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Major depressive disorder (MDD) is a very common stress-related mental disorder

that carries a huge burden for affected patients and the society. It is associated

with a high mortality that derives from suicidality and the development of serious

medical conditions such as heart diseases, diabetes, and stroke. Although a range

of effective antidepressants are available, more than 50% of the patients do not

respond to the first treatment they are prescribed and around 30% fail to respond

even after several treatment attempts. The heterogeneous condition of MDD, the lack of

biomarkers matching patients with the right treatments and the situation that almost all

available drugs are only targeting the serotonin, norepinephrine, or dopamine signaling,

without regulating other potentially dysregulated systems may explain the insufficient

treatment status. The hypothalamic-pituitary-adrenal (HPA) axis is one of these other

systems, there is numerous and robust evidence that it is implicated in MDD and other

stress-related conditions, but up to date there is no specific drug targeting HPA axis

components that is approved and no test that is routinely used in the clinical setting

identifying patients for such a specific treatment. Is there still hope after these many

years for a breakthrough of agents targeting the HPA axis? This review will cover

tests detecting altered HPA axis function and the specific treatment options such as

glucocorticoid receptor (GR) antagonists, corticotropin-releasing hormone 1 (CRH1)

receptor antagonists, tryptophan 2,3-dioxygenase (TDO) inhibitors and FK506 binding

protein 5 (FKBP5) receptor antagonists.

Keywords: precision medicine, personalized medicine, biomarker, depression, HPA axis, glucocorticoid receptor,

CRH1, FKBP5

INTRODUCTION

With a life-time prevalence around 20% major depressive disorder (MDD) is a very common
disorder. In Europe it is one of the three most disabling conditions, next to dementias and alcohol
abuse (1) and the burden of disease is projected to climb (2). MDD is associated with a substantially
increasedmortality due to suicide and an increased risk for seriousmedical conditions such as heart
diseases, diabetes, and stroke (3). Although a range of effective antidepressants are available, more
than 50% of patients do not respond to the first antidepressant treatment they are prescribed (4)
and around 30% fail to respond even after several treatment approaches (5). Of note, even remitted
patients suffer from a functional impairment (6). These non-sufficient treatment options that are
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currently available are reflected by the high personal and societal
burden with increased rates of sick leave and early retirement
(1). The commonly used treatment options do not only struggle
with high rates of partial or no response, but also with a delayed
onset of treatment effects and uncomfortable or even threatening
adverse side effects (3). Various factors may explain the current
situation: MDD is a heterogeneous condition with poorly defined
endophenotypes or subgroups, the currently available drugs
have very similar treatment mechanisms and target almost only
components of the serotonin, norepinephrine, or dopamine
signaling, and there are no biomarkers to predict the response or
side effects to specific interventions (7). Moreover, the diagnostic
process and treatment choice are solely based on clinical
experience and intuition. Fortunately, initiatives are under way
to provide individualized treatment options for each patient:
personalized medicine and precision medicine are employed
to match individual patients with the most effective treatment
options (7). Personalized and precision medicine are often used
interchangeable, however, they describe two different concepts.
Personalized treatment has been administered for the last
decades, physicians considered sex, age, weight, co-medication
together with renal, and liver functioning, comorbidities, core-
symptoms (disturbances of sleep and appetite, psychotic vs. non-
psychotic, agitated vs. non-agitated . . . ) and patients preferences
in the selection process of a suitable antidepressant. However,
this personalization resembles a trial and error process and
is highly dependent on the experience and the knowledge
of the physician (8). The objective of precision medicine
is to improve the selection of effective antidepressants with
best possible response and minimal side effects using genetic
markers or biomarkers derived from peripheral blood, imaging,
neuropsychological tests, or behavioral measures (9–11). Given
the high prevalence of MDD, another task of precision medicine
will be the identification of individuals at risk and then to deliver
specific interventions to avoid the full development ofMDD (12).

GENETIC AND ENVIRONMENTAL
FACTORS CONTRIBUTING TO MDD

A meta-analysis with more than 21,000 individuals observed
a heritability of MDD around 40%, common environmental
factors had very small effects, but individual environmental
factors showed a substantial contribution of around 60% (13). In
fact, the development of MDD is crucially dependent on gene
x environment interactions (14–17). Aversive environmental
events such as sexual, physical, or emotional childhood trauma
have been robustly associated with MDD (18). But still it
is not understood how early aversive events interact with
genetic and epigenetic factors to confer vulnerability to MDD
and how to treat patients who have experienced early life
adversity. Meanwhile there is growing evidence showing that
childhood trauma substantially shapes biological systems that
are responsible for a fight-or-flight response, such as the
hypothalamic-pituitary-adrenal (HPA) axis. In fact, childhood
trauma may lead to an increased sensitivity of the HPA axis and
to heightened responses to subsequent stressors (19, 20). Thus,
the HPA axis may be a suitable target for specific interventions.

HPA AXIS

Environmental stress activates the release of the monoamines
serotonin, norepinephrine and dopamine from the amygdala,
hippocampus, and other brain regions. Subsequently, the
paraventricular nucleus (PVN) of the hypothalamus synthesizes
corticotrophin-releasing hormone (CRH), that binds to
corticotropin-releasing hormone 1 (CRH1) and CRH2 receptors
in the anterior pituitary. Then ACTH is secreted in the
circulation (see Figure 1). ACTH activates the production and
release of glucocorticoids (GC) in the adrenal glands. To reinstate
homeostasis negative feedback mechanisms are initiated: GCs
bind to glucocorticoid receptors (GR) of the hippocampus,
the PNV and the anterior pituitary gland and thus inhibit the
further release of CRH (22). In MDD the sensitivity of the GR
is impaired leading to a reduced negative feedback mechanism
and subsequently to a central hypersecretion of CRH and an
increased production of GCs (23, 24). The sensitivity of the
GR is substantially regulated by FKBP5, encoding the FK 506
binding protein 51 or FKBP51, a co-chaperone of heat-shock
protein 90 (hsp90) (25). When FKBP51 is bound to the GR
complex, the affinity for glucocorticoid-binding is reduced
and the GR is translocated into the nucleus less efficiently.
FKBP5 mRNA and protein expression are induced by GR
activation and provide an ultra-short negative feedback loop for
GR sensitivity (25). Polymorphisms within FKBP5 have been
shown to be associated with differential regulation of FKBP5
mRNA expression after activation of GR and differences in GR
sensitivity (26, 27). FKBP5 has been implicated in several mental
disorders and stress-related conditions such as major depression
(26), bipolar disorder (28), childhood trauma and posttraumatic
stress disorder (29), aggressive and suicidal behavior (30, 31).
Above the cellular level these genetic variants in combination
with epigenetic alterations were associated with structural and
functional changes in several brain regions (32–34) and with
impaired working memory and cardiac stress reactivity (35).
Recently FKBP5 has been associated with metabolic function,
diabetes and obesity (36–38) and pain (39, 40).

Stress-induced cortisol excess was also observed to impact
the kynurenine pathway by enhancing the hepatic activity of
tryptophan 2,3-dioxygenase (TDO) (41–43). Aside indoleamine
2,3-dioxygenase (IDO) TDO is the first and rate-limiting
enzyme that catalyzes the conversion of tryptophan into N-
formyl-kynurenine (NFK) (44). Downstream several kynurenine
pathways metabolites have been associated with the development
of major depression as they exert neurotoxic effects, e.g.,
by activating N-methyl-D-aspartate (NMDA) receptors or
enhancing free radical production (45–48).

TESTS DETECTING THE FUNCTION OF
THE HPA AXIS

Different tests have been developed to measure the function of
the HPA axis (21). The dexamethasone suppression test [DST,
(49)] identifies an impaired suppression of dexamethasone on
cortisol, as observed in depressed patients (50–52). However,
the DST has not reached clinical relevance as a diagnostic
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FIGURE 1 | The hypothalamic-pituitary-adrenal (HPA) axis:

Corticotropin-releasing hormone (CRH) is released by neurons in the

paraventricular nucleus of the hypothalamus. Subsequently CRH1 receptors

are activated and the secretion of adrenocorticotropic hormone (ACTH) from

the pituitary is induced. ACTH induces the release of glucocorticoids (cortisol)

by the adrenal glands. After the activation of the HPA axis, negative feedback

loops are activated to reinstate homeostasis by cortisol activating

glucocorticoid receptors (GR). The unliganded GR complex consists of the

co-chaperones FKBP51 or FKBP52 (encoded by their respective genes

FKBP5 and FKBP4), p23 (a co-chaperone molecule) and hsp90 dimer. When

FKBP51 binds to the GR-complex via hsp90, the GR affinity for cortisol is

reduced. When glucocorticoids bind to the GR, FKBP51 is exchanged against

FKBP52 and the nuclear translocation of the ligand-bound GR is enabled. The

GR directly binds to the DNA via glucocorticoid response elements (GREs) and

induces FKBP5 mRNA expression and subsequently FKBP51 production,

inducing an ultra-short negative feedback loop on GR sensitivity. Drugs

regulating the function of the HPA axis target: (1) the GR, (2) the CRH1

receptors, and (3) FKBP5/FKBP51 (modified after Leistner and Menke (21);

Copyright (2018), with permission from Elsevier).

tool because of its low sensitivity, which ranges between
20 and 50% (52–54). To increase the sensitivity and the
specificity the DST was combined with the CRH stimulation
test, the dexamethasone-corticotropin-releasing hormone [dex-
CRH, (55, 56)] test, which actually led to an improved sensitivity
in detecting alterations of the HPA axis with a successful
classification of up to 80% of depressed patients (55, 56). These
findings could be replicated in several studies (57–59), but

others observed negative results when analyzing case-control
differences (60–62). Interestingly, in addition to its ability to
identify depressed patients, several studies observed that the
dex-CRH test may allow a stratification of depressed patients
and predict treatment outcome and disease course (21). Studies
reported an increased cortisol response to the dex-CRH test in
patients after remission at risk of relapse (59, 63, 64), in subjects
with violent suicide attempts and suicide completion (65) and
in melancholic patients compared to non-melancholic depressed
patients (66). Contrary, a reduced cortisol response in the dex-
CRH test was found in depressed patients with suicidal behavior
(67) and women with chronic social stressors (68). An early
normalization of the dex-CRH test results has been associated
with response to antidepressant medication (59). However, we
observed previously, that the readouts of the dex-CRH test
are substantially dependent on the plasma concentrations of
dexamethasone, thus several factors that influence the plasma
concentration do also impact the readout of the test (69).
Recently we reported on the potential use of the dexamethasone-
induced gene expression changes as an additional indicator for
alterations of the HPA axis and as a potential biomarker in
depression (70) and other stress-related mental disorders such
as job-related exhaustion (71). For this test, before and 3 h
after a GR activation by dexamethasone cortisol, ACTH, blood
count, and gene expression signatures are measured to detect GR
sensitivity alterations (21). Of note, this test was not dependent
on dexamethasone plasma concentrations (69). Applying this
test we observed an increased GR sensitivity in patients with
anxious depression compared with non-anxious depression, an
enhanced leukocyte reactivity in patients with childhood trauma
(72) and an increased GR sensitivity in healthy women compared
to healthy men (73). In a broader, stimulated expression
quantitative trait locus (eQTL) approach we combined these
gene expression signatures after GR-activation with genome-
wide single nucleotide polymorphism (SNP) data and found
that common genetic variants that modulate the transcriptional
response to GR-activation mediate the risk for MDD as well as
other mental disorders (74).

SPECIFIC TARGETS OF THE HPA AXIS

GR Antagonists
Based on numerous findings of a HPA axis hyperactivity in
patients with psychotic depression open-label and double-blind
trials with the GR antagonist (and also progesterone antagonist)
mifepristone were conducted (75) (Figure 1). The studies using
dosages between 300 and 1,200mg /d showed mixed results,
with both positive studies and failed trials (75). A combined
analysis of similarly designed double-blind phase 2 or 3 studies
assessing the efficacy and safety of 7 day mifepristone treatment
revealed a meaningful efficacy (p < 0.004) for mifepristone in
reducing psychotic symptoms, adverse events were similar in
mifepristone and placebo treated patients (76). Interestingly, high
mifepristone plasma concentrations were associated with the
strongest response, followed by changes in cortisol and ACTH
(76). There is also accumulating evidence that mifepristone
ameliorates cognitive deficits in major depression and bipolar
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disorder (77). Thus, for depressed patients with psychotic
features a GR antagonist such as mifepristone may be an
individualized treatment option.

CRH1 Receptor Antagonists
In preclinical models central administration of CRH produces
behavioral effects that closely resemble the symptoms of
depression in humans (78, 79). These effects are attenuated by
central administration of a specific CRH receptor antagonist
(79, 80). Moreover, also clinical studies provided evidence of a
CRH hyperactivity in depression and anxiety (79). A clinical trial
using the CRH1 receptor antagonist R121919 in the treatment of
major depression revealed significant reductions in the Hamilton
Depression Rating Scale (HAMD) over the 30 day treatment
period (81). The stress-elicited secretion of cortisol was reduced,
however, it did not impair the CRH-induced release of ACTH
and cortisol and thus the stress hormone system responsivity
to CRH remained unchanged (81). However, the study did not
include design components such as blinding, randomization or
a placebo control and R121919 was withdrawn due to liver
enzyme elevations. A further trial using another CRH1 receptor
antagonist, CP-316,311 did not observe a significant difference
between patients treated with CP-316,311 and placebo (82).
Other trials using CRH1 receptor antagonists in patients with
major depression, social and generalized anxiety disorder and
suicidal ideation could also not reveal beneficial effects (83).
In a trial with anxious, alcohol-dependent women the CRH1

receptor antagonist Verucerfont (also GSK561679) produced a
dampening of the HPA axis response to social stressors and
attenuated amygdala response to negative affective stimuli, while
alcohol craving was unaffected (84). Recently a double-blind,
randomized and placebo-controlled trial investigated the efficacy
of the same CRH1 receptor antagonist in women suffering
from Posttraumatic stress disorder (85, 86). The trial did
not observe a significant improvement of PTSD symptoms in
patients treated with GSK561679 compared to placebo overall
(86). However, subjects with a moderate or severe history of
childhood abuse and a certain CRH1 receptor SNP genotype did
only response to GSK561679, not to placebo (86). Nevertheless,
the authors concluded that CRH1 receptor antagonists as a
class are ineffective as monotherapy for stress-related mental
disorders (86) and the question arose whether it is time
to call it quits for the CRH1 receptor antagonists (83, 87).
CRH is a key regulator of the stress response and controls
endocrine activity by direct modulation of the HPA axis. As
stated above, numerous preclinical and clinical data support
the involvement of CRH and CRH1 receptors in stress-related
mental disorder (88). However, some of the tested agents did only
show meaningful effects in some of the preclinical stress tests,
moreover, preclinical data not always translate to clinical trials
without complications (83, 87). For CRH1 receptor antagonists,
the traditional clinical trial design is probably not suitable.
Instead, patients with an overactivity of the CRH—CRH1
receptor signaling should be identified by reliable biological
measures in terms of precision medicine, that is already well-
established in other medical fields, such as oncology (87),
and then included in a respective trial. Thus, CRH1 receptor

antagonists are still promising agents for stress-related mental
disorders, but probably only in those patients who are subject to
a significant CRH signaling dysfunction.

TDO Inhibitors
TDO inhibition by directly targeting the kynurenine production
is supposed to decrease neurotoxic metabolites and thus
ameliorate depressive symptoms (44). TDO inhibition is a
mechanism shared by the largest number of antidepressants,
e.g., citalopram effectively decreases TDO activity (44, 89).
Interestingly, agents inhibiting glucocorticoids such as
RU486 showed antidepressive properties by inhibiting TDO
activity (90, 91). Additionally, co-treatment with allopurinol,
also a TDO inhibitor, improved chronic stress induced
depressive-like behavior (92). Recently, the agent NSC 36398,
a flavonoid compound, was observed to be a first selective
TDO inhibitor (93).

FKBP5 Antagonists
As described above FKBP5, respectively, FK506 binding protein
51/FKBP51 regulates the responsiveness of the GR and the HPA
axis and is also implicated in important gene x environment
interactions underlying stress-related mental disorders (25, 94),
making it a promising drug target. In fact, several research
groups have consistently observed protective effects of FKBP5
knock-out or knock-down on stress-coping behavior and stress
endocrinology in preclinical models of depression and anxiety
(95). The prototypic FKBP ligand FK506 and rapamycin showed
the principal druggability. In addition, FKBP51 is highly suited
for X-ray cocrystallography, which facilitates the rational drug
design (96). Sulfonamide analogs have been found that possess
FKBP51 binding properties (97). However, drug discovery has
been hampered by the inability that all known ligands cannot
differentiate FKBP51 and the opposing homolog FKBP52 (98,
99). Recently with SAFit1 and SAFit2 two promising potent
and highly selective inhibitors of FKBP51 were discovered,
that achieved selectivity by an induced-fit mechanism and
improved neuroendocrine feedback and stress-coping behavior
in mice (100, 101). Of note, co-application of SAFit2 with
the selective serotonin reuptake inhibitor escitalopram, a
common antidepressant, lowered the efficacy of escitalopram
in anxiety-related tests but improved stress coping behavior in
a mouse model (102). FKBP5 antagonists may be promising
new treatment options for patients suffering from stress-related
mental disorders and who have an altered functioning of
FKBP5/GR/HPA axis signaling.

CONCLUSION

Despite the very strong preclinical and clinical data of a
dysregulation of the HPA axis in stress-related mental disorders,
such as major depression, no drug has been approved that
targets specific components of the HPA axis. In addition, no
test is routinely used in the clinical setting to identify patients
with a measureable HPA axis dysfunction. In fact, there is
evidence that not all depressed patients display alterations of
the HPA axis, and therefore not all of them would benefit of
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a very specific treatment, targeting only HPA axis components.
This has become abundantly clear with the failing CRH1

receptor antagonists for major depression and posttraumatic
stress disorder. However, even in the failed trials, there were
initial hints that subgroups of patients carrying certain genetic
risk variants or having a history of childhood trauma would
indeed benefit from these very specific treatment options (86).
Therefore, precision medicine has to be employed to match the
specific antidepressant agent to the specific underlying biological
alteration and the individual patient. Biological markers derived
from tests detecting the HPA axis function, GR sensitivity, or
FKBP5 dysregulation are necessary to identify suitable patients
for these specific agents. In addition, clinical variables such as
psychotic symptoms or history of childhood trauma combined
with certain genetic risk variants may further improve the
accuracy of such a test. Still in its infancy, the dexamethasone-
induced gene expression test may become a promising tool to
assess the GR sensitivity and FKBP5 function (21), because it
combines neuroendocrine results withmolecular genetic patterns
of a GR challenged gene expression integrating genetic risk
polymorphisms and additional clinical data (21). Thus, the
future algorithms defining the treatment of major depression or
other stress-related mental disorders will incorporate tests that

stratify patients groups andmatch individual patients with highly
specific agents, for example that target HPA axis components
such as the GR, CRH1 receptors or FKBP5. GR antagonists,
especially mifepristone, have provided very promising results
for the treatment of psychotic depression so far and therefore
could gain more relevance (76). CRH1 receptor antagonists
have experienced a setback, but after employing suitable tests
to find susceptible patients this development could be reversed.
FKBP5, representing a molecular hub modulating many cellular
pathways, is a novel and very promising candidate to target
component of the stress hormone system and to ameliorate
stress-related mental disorders and other sequelae of stress.
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