005 to 2008; annual mean temperature,�2.58C, average sum of annual precipitation, 343 mm.
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Tibet (Liang et al. 2012). The climate–tree-growth

relationship obtained in this study is also similar to that

in semiarid forests (Fritts 1974, Zhang et al. 2003,

Sheppard et al. 2004, Shao et al. 2005, Cook et al. 2010,

Voelker 2011, Yang et al. 2013), as well as in the forest-

steppe ecotone in Inner Asia (Pederson et al. 2001,

Dulamsuren et al. 2010, Liu et al. 2013), where

precipitation in the early growing season is a major

determinant of tree growth.

In spite of the high elevation, moisture availability in

the pre-monsoon season overrides any effect expected

from low temperature as a control of Himalayan birch

growth at timberline. Dry environmental conditions

above the treeline of Himalayan birch is evidenced by

the occurrence of Cassiope fastigiata dwarf shrubs, a

drought-tolerant species. A temperature inversion re-

stricts the rise of humid air masses further upslope, and

hence causes a dry climate at high elevations, similar as

at some timberlines on tropical and warm-temperate

oceanic islands (Leuschner 1996). As recorded by the

Pyramid meteorological station close to Mt. Everest,

pre-monsoon precipitation amounts to 24 mm, account-

ing for only 7.0% of the annual precipitation. An

extremely dry pre-monsoon season followed by above-

average precipitation from June to August, for example

in 2003, still results in a narrow or even missing ring in

Himalayan birch trees. Phenological observations of

conifers exposed to drought also revealed that moisture

availability in the early growing season determines the

total annual aboveground biomass, although the phys-

iological limitation of growth is complex (Swidrak et al.

2013). Additionally, a recent study that controlled soil

moisture and temperature showed that water deficit

prior to the growing season can cause a 2–4 week delay

to completely restoring cambial activity of Picea

mariana saplings, resulting in a narrow ring (Balducci

et al. 2013). We also have to keep in mind that the

annual resolution of the ring widths may preclude a

deeper understanding on the effects of moisture

availability on tree growth (Voelker et al. 2014).

Monitoring of the intra-annual cambial activity and in

situ acquisition of micrometeorological data will be a

further step toward a better understating of constraints

of pre-monsoon weather conditions on Himalayan birch

growth at timberline.

Interestingly, the climate–growth relationships of

timberline Himalayan birch are more similar to the

climate responses of many broadleaf species near or at

FIG. 5. Cross-section of Himalayan birch in original wood
color; the two rectangular frames in A show the areas enlarged
in B and C. The tree-ring borders are delineated by (C) one row
of terminal axial parenchyma cells, often filled with brownish
extractives; short vertical lines along the bottom edge mark the
tree-ring widths. Scale bars in A and B are 2 mm, and in C are
0.2 mm.

TABLE 1. Site information and some major statistics for Himalayan birch in the Sagarmatha National Park (sites SKB1–4),
Langtang National Park (sites LT1, LT4), and Manaslu Conservation Area (sites MPB1, MSB1, MSB2) in the central
Himalayas.

Site Latitude (8N) Longitude (8E) Elevation (m asl) Slope RBAR EPS �0.85 since year

SKB1 27.86 86.8 4150 88 NW 0.32 1710
SKB2 27.84 86.77 3950 108 W 0.35 1785
SKB3 27.87 86.73 4010 128 SE 0.33 1790
SKB4 27.85 86.75 3920 158 SW 0.32 1780
LT1 28.12 85.34 4050 108 W 0.28 1835
LT4 28.13 85.32 3900 88 SW 0.31 1815
MSB1 28.61 84.63 4020 108 NE 0.31 1805
MSB2 28.61 84.86 3980 88 SW 0.25 1840
MPB1 28.5 84.8 3950 108 SE 0.34 1740

Notes: Elevation is presented in meters above sea level (m asl). EPS stands for expressed population signal, and all years listed
are AD. Slope is presented in degrees and aspect (NW, northwest; W, west; SE, southeast; SW, southwest; NE, northeast. RBAR

represents the mean series intercorrelation.
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‘‘poleward’’ range margins than of coniferous species at

timberlines; by ‘‘poleward,’’ we mean the northern range

margins in the Northern Hemisphere and southern

range margins in the Southern Hemisphere. The growth

of some coniferous species at poleward margins is often

sensitive to low temperature (e.g., Cook et al. 1998,

Pederson et al. 2004, Huang et al. 2010). In contrast,

Tardif et al. (2001) in southwestern Quebec and LeBlanc

and Terrell (2011) across eastern North America found

that broadleaf trees were less limited by low tempera-

tures than by moisture availability. Further, four

broadleaf species near a poleward range margin

appeared to be more limited by drought (Pederson et

al. 2013). Our results from Himalayan birch trees add

FIG. 6. Nine tree-ring site chronologies for Himalayan birch in the Langtang (study sites LT1, LT4), Sagarmatha (sites SKB1,
SKB2, SKB3, and SKB4), and Manaslu conservation areas (sites MSB1, MSB2, and MPB1) and their regional average chronology
(RC) in the central Himalayas; number of individual tree-ring series included (sample depth); vertical arrows indicate years when
expressed population signal � 0.85.
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additional evidence to support the hypothesis that

broadleaf species at timberline or poleward range

margins are typically more limited by moisture avail-

ability than by low temperatures.

Missing rings as evidence for moisture stress

The occurrence of missing rings in Himalayan birch

indicates that drought stress sometimes controls its

survival limit. In particular, dry and warm pre-monsoon

seasons appear to cause missing rings, or periods of no

cambial growth on parts of the stem. During the

instrumental period, after 1960, seven years with a high

percentage of missing rings coincide with pre-monsoon

droughts in Nepal. An outstanding example of this is

1999, when crop failures were reported across the

country (Sigdel and Ikeda 2010). The soil water

availability at high altitudes is highly dependent on

topography, soil substrate, and exposure (Barr 2008).

More frequent missing rings at leeward sites (southwest

exposure) than at windward sites (west exposure)

provide strong evidence for a linkage between birch

growth and the amount of local moisture availability. In

addition, Himalayan birch trees of low vigor or poor

competitive power might be more susceptible to the

stresses that cause missing rings. In contrast to our

findings, however, no locally missing rings were found

for temperature-sensitive conifers in the central Hima-

layas (Cook et al. 2003, Sano et al. 2005) and at

timberlines of the southeastern Tibetan Plateau (e.g.,

Liang et al. 2009, Zhu et al. 2011). Thus, the occurrence

of missing rings in Himalayan birch offers additional

evidence that its growth is precipitation-controlled, as

shown for semiarid forests on the Tibetan Plateau (e.g.,

Zhang et al. 2003, Sheppard et al. 2004, Shao et al. 2005,

2010).

There is much evidence that the previous 50 years

on the Tibetan Plateau were the warmest during the

last 1000 years (Yang et al. 2003, Liu et al. 2005,

2009, Zhu et al. 2008). As reported for other regions,

the recent warming intensified growth decline and tree

mortality (Allen et al. 2010, Peng et al. 2011, Liu et al.

2013). The increasing frequency of missing rings in

recent decades might result from increased moisture

stress associated with a general warming trend.

Additionally, there has been a decrease in precipita-

FIG. 7. Percentage of (A) trees with locally missing rings in
2004 in different age classes, and (B) frequency of locally
missing rings since AD 1800 at the nine study sites.

FIG. 8. Comparison of (A) the frequency of locally missing
rings, (B) the first principal component (PC1) of nine
Himalayan birch chronologies and pre-monsoon temperature,
and (C) PC1 of nine Himalayan birch chronologies and pre-
monsoon precipitation over the period 1950 to 2009.
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tion and retreat of glaciers in the central Himalayas

(Yao et al. 2012). As a consequence, future moisture

stress may cause similar dieback events and possibly

even downslope tree range contractions of Himalayan

birch.

Sustained moisture stress in a long-term view

Sustained low growth intervals prior to the instrumental

period coincide with historical megadroughts identified in

monsoon Asia, including the Strange Parallels Drought

(1756–1768), the East India Drought (1790–1796; e.g.,

FIG. 9. Correlations between nine standard ring-width chronologies (see Fig. 6 for definitions), their PC1, and (A) monthly
mean temperature and (B) monthly sum of precipitation from July of the previous year to September of the current year. Fields pJ–
pD signify July–December of the previous year; MAM means the mean temperature and the sum of precipitation from March to
May in panels (A) and (B), respectively. Solid circles indicate positive and open circles negative correlations. Background shading
represents significance at the P, 0.05 level. The circle size shows the strength of correlation whereby the smallest circle denotes r,
0.05 and the largest circle denotes 0.50 � r , 0.55, with an interval of 0.05.
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Buckley et al. 2010, Cook et al. 2010, D’Arrigo et al. 2011),

and the prolonged droughts during the 1810s and 1820s in

the western Himalayas (Yadav 2011). This provides

additional evidence that birch growth at the upper

timberlines is persistently limited by moisture availability.

CONCLUSIONS

Growth of birch at its upper timberlines in the central

Himalayas is limited by the amount of moisture during

the pre-monsoon season. Additionally, narrow tree rings

are associated with warm pre-monsoon seasons, pre-

sumably as a result of severe water deficits driven by

higher vapor pressure deficits in the atmosphere. Such

particular phenomena for the upper timberlines in the

central Himalayas are largely due to the fact that

precipitation decreases with increasing elevation above

2000–3000 m. It might be that Himalayan birch adapted

as it evolved as a species. The increasing frequency of

missing rings during the recent decades and their close

coincidence with dry and warm pre-monsoon seasons, in

particular on leeward sites, provides evidence that

Himalayan birch at its upper distribution boundary is

increasingly at risk for survival, and downslope range

shifts could occur as a response to global-change-type

droughts. The strong association between drought and

growth of Himalayan birch at timberline also provides a

rare opportunity to reconstruct variations in pre-

monsoon precipitation over the past 400 years. This

opportunity will allow for a better understanding of

historic drought events in the central Himalayas.
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