
6

Is the Performance of Smart Card Crytographic

Functions the Real Bottleneck?

Konstantinos Markantonakis 1

Visa International EU

Access Channels & Platforms

Virtual Visa, PO Box 253

London WS STE

United Kingdom

markantk@visa.com

Key words: Multi-Application, Smart cards, Java Cards, Terminal APis, Petformance

Measurements, Cryptographic Algorithms.

Abstract: It is generally believed that among the major delaying factors of smart card

performance is the speed of the cryptographic algorithms. This is only partially

true, as a number of other factors that add substantial delays to the overall

performance of a smart card application should also be taken into account. In

this paper we analyse the significance of these delaying factors. Furthermore,

we also present some performance measurements of the two most widely used

terminal application programming interfaces (APis) and Java Cards. The aim

of this work is to emphasise, both to smart card application developers and

smart card technology researchers, the importance of these delaying factors

and also to provide a reference point as to the performance of each API.

1. INTRODUCTION

Among the major tasks of a smart card application developer is the

identification of any delaying factors that slow down the execution of a

smart card application. Delays can be encountered either in the application

1 The views expressed are personal to the author and do not necessarily represent the views of

any other person or organisation for whom the author works or has worked.

http://dx.doi.org/10.1007/978-0-306-46998-5_33

78 Part Three Smart Card

running in the smart card or in the application residing in the smart card

terminal, i.e. the client or terminal application.

In the past, with multi function smart cards [1,2,3] the situation was

simplified. For example, the performance of a smart card application could

be measured with relevant precision, since both the smart card and terminal

Application Programming Interfaces (APIs) were architecturally simple.

Therefore, the only way to achieve better execution times was application

code optimisation.

In the recent years with the introduction of multi-application smart cards

[4,5,7] the situation changed. Smart cards became capable of securely

hosting multiple applications along with dynamically, securely downloading

and deleting applications. As a result, the complexity of the smart card

operating system (SCOS) increased exponentially [6,7]. Similarly, the

complexity of the terminal applications increased significantly as new

architectures [8,9,26] emerged. These technologies aim to offer

interoperability between smart cards and card acceptance devices. Moreover,

they also hide the details of the underlying terminal operating system. Even

at this stage, in order to improve smart card application execution, a lot of

effort was still placed in code optimisation, improved smart card virtual

machines and providing faster smart card microprocessors.

On the other hand, it is generally believed throughout the crypto

communities that smart cards are “anaemic” devices that should do as little

cryptographic computation as possible. This view resulted in a race to

improve the performance of smart card cryptographic algorithms. Obviously,

this approach is by no means wrong but if we look at the problem from a

different angle there are also other factors, which if improved will

significantly reduce the overall execution time of a smart card application.

We believe that smart card application delays mainly come from sending

and receiving data packets to/from the smart card. Although this observation

is generally recognised as valid it has not yet received the necessary

attention. Furthermore, in various smart card related newsgroups, discussion

forums and research papers, questions such as how long it takes to

communicate with the smart card or which communication API performs

better in terms of speed, are always a favoured topic.

In this paper we attempt to provide some meaningful answers to the

above questions. In order to achieve our aim we present some performance

comparisons between the two most widely used terminal APIs, namely

Personal Computer/Smart Card Specification (PC/SC) [8] and OpenCard

Framework (OCF) [9]. Therefore, this paper serves two purposes: First it

provides some reference points towards which of the two smart card terminal

APIs performs better in the available smart card testing platforms. The

results of this paper could also be considered as a reference point when

Is the Performance of Smart Card Cryptographic Functions ... 79

designing smart card terminal applications. Second it highlights the fact that

in order to achieve better smart card application execution times it is

important to look into other factors apart from cryptography.

2. BACKGROUND

In this section we provide an introduction on how low and high level

communication is achieved between the terminal and the smart card

application. We also provide some typical smart card cryptographic

algorithm performance measurements.

2.1 Physical Data Transmission to the Smart card

The remainder of this paper is organised as follow. First, we outline the

characteristics of how communication is achieved with a smart card, both at

the physical layer and higher at the application level. Subsequently, we

present the implementation environment and a short but detailed analysis of

the design characteristics. Moving to the core idea of this paper we then

analyse the results from the test implementations. Finally, we discuss several

practical issues that imposed certain design decisions and introduce new

concepts to act as directions for further research.

Currently there is only a single channel for communication between a

smart card and a terminal. This implies that the card and terminal can only

transmit in turn and the other party should be in receiving mode. This

operation is known as half-duplex operation. Most smart card

microprocessors have a single I/O port but since the ISO standards [10,11]

reserved two of the eight smart card contacts for future use, full duplex could

become technically feasible.

Communication between the smart card and the terminal takes place

serially. This implies that each byte to be transmitted in the communication

channel should be converted into eight individual bits that are sent one after

the other. Since the data transmission proceeds asynchronously, each byte

must also be provided with additional synchronisation bits i.e. a start bit, a

parity bit and two synchronisation bits.

The data transmission rate is directly proportional to the applied clock of

the microprocessor. This implies that the duration of a data bit cannot be

given in absolute terms. However the existence of awkward divider values

along with the most common clock frequencies aim to provide a

transmission speed of exactly 9600bits/s.

Two of the most common data transmission protocols [11,12] are T=0

and T=1. T=0 is asynchronous, half-duplex, byte oriented, was used in

80 Part Three Smart Card

France during the initial phase of the Smart Card development. It is also

used in the GSM smart cards and is more commonly used in most current

smart cards.

T=1 is asynchronous, half-duplex, block oriented and was introduced in

1992 as an ISO/IEC 7816-3, Amendment 1 standard. The block is the

smallest data unit that can be transmitted. This protocol allows chaining of

blocks of data i.e. an arbitrary large block of data may be transferred as the

result of a single command by the transmission of the appropriate number of

frames chained in sequence.

2.2 Communicating Through a Terminal Application

As previously mentioned, smart card application programming interfaces

form one part of smart card technology. Another important aspect is the

APIs that allow terminal applications to communicate with smart card

applications.

Until recently there were no card reader independent application

programming interfaces. Two specific reasons for this are: Firstly, the smart

cards and the card reader devices were very closely coupled; there was no

need for a card to be used with a different card reader and vice-versa.

Secondly, card reader programming interfaces were not standardised,

whereas smart card interfaces were standardised.

Thus, the most common method employed when smart card programmers

wanted to communicate with a smart card application via a smart card reader

was the following: obtain the specific drivers for the smart card reader,

install them in the system and subsequently integrate them within the

terminal application.

PC/SC [8] was developed by Microsoft, Hewlett-Packard, Siemens-

Nixdorf, and smart card manufacturers. PC/SC is tied to the Windows

platform and terminal applications can be developed in Visual Basic and

various C++ compilers. Currently, most smart card manufactures provide

PC/SC drivers for their smart card readers.

Another more recent initiative is the OCF [9], which enables Java

applications to communicate with the smart card in a transparent and

portable fashion. OCF is written in Java and was primarily developed by

IBM and other computer technology providers. OCF permits the client

applications to access the smart card irrespective of the host operating

system and CAD (Card Acceptance Device or Card Terminal).

Is the Performance of Smart Card Cryptographic Functions ... 81

2.3 Typical Performance Figures of Cryptographic

Algorithms in Smart cards

The following table provides some typical figures [23] for the

performance of certain cryptographic algorithms in some typical smart card

microprocessors.

Table 1. Smart card cryptographic algorithm timings.

Micro-Processors ST16- ST19- P83W8516/ SLE44C-

CF54B KF16 8532 R80S

Clock Frequency 5 MHz 10 MHz 5 MHz 5 MHz

Algorithm Length

DES 64 bits 10ms N/A 10 ms / 3.7 ms

SHA 512 bits 15.2 ms 8.2 ms 5 ms 5.6 ms

RSA 512 Sign with CRT 142 ms 20 ms 37 ms 60 ms

RSA 512 Sign without CRT 389 ms 55 ms 93 ms 220 ms

RSA 1024 Sign with CRT 800 ms 110 ms 160 ms 450 ms

RSA 1024 Sign without CRT N/A 380 ms 400 ms N/A

DSA 1024 Sign N/A 100 ms 150 ms N/A

DSA 1024 Verify N/A 160 ms 225 ms N/A

Please note that these are indicative figures. The implementation of the

cryptographic algorithms is based on a specific Gemplus implementation

[23]. These figures will be used later on when comparing the performance of

the terminal APIs with the performance of certain smart card cryptographic

functions.

3. IMPLEMENTATION ENVIRONMENT AND

ANALYSIS

Software solutions that use smart cards are separated into the smart card

application and the terminal application. In our case, in order to perform the

tests, these two distinct entities had to be developed. In this section, we

outline the characteristics of these two entities.

3.1 The Smart card Application Development Tools

For the smart card applications we used two of the most popular Java

Card API Ver. 2.0 [13, 14, 15] compliant implementations, the GemXpresso

82 Part Three Smart Card

In general, the smart card application contains an APDU dispatcher that

will verify the APDU sent by the terminal. The Java source code for the

smart card applications is around 5-6Kbytes. The actual smart card

application files downloaded in the cards are 1.2-1.9Kbytes. The above

functionality is implemented as smart card applications both in the

GemXpresso and Sm@rtCafé smart cards.

• The first receives no data from the terminal and sends an ISO

exception (2 bytes) back, i.e. "Sent_0_Get_0 ".
• The second function receives no data from the terminal but at the

same time the terminal requests some data, (X) bytes from the card,

i.e. "Sent_0_Gett_X". In order for the data to be sent back to the

terminal a "for loop" statement is implemented within the smart card

application. Please note that there is some processing overhead at the

card side in order to execute the "for loop" statement
• The third function receives (X) bytes from the terminal and sends an

ISO exception (2 bytes) back to the terminal. This function will be

referred as "Sent_X_Get_0".
• Finally, the card receives (X) bytes from the terminal and also sends

(X) bytes back to the terminal, i.e. "Sent_X_Get_X ". Please note that

this function runs through each byte provided by the terminal and

adds the value of one. The end result is an array of bytes of the same

size as the original one but its values are increased by one.

Therefore, this function also contains some smart card application

overhead (e.g. for loop, addition).

Java Card [16] from Gemplus and the Sm@rtCafé Professional Java Card

[17] from Giesecke & Devrient. Each of the development kits came with its

own smart card reader and development tools. The GemXpresso card came

with the GCR410-X reader and the Sm@rtCafé with the Towitoko PCT-200

reader.

3.2 The Smart card Application

The smart card application receives certain commands from the terminal

application and responds accordingly. Initially it checks whether the

Application Protocol Data Unit (APDU) [18] contains any data and whether

it requests any data to be sent back by the card. This is actually achieved by

checking the "Lc" and "Le" parameters of the APDU respectively.

Therefore, there are four basic functions implemented by the smart card

application:

Is the Performance of Smart Card Cryptographic Functions ... 83

3.3 The Testing Environment

For the implementation and the testing of the terminal and smart card

application we used the following configuration: an Intel Pentium II 400Mhz

PC with 128 Mbytes of RAM under Windows NT. We also used the

Microsoft Visual J++ Compiler Version 1.02.7318 and Microsoft Java

Virtual Machine Ver 5.00.3182.

In order to obtain a meaningful set of results we performed a number of

tests. It is important to note that we are running each test in two different

smart cards (Sm@rtCafé, GemXpresso) and each card is tested in two

different smart card readers (GCR410, PCT-200). We have also developed

two sets of terminal applications one for PC/SC and one for OCF as

described in the next section

3.4 PC/SC Application Design

PC/SC is enabled when installing the PC/SC base components from

Microsoft. Subsequently, the PC/SC drivers for the corresponding smart card

readers have to be installed.

For the GCR-410 reader we used the GrSerial Ver. 1.2.11.0 driver

downloaded from the Gemplus web page [19], and for the PCT-200 reader

we used the Ver 2.14.11 driver downloaded from the Towitoka Web site

[20]. The Towitoko (PCT) PC/SC driver does not occupy a COM port from

boot time on, and thus it is possible to use any other device after

disconnecting the reader. Strangely, the GrSerial (GCR) constantly occupies

the COM and as a result if the port is to be used by another application, e.g.

OCF, then the device driver should be stopped from the "Devices" menu

under "Control Panel" in Windows. In any case it is suggested that the whole

"Smart Card Resource Manager" service should also be stopped under the

"Services" menu in the "Control Panel" of Windows.

In order to provide a common testing platform between PC/SC and OCF

the PC/SC terminal application had to be developed in Java. Up to recently it

was impossible to find any PC/SC Java source code samples, even from the

Microsoft MSDN libraries. This was the main reason that forced us to create

some Java source code wrappers, by using Microsoft J++ Ver. 6.0, for the

PC/SC COM service provider's [21]. Eventually, that enabled us to gain

access to the PC/SC COM components through Java code.

An interesting observation is the following: initially the GrSerial driver

could not work with the Sm@rtCafé smart card. After reporting our findings

to Gemplus we were told that, the Gcr410 reader does not relay the TCK

byte of the ATR to the driver if the card supports the T=0 protocol. They

also stated that this was due to a change in the standards. This was also the

84 Part Three Smart Card

case for the drivers of GemPC240 (Gcr240), and GemPC400 (Gpr400),

except under W2K. The OCF driver for the same reader does not check the

TCK byte, which explains why the OCF driver worked even with the Gcr410

v1.00. Finally, Gemplus’s response was efficient as we were provided with a

more recent version of the GrSerial driver that corrected the problem and

enabled us to continue our tests.

3.5 OCF Application Design

For the GCR-410 reader we used the Gemplus Card Terminal Ver. 3.0

downloaded from the Gemplus Web page [19], and for the PCT-200 reader

we used the Giesecke and Devrient Card Terminal Ver. 1.1 driver obtained

through the mailing list of the OCF newsgroup. In order to maintain

compatibility between the two testing platforms we used the generic

PassThruCardServiceFactory service [9] of OCF.

One of the great advantages of OCF is that it does not constantly occupy

the serial port of the smart card reader. This means that it is easy to monitor,

by running a serial port-monitoring tool [22], the communications on the

serial port. For PC/SC on the other hand the serial port-monitoring program

has to be started before starting the PC/SC Resource Manager and

subsequently executing the client application and obtaining any results.

4. PERFORMANCE EVALUATION

In this section we compare the performance of OCF and PC/SC for each

smart card reader and smart card.

4.1 PC/SC and OCF Results and Performance

Evaluation

Different results, i.e. the time in milliseconds to complete the specified

task, were generated depending on the actual functions described in §3.2. In

addition to the above functions we also provide the performance

measurements for connecting to the smart card reader, selecting the smart

card application and disconnecting from the reader. We provide the Standard

Deviation and Average figures, for each function, based on a total of ten

measurements. Please note that all the results are based on the specific

configurations. This implies that when referring to comparisons between

cards, readers and architectures any general comments are based on the

specific versions of the reader drivers, and the specific design of the smart

card applications.

Is the Performance of Smart Card Cryptographic Functions ... 85

Table 2. The performance of PC/SC and OCF on the GCR410 reader.

When comparing the performance of PC/SC and OCF for the Sm@rtCafé

implementation and the GCR reader it appears that overall PC/SC is 18.6%

faster than OCF. Please note that this figure takes into account the average

timings from all functions. When the dependency of the comparatively slow

"Connect" and “Disconnect” figures of OCF are completely eliminated, as a

potential improvement, then for the Sm@rtCafé implementation PC/SC will

maintain, on average, a 7% lead over OCF.

For the GemXpresso implementation on the GCR reader it appears that

on average PC/SC is 15,2% faster than OCF. Similarly, if the dependency of

the "Connect" and “Disconnect” figures are not taken into consideration,

PC/SC maintains on average a 3.1% lead.

As we observe from table 2 there is an obvious lead in the performance

of PC/SC over OCF for each individual function in the Sm@rtCafé

implementation. For a few functions in the GemXpresso implementation,

OCF performs significantly better than PC/SC.

Table 3. The performance of PC/SC and OCF on the PCT200 reader.

86 Part Three Smart Card

When comparing the performance of PC/SC and OCF on the PCT reader,

i.e. Table 3, the situation becomes more complicated. A closer observation

will reveal that the performance of both implementations (Sm@rtCafé and

GemXpresso) under OCF is influenced by the extremely slow performance

of the "Connect" and "Send_0_Get_X" functions. Specifically for the

"Send_0_Get_X" functions, the results are unreasonable and indicate that

probably these operations are not handled properly from within the OCF

driver of the PCT reader. Therefore, for the sake of completeness and clarity

we decided to include the performance of the "Send_0_Get_X" functions in

Table 3, but do not take them into account when reaching into certain

conclusions.

The performance of PC/SC on the PCT reader for the Sm@rtCafé

implementation is on average 16.9% faster compared with the one in OCF.

But, this is heavily influenced by the large “Connect” and “Disconnect”

figures of the OCF implementation. If the influence of these two functions is

removed then PC/SC maintains a marginal lead of 0.2%.

Similarly, the performance of PC/SC for the GemXpresso

implementation on the PCT reader is on average 8.8% faster than the

Is the Performance of Smart Card Cryptographic Functions … 87

corresponding of OCF. An interesting observation is that when the influence

of the “Connect” and “Disconnect” figures of the OCF implementation are

eliminated then OCF gains a 9.5% lead over PC/SC.

Another interesting observation, by looking in table 2, is that OCF on the

GCR reader demonstrates an overall lower standard deviation, for both smart

card implementations, when compared with the corresponding one of

PC/SC. This implies that OCF appears to be more stable and produces fewer

variations in the measurements. For OCF on the PCT reader, i.e. table 3, the

situation is exactly the opposite as the standard deviations are significantly

larger when compared with the corresponding ones from PC/SC. The latter

observation should be considered of minor importance when taking into

account the unreasonable performance of OCF on the PCT reader.

From the figures in both tables we can see that the “Connect” and

“Disconnect” figures for OCF are relatively large compared with the

corresponding of PC/SC. These delays can be possibly explained on the

design of OCF. An interesting observation is that when OCF attempts to

establish connection with the reader there is increased hard disk activity as

OCF searches for certain Java classes. Therefore, carefully setting the

classpath of the testing platform will potentially result in small performance

improvements. The slow connect and disconnect figures can be possibly

explained by the fact that OCF does not constantly occupy the serial port as

is the case with PC/SC.

At this stage we have to be very careful with the above observations as

they are really based on the aforementioned specific implementations. In

order to obtain a clearer picture on what are the actual issues involved

around the performance of each technology, it is recommended that the

reader carefully examines the timings in each table and for each individual

function. In that way any potential influence to the overall result by each

individual function is removed.

4.2 Further Discussion of the Results

When comparing the performance of the Sm@rtCafé implementation

under PC/SC in the two different readers we realise that the GCR

implementation appears to perform on average better.

When comparing the GemXpresso implementations in the two available

readers and under PC/SC we observe that on average the GCR

implementation is faster than the PCT. On the other hand the corresponding

standard deviation of the GemXpresso and Sm@rtCafé implementation on

the PCT reader is lower. For both smart card implementations under PC/SC

it appears that application selection takes place faster in the GCR reader.

88 Part Three Smart Card

to inefficient APDU handling either at the corresponding card reader or at

the PC/SC driver level or even due to differences in the actual smart card

microprocessors.

It is worth mentioning that both the “Connect” and “Disconnect” figures

are extremely small, this can be possible explained by the fact that in PC/SC

there is constant traffic in the serial port. Therefore, connecting and

disconnecting to/from that card happens almost immediately. Overall, the

GemXpresso implementation under PC/SC on the GCR reader maintains a

marginal lead. The fact that both smart card implementations demonstrate

slower measurements in the PCT reader can be explained, at this stage, due

When comparing the performance of the Sm@rtCafé implementation

under OCF we realise that the GCR implementation is significantly faster.

When comparing the performance of GemXpresso implementation under

OCF we observe that the GCR implementation is once more relatively faster

compared with the PCT implementation

Both smart card implementations under OCF on the PCT reader

demonstrate notably large figures for the “Connect and” “Select” functions

along with unreasonably large standard deviations when compared with the

corresponding ones on the GCR reader. This indicates that probably the OCF

driver for the PCT reader is not properly implemented.

5. CONCLUSIONS AND DIRECTIONS FOR

FURTHER RESEARCH

20-450ms and on average it takes around 160ms. This figure is equivalent

with sending 10 bytes to the card or sending 10 bytes and also getting 10

When checking the typical smart card cryptographic algorithm figures

from Table 1 we can see that, a typical cryptographic operation ranges from

bytes as a response. Analogous conclusions can be drawn when taking into

account the fact that the performance of different smart card cryptographic

algorithms is comparable with sending or receiving a number of bytes

to/from the smart card.

Up to recently, a lot of the discussion about smart cards concentrated on

improving the performance of the smart card cryptographic functions. The

end-result was tiny improvements in order of a couple of tens of

milliseconds for a cryptographic function that could be used once or twice

within a smart card application. It is clear that more effort should be placed

on improving the smart card communication API, as it appears to be more

extensively used during the execution of a smart card application, than just

concentrating on improving the performance of the smart card cryptographic

algorithms.

Is the Performance of Smart Card Cryptographic Functions ... 89

We have to bear in mind that the PC/SC terminal application was

developed in Java. If it was developed in C++ or Visual Basic, non-

interpreted languages, then it could be the case that the overall execution

time is improved. On the other hand the portability issue will be eliminated,

as the terminal application will be closely tied in with the underling

development platform.

Further work is actually required in order to obtain more results with the

latest versions of the smart card reader drivers and APIs (particularly the

new version of OCF 1.2). It would also be helpful to obtain more results

when testing the proposed functionality with the native smart card readers in

order to explore the actual benefits from sacrificing speed against

interoperability.

Another important factor which significantly reduces the overall smart

card application performance, and has not yet received the necessary

attention, is the size of the communication buffer, i.e. the APDU buffer.

More effort should be placed in order to increase the size of the buffer

especially in the light of the multi applications smart cards and the high

probability of large packets of information travelling towards the card, e.g.

applications to be downloaded. For example with an APDU buffer of 512

bytes an application will be downloaded in significantly less time and with

less APDU exchanges compared to a 256 byte buffer.

A final remark is that it is not easy to talk about absolute timings and

performance measurements when smart card communication is involved.

Improving the performance of smart card cryptographic functions [24,25]

used to be the area that received the most attention. As demonstrated by this

paper increasing emphasis should also be placed in additional areas.

ACKNOWLEDGEMENTS

The author would like to thank Dieter Gollmann for his helpful

comments. Also, Konstantinos Skourtis for his help regarding the

development of the PC/SC terminal applications. Finally, his current

employer, Visa International EU, for facilitating the authors’ participation in

the conference although the views of the paper do not necessarily represent

the company’s view.

90

REFERENCES

Part Three Smart Card

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

International Standard Organisatian. ISO/IEC 7816-4, “Information technology ---

Identification cards --- Integrated circuit(s) cards with contacts --- Interindustry

Commands for Interchange”, International Organization for Standardisation, 1995.

Gemplus Web Site, www.gemplus.com/developers, 1999.

Towitoko Web Site, http://www.towitoko.de/deutsch/eng/WD1034 s.htm, 1999.

Mary Kirtland, "The COM Programming Model Makes it Easy to Write Components

http://www.javasoft.com/products/javacard, 1998.

Gemplus, GemXpresso Reference Manual, Gemplus, 1998.

Giesecke & Devrient, Sm@rtCafe Reference Manual, Sm@rtCafé Professional

Toolkit, 1999.

in Any Language", Technical Report, Microsoft Systems Journal, December 1997,

http://www.microsoft.com/msj/1297/complus2/complus2.htm.

Mark Russinovich, "Portmon", http://www.sysinternals.com, 1999.

W. Rankl, W. Effing, “Smart Card Handbook”, John Willey and Sons, 1997.

Sun Microsystems, Java Card 2.0 Language Subset and Virtual Machine

Specification, http://www.javasoft.com/products/javacard, 1998.

Sun Microsystems, Java Card 2 . 0 Programming Concepts,

Sun Microsystems, Java Card 2.0 The Java Card API Ver 2.1 Specification,

Open Card Consortium, “OpenCard Framework Specification OCF”, Available from

www.opencard.org

PC/SC Workgroup, “Specifications for PC-ICC Interoperability”, Available from

Schlumberger, “Cyberflex Smart card Series Developers manual”, Available from

http://www.cyberflex.austin.et.slb.com/cyberflex/cyberhome

Gemplus , “GemXpresso Reference M a n u a l ” , Available from

http://www.gemplus.fr/gemxpresso/index.htm

Constantinos Markantonakis, “The Case for a Secure Multi-Application Smart Card

Operating System”, Information Security Workshop 97 (ISW'97), September 17-19,

1997, Ishikawa, Japan, In Lecture Notes in Computer Science (LNCS), volume 1396,

pp.188-197

MAOSCO, “MULTOS Reference Manual Ver 1.2”, Available from

http://www.multos.com/

International Standard Organisation. ISO/IEC 7816-2, “Identification cards ---

Integrated circuit(s) cards with contacts, Part 2, Dimensions and location of the

contacts”, International Organization for Standardisation, 1996.

International Standard Organisation. ISO/IEC 7816-3, “Identification cards ---

Integrated circuit(s) cards with contacts, Part 3, Electronic signals and transmission

protocols”, International Organization for Standardisation, 1997.

Gemplus, “Multi_Application Chip Operating System (MCOS) Reference Manual

Ver 2.2”, 1990.

Gemplus, “Multi_Application Payment Chip Operating System (MPCOS) Reference

Manual Ver 2.2”,1994.

General Information Systems Ltd., “OSCAR, Specification of a smart card filling

system incorporating data security and message authentication”, Available from

http://www.gis.co.uk/oscman1.htm

www.smartcardsys.com

http://www.javasoft.com/products/javacard, 1998.

Is the Performance of Smart Card Cryptographic Functions ... 91

[23] Helena Handschuch, Pascal Paillier, "Smart Card Cryptoprocessors for Public Key

Cryptography”, In Springer Verlag. Third Smart Card Research and Advanced

Application Conference - CARDIS'98, September 1998 to be published.

[24] R. Ferreira, R. Malzahn, P. Marissen, J.-J. Quisquater and T. Wille: " FAME: A 3rd

generation coprocessor for optimising public key cryptosystems in smart card

applications " In P. H. Hartel et al., eds, Smart card Research and Advanced

Applications -- Cardis '96, Amsterdam (The Nederlands),18-20th September 1996,

Publ. Stichting Mathematisch Centrum, pp. 59-72, 1996.

[25] T. Boogaerts, "Implementation of Elliptic curves cryptosystems for smart cards", In

proc. of CARDIS 1998, 14-16th September 1998.

[26] Constantinos Markantonakis, “Interfacing with Smart card Applications (The PC/SC
and Open Card Framework)”, Elsevier Information Security Technical Report,

3(2):82-89, 1999.

	6 Is the Performance of Smart Card Crytographic Functions the Real Bottleneck?
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Physical Data Transmission to the Smart card
	2.2 Communicating Through a Terminal Application
	2.3 Typical Performance Figures of CryptographicAlgorithms in Smart cards

	3. IMPLEMENTATION ENVIRONMENT ANDANALYSIS
	3.1 The Smart card Application Development Tools
	3.2 The Smart card Application
	3.3 The Testing Environment
	3.4 PC/SC Application Design
	3.5 OCF Application Design

	4. PERFORMANCE EVALUATION
	4.1 PC/SC and OCF Results and PerformanceEvaluation
	4.2 Further Discussion of the Results

	5. CONCLUSIONS AND DIRECTIONS FORFURTHER RESEARCH
	ACKNOWLEDGEMENTS
	REFERENCES

