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IS THE POLLUTION EFFECT OF THE FEM AVOIDABLE

FOR THE HELMHOLTZ EQUATION CONSIDERING HIGH WAVE

NUMBERS?∗
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Abstract. The development of numerical methods for solving the Helmholtz equation, which
behaves robustly with respect to the wave number, is a topic of vivid research. It was observed
that the solution of the Galerkin finite element method (FEM) differs significantly from the best
approximation with increasing wave number. Many attempts have been presented in the literature
to eliminate this lack of robustness by various modifications of the classical Galerkin FEM.

However, we will prove that, in two and more space dimensions, it is impossible to eliminate this
so-called pollution effect. Furthermore, we will present a generalized FEM in one dimension which
behaves robustly with respect to the wave number.
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1. Introduction.

1.1. Physical motivation. Boundary value problems governed by the wave
equation

∂2w

∂2t
− ∆w = g

arise in many physical applications, e.g., electromagnetic wave propagation and acous-
tics. In applications like radar detection of moving bodies or acoustic scattering, a
typical situation is that the inhomogeneity f is time periodic,

g (x, t) = f (x) eikt.

In this case, we know (cf. [9]) that the solution of the wave equation is of the form
w (x, t) = u (x) eikt, where the amplitude u (x) satisfies the Helmholtz equation

−∆u− k2u = f.

In contrast to the Poisson equation in potential theory, the function u (and not its
derivatives) is of main physical interest, denoting the amplitude of the electric or
magnetic field or of the acoustic pressure, depending on the underlying application.
This remark will be essential for the choice of an appropriate norm for measuring the
accuracy of the discrete solution.

In many situations, e.g., scattering and transmission problems, the Helmholtz
equation is defined in an unbounded exterior domain with Sommerfeld’s radiation
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conditions imposed at infinity (cf. [8]):

−∆u− k2u = f in Rd\D̄,
u = 0 on ∂D,

∂u
∂r − iku = o

(

‖x‖
1−d
2

)

‖x‖ → ∞.

Here, D denotes a bounded domain in Rd, and ∂
∂r , the derivative in the radial di-

rection. If the so-called wave number k becomes large the solution of the Helmholtz
equation becomes highly oscillating and the discretization very expensive. Hence,
there is a growing interest in discretization methods where the computational com-
plexity increases only moderately with increasing wave number.

1.2. Transforming the Helmholtz equation on exterior domains onto a

finite domain. The fact that, in many situations, the Helmholtz equation is imposed
on infinite domains rules out the straightforward use of finite element or finite differ-
ence discretizations. This difficulty can be avoided by introducing a sufficiently large
ball B containingD ⊂⊂ B. The equation outside the artificial ball can be transformed
to nonlocal boundary conditions on ∂B using the method of integral equations (see
[13]). In this context, this technique is called the Dirichlet-to-Neumann map (see [17]).
Thus, the Helmholtz equation has to be solved on the finite domain Ω := B ∩ Rd\D̄:

−∆u− k2u = f in Ω,
u = 0 on ∂D,

∂u
∂n −K [u] = q on ∂B,

(1.1)

where ∂/∂n denotes the normal derivative. For sufficiently large B, the integral
operator K [u] can be approximated by the local term iku, i.e., the nonlocal boundary
conditions are replaced by so-called Robin boundary conditions:

∂u

∂n
− iku = q.

The size of the ball has to be adapted to the required accuracy and, additionally, has
to be increased with increasing wave number k. A quantitative error analysis for this
kind of approximation is given in [11, Thm. 3.1]. What is important for our purpose
is the following. The domain of computation Ω is, especially for high wave numbers
k, much larger than the domain of physical interest. This observation shows that
for large domains, weighted norms are appropriate to measure the accuracy of the
numerical solution.

1.3. The pollution effect of the Galerkin FEM for the Helmholtz equa-

tion. It is well known that, for elliptic boundary value problems like (1.1), the
Galerkin FEM leads to quasi-optimal error estimates with respect to the degrees
of freedoms. This means that the accuracy of the Galerkin solution differs only by
a constant factor from the best approximation in the finite element space. From nu-
merical experiments and from theoretical analysis it is known (see [14], [15]) that this
factor increases with increasing wave number; in other words, the Galerkin FEM does
not behave robustly with respect to k. In [6, Thm. 2.6] it was shown that, for a model
situation, the ratio of the error of the Galerkin solution and the error of the best
approximation tends to infinity with increasing k. On the other hand, it was shown
in [2] that the condition “k2h is small” would be sufficient to guarantee that the error
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of the Galerkin solution is of the same magnitude as the error of the best approxima-
tion (independent of k). In practice, however, this condition would rule out reliable
wave computations in three dimensions for moderate and higher wave numbers for
the following reasons. The condition k2h < 1 would imply that the dimension N of
the system matrix is of order N = O

(
h−3

)
= O

(
k6
)
. The arising system of linear

equations has complex entries and is highly indefinite such that the solution process
becomes too expensive for k > 10 ∼ 20.

Recently, many attempts have been made in the mathematical and engineering
literature to overcome this lack of robustness which, in this context, is called a pol-
lution effect (see [14], [18], [6]). In many cases, one-dimensional model problems
have been analyzed and then generalized to more space dimensions. Numerical ex-
periments show that in some situations the pollution effect can be reduced, but in
two-dimensions quantitative results about the size of the pollution appear to be very
vague and a theoretical foundation is missing. These observations motivate us to
study the following questions.

1. Is it possible to define a generalized finite element method (GFEM) for the
Helmholtz equation that has no pollution—one in which the Galerkin solution
converges at the same rate as the best approximation independent of the wave
number k?

2. How much insight can one get from the study of one-dimensional model prob-
lems? Are all higher-dimensional effects of the pollution visible in one dimen-
sion?

In this paper we will prove the following results.
• In one dimension, the pollution effect can be eliminated completely by a

suitable modification of the discrete bilinear form.
• In two dimensions, the pollution effect can be reduced substantially, but can-

not be avoided in principle. Hence, one-dimensional results are not fully
representative for the two- and higher-dimensional cases.

The paper is organized as follows. After having introduced some notation we will
specify what we mean by GFEMs. Then, we will explicitly define a pollution-free
FEM in one dimension.

In two dimensions, we will prove that, for any modification of the FEM, we can
define a family of domains and right-hand sides such that the ratio of the Galerkin
error and the error of the best approximation tends to infinity. However, the proof
of that theorem shows how a modified Galerkin method has to be designed such that
the pollution effect is minimal. Numerical examples presented in [6] show that, by
using these results, the classical Galerkin FEM can be improved substantially.

2. Setting. In this section, we will consider finite element discretizations for
approximating the solution of the Helmholtz equation

−∆u− k2u = f in Ω,

u = 0 on ∂D,
∂u
∂n − iku = q on ∂B.

(2.1)

First, we will introduce some basic notation.

2.1. Finite element spaces and Galerkin discretization. The Galerkin dis-
cretization is applied to the variational formulation of the Helmholtz equation. For
this, let H1 (Ω) denote the usual Sobolev space as defined, e.g., in [1]. Incorporat-
ing the essential boundary condition on ∂D we obtain the space V :=

{
v ∈ H1 (Ω) :
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v |∂D= 0}. For given right-hand side f ∈ V ′ and q ∈ H−1/2 (∂B), the variational
formulation of (2.1) is given by seeking u ∈ H1 (Ω) such that

a (u, v) = F (v) ∀v ∈ V,(2.2)

with

a (u, v) =

∫

Ω

∇u∇v̄ − k2uv̄dx− ik

∫

∂B

uv̄dx,

F (v) =

∫

Ω

fv̄dx+

∫

∂B

qv̄dx.

Remark 1. The bilinear form a (·, ·) is symmetric, i.e., a (u, v) = a (v, u), but not
Hermitian.

The Galerkin FEM is given by replacing in (2.2) the infinite-dimensional space
V by finite element spaces. In this paper, we focus our attention on approximations
of the Helmholtz equation of second order. For the FEM, this means that we are
employing (bi)linear elements. Remarks on how the results can be generalized to
higher-order discretizations will appear in various places. Let

τ = {∆1,∆2, . . . ,∆N}

denote a finite element mesh consisting of simplicial or quadrilateral elements. The
mesh width is denoted by

h := max
∆∈τ

diam ∆.

Let

Θ := {x1, x2, . . . , xn}

denote the set of vertices of τ not lying on the essential boundary ∂D. For xi ∈ Θ,
the usual local basis functions are given by

φi (x) = δi,j , 1 ≤ i ≤ n,

φi |∆ is (bi)linear for all ∆ ∈ τ.

The finite element space corresponding to the grid τ is given by

Sh = span {φi | 1 ≤ i ≤ n} .(2.3)

2.2. The Pollution effect of the FEM for the Helmholtz equation. Let
uh ∈ Sh denote the Galerkin finite element solution of the Helmholtz problem, while
u denotes the exact solution in V . The error is given by eh = u − uh. The best
approximation of u in the space Sh with respect to an appropriate norm ‖·‖ is defined
by

uopt
h : = arg min

vh∈Sh

‖u− vh‖ ,

eopt
h : =

∥
∥u− uopt

h

∥
∥ .

Obviously, we have
∥
∥eopt

h

∥
∥ ≤ ‖eh‖ .
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On the other hand, we know that the Galerkin method is quasi-optimal in the sense
that, for sufficiently small h, the Galerkin solution satisfies

‖eh‖ ≤ C
∥
∥eopt

h

∥
∥ .

Intuitively, we will say that the FEM has the pollution effect if eh approaches zero
increasingly slowly as eopt

h has increasing k. This will be defined in a formal way now.
DEFINITION 2.1. Here and in the following, we assume that the wave number is

bounded away from zero, k ≥ k0 > 0. Let W denote a subspace of V ′ ×H−1/2 (∂B).
For (f, q) ∈ W , let uf,q denote the solution of the Helmholtz problem (2.2). We say
that a FEM has the pollution effect if there are numbers r, s ∈ R and t > 0 such that
the error of the best approximation satisfies

∥
∥eopt

h

∥
∥ ≤ Cf,qh

rks ∀ (f, q) ∈ W,

and there exists a family of data, i.e., domains Ωk, right-hand sides (fk, qk) ∈ W ,
and meshes τh characterized by the step size h = h (k) such that the error of the
corresponding finite element solution can be estimated by

‖eh‖
hrks

≥ Ckt.(2.4)

In order to motivate a minimal requirement on the dependence of h on k, we
consider the following model problem:

−u′′ − k2u = 0, in Ω = (0, 1) ,

u (0) = 1,

u′ (1) − iku (1) = 0.

The exact solution is given by u (x) = exp (ikx). The best approximation in the space
of continuous, piecewise linear trial functions satisfies

∥
∥u− uopt

h

∥
∥

Hs(Ω)

‖u‖Hs(Ω)

≤ Ch2−s
‖u‖H2(Ω)

‖u‖Hs(Ω)

≤ C (kh)
2−s

.

Hence, a minimal requirement for the relative error of the best approximation to be
small is that (kh) is small. In this light, the following assumption is very natural.

Assumption 2.2. Throughout this paper we assume that (kh) ≤ α holds with a
generic constant α being independent of all parameters.

For a one-dimensional model problem the pollution effect was studied thoroughly
in [15], [16], and [6]. It was shown for one-dimensional model problems that

• the Galerkin FEM contains the pollution effect in both the L2-and H1-norms;
• for the Galerkin FEM, estimate (2.4) holds for the L2-norm with t = 1 (cf.

[6, Thm. 2.6]);
• the pollution effect is visible for all degrees of approximation, i.e., the hp-

method for arbitrary but fixed p;
• the pollution effect can be interpreted as a lack of stability since the discrete

inf-sup constant behaves inverse-proportionally to the wave number.
It is clear that, in more space dimensions, one expects the pollution effect of at

least the same magnitude as in the one-dimensional case.
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2.3. GFEMs. In the following, we will characterize GFEMs. GFEMs were first
introduced in [4] in a variational setting. For our purpose, an algebraic definition will
turn out to be more appropriate.

We begin by introducing finite element interpolation and grid functionals.
DEFINITION 2.3. A vector γ ∈ Cn is linked with a finite element function by the

canonical prolongation

E [γ] (x) =

n∑

i=1

γiφi (x) , x ∈ Ω.

A grid functional Q (f, q) is an operator which maps the right-hand side (f, q) of
(2.1) onto a vector in Cn.

Example 2.4. Using this notation, the Galerkin FEM is defined by seeking uh

such that

GGaluh = QGal (f, q) ,

with

GGal
i,j = a (φj , φi) , 1 ≤ i, j ≤ n,

QGal (f, q) = {F (φi)}1≤i≤n .

The following remark concerns the sparsity of GGal.
Remark 2. Two points x, y ∈ Θ are called physically connected if there exists an

element ∆ ∈ τ having x and y as vertices.
If xi and xj are not physically connected, then GGal

i,j = 0. The converse holds for
almost all k > 0.

DEFINITION 2.5. Let Sh be defined by (2.3). A GFEM is characterized by a
(regular) matrix G and a grid functional Q. These operators have to have the same
sparsity structure as the classical Galerkin FEM, which can be expressed (cf. Remark
2) by

Gi,j = 0 if (xi, xj) are not physically connected,

(Q (f, q))i = 0, if supp φi ∩ supp f = ∅ and supp φi |∂B ∩ supp q = ∅.1

Additionally, we require G to be symmetric: Gi,j = Gi,i (cf. Remark 1).
The solution of

Gv = Q (f, q)

is then identified with the so-called generalized finite element approximation to (2.1)
by v = E [v].

In the next section we will prove that, in one dimension, it is possible to define
G and Q, i.e., a GFEM which has no pollution.

3. On the stabilization of the Helmholtz equation in one dimension

with Robin boundary conditions. In this chapter we will prove that, in one
dimension, there exists a pollution-free GFEM for the Helmholtz problem. We have
already mentioned that this is not possible in the higher-dimensional case. However,

1Here, the notation A ∩ B = ∅ means that A and B have disjoint interiors.
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the one-dimensional analysis gives insights into how a GFEM has to be designed in
higher dimensions such that the pollution effect is minimal.

To fix the ideas, let us consider the following one-dimensional model problem:

−u′′ − k2u = f in Ω := (0, 1) ,

u (0) = 0,

u′ (1) − iku (1) = 0,

(3.1)

and assume that k is bounded away from zero, i.e., k ≥ k0 > 0. The varia-
tional formulation of problem (3.1) can be written in the form, seeking u ∈ V :=
{
v ∈ H1 (0, 1) | v (0) = 0

}
, such that

a (u, v) =

∫

Ω

fvdx ∀v ∈ V(3.2)

with

a (u, v) :=

∫

Ω

〈∇u,∇v̄〉 − k2uv̄dx− iku (1) v̄ (1) .(3.3)

Let {xi}1≤i≤n denote a set of grid points 0 < x0 < x1 < · · · < xn = 1. The grid τh
consists of the intervals ∆i = [xi−1, xi]. The step size h and the corresponding finite
element space

Sh = span {φi : 1 ≤ i ≤ n}

were already defined by (2.3). We will also need the space S0
h consisting of functions

which are constant on each interval ∆i.
The Galerkin discretization of (3.2) leads to a system of difference equations of

the following form:

GGal
i−1,iui−1 +GGal

i,i ui +GGal
i,i+1ui+1 =

∫

∆i

fφidx+

∫

∆i+1

fφidx, 1 ≤ i ≤ n,

where we have already used the symmetry of GGal. Terms in the equation above
containing subscripts smaller than 1 or larger than n have to be skipped.

For the GFEM, we make the ansatz

Gi−1,iui−1 +Gi,iui +Gi,i+1ui+1 = Q (f |∆i
, 0)+Q

(
f |∆i+1

, 0
)
, 1 ≤ i ≤ n.(3.4)

In order to motivate how the coefficients Gi,j have to be chosen, we present the
following consideration.

From the theory of ODEs, we know that, if f ≡ 0 on an interval ∆m, the exact
solution takes the form

u |∆m
= Ame

ikx +Bme
−ikx.

In [6, Chap. 2] it was shown that on such intervals the solution of the Galerkin FEM
is the interpolant of

uh |∆m
= Ah,me

ikhx +Bh,me
−ikhx

with suitable Ah,m and Bh,m. Furthermore, it was shown that the pollution effect is
related to the phase lag k− kh. The idea of constructing a pollution-free GFEM is to
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eliminate the phase lag for as many right-hand sides as possible. The choice f = 0
in ∆m ∪ ∆m+1 implies that the right-hand side in (3.4) vanishes. This leads to the
condition that (3.4) has to be satisfied for the fundamental system u = exp (±ikx)
with right-hand side zero. Additionally, by choosing the operator Q in a suitable way,
it is possible to determine G such that the GFEM solution interpolates the exact
solution for piecewise constant right-hand sides, i.e., f ∈ S0

h.
Working out these ideas properly, the following GFEM results.
Let the system matrix Gstab be defined by

Gstab
i,j =

k2h

2 tan kh
2







sin(k(xi+1−xi−1))
sin(k(xi+1−xi)) sin(k(xi−xi−1))

if i = j < n,

e−ik(xn−xn−1)

sin(k(xn−xn−1))
if i = j = n,

− 1
sin(k|xi−xj |) if |j − i| = 1,

0 otherwise,

(3.5)

and the mapping Qstab by

(
Qstabf

)

i
=

h

2 tan kh
2

min(i+1,n)
∑

m=i

tan
(

k xm−xm−1

2

)

(xm − xm−1)

∫ xm

xm−1
f (x) dx

(xm − xm−1)
.(3.6)

Note that this definition2 can be interpreted as follows. First, one replaces the exact
right-hand side f by the L2-projection of f onto S0

h:

f0 (x) := P 0f (x) :=
n∑

m=1

∫ xm

xm−1
f (x) dx

(xm − xm−1)
χm (x) ,

whereas χm denotes the characteristic function on the interval [xm−1, xm] and then
computes as usual the right-hand side vector by applying some weighting which is
related to the nonuniformity of the grid τ . Note that in the case of a uniform grid
and f ∈ S0

h, we have

(
Qstabf

)

i
=

∫

suppφi

f (x)φi (x) dx ∀i.

In the definition of Qstab we assume that
∫ 1

0
f (x)χm (x) dx is well defined for all m,

which is ensured for f ∈ L2 (Ω).
For the latter purpose we will need the following approximation properties of the

L2-projection onto S0
h:

∥
∥w − P 0w

∥
∥

s
≤ cht−s ‖w‖t

for s ∈ {−1, 0} and t ∈ {−1, 0, 1} with t ≥ s, and the pointwise error can be estimated
by

∣
∣
(
w − P 0w

)
(x)
∣
∣ ≤ c

√
h ‖w‖H1(0,1) .(3.7)

2We have chosen the name Gstab,Qstab for the following reason. In [15], it was shown that,
for the classical Galerkin method, the pollution effect is caused by a lack of stability. The discrete
inf-sup constant behaves inverse-proportionally to the wave number k.
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In the following, we will show that, under certain assumptions, the finite element
solution corresponding to Gstab and Qstab is pollution-free. We first have to prove
some estimates for the exact solution.

LEMMA 3.1. (a) Let f ∈ H1 (0, 1) and u denote the corresponding solution of
(3.1). Then, the following stability estimate holds:

∥
∥
∥u(s)

∥
∥
∥

0
≤ Cks−2 ‖f‖H1(0,1)(3.8)

for s ∈ {0, 1, 2}.
(b) Let δf := f−P0f denote the right-hand side of (3.1). Then, the corresponding

solution u0 can be estimated by
∥
∥
∥u

(s)
0

∥
∥
∥

0
≤ Cks−2 ‖f‖H1(0,1)(3.9)

for s ∈ {0, 1, 2} .
Proof. The proof is a slight modification of the proof of Lemma 1 of [15]. We first

prove (3.9).
Green’s function of problem (3.1) can be written in the form

G (x, y) :=
1

k

{

sin (kx) eiky for 0 ≤ x ≤ y,

sin (ky) eikx for y ≤ x ≤ 1.

Thus, the exact solution u0 can be expressed by

u0 (x) =

∫ 1

0

G(x, y)δf (y) dy.

In the next step we will estimate |u0 (x)| . First, let us assume that x = xj , i.e., that
x coincides with a grid point xj . Using (3.7), we have

|u0 (xj)| =
∣
∣
∣

∫ 1

0
G(xj , y)δf (y) dy

∣
∣
∣

=
∣
∣
∣
eikxj

k

∫ xj

0
sin (ky) δf (y) dy +

sin(kxj)
k

∫ 1

xj
eikyδf (y) dy

∣
∣
∣

=
∣
∣
∣
eikxj

k2

∑j
m=1

(

− cos (ky) δf (y) |xm
xm−1

+
∫ xm

xm−1
cos (ky) δf ′ (y) dy

)

+
sin(kxj)

k2

∑n
m=j+1

(

−ieikyδf (y) |xm
xm−1

+i
∫ xm

xm−1
eikyδf ′ (y) dy

)∣
∣
∣

≤ k−2

(

2
√
h
∑n

m=1 ‖f‖H1(xm−1,xm) + 2
√
∫ 1

0
|f ′ (y)|2 dy

)

≤ k−2
(

2
√
∑n

m=1 ‖f‖2
H1(xm−1,xm) + 2 ‖f ′‖L2(0,1)

)

≤ 4k−2 ‖f‖H1(0,1) .

The proof in the case of x 6= xj is analogous.
The L2-norm of u0 can therefore be estimated by

‖u0‖L2(0,1) =

√
∫ 1

0

|u0 (x)|2 dx ≤ c

k2
‖f‖H1(0,1) .
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The estimate of ‖u′
0‖L2(0,1) can be obtained in the same way by using d

dxe
ikx = ikeikx

and d
dx sin (kx) = k cos (kx).
To estimate ‖u′′

0‖L2(0,1) we have

‖u′′
0‖2

0 =

∫ 1

0

|u′′
0 (x)|2 dx =

∫ 1

0

∣
∣
(
δf + k2u0

)
(x)
∣
∣
2
dx ≤ ‖δf‖2

0+2k2 ‖δf‖0 ‖u0‖0+k
4 ‖u0‖2

0 .

Using the previous estimate and ‖δf‖0 ≤ ‖f‖0, we conclude that

‖u′′
0‖2

0 ≤ c
(

‖f‖2
0 + 2 ‖f‖0 ‖f‖1 + ‖f‖2

1

)

≤ c ‖f‖2
1 .

The estimate of ‖u‖s for s ∈ {0, 1, 2} can be obtained analogously.
In the following we will show that the finite element solution corresponding to

Gstab and Qstab coincides with the interpolant of the exact solution, provided f ∈ S0
h.

The details can be found in the following lemma.
LEMMA 3.2. (a) Let fm = χm, while χm denotes the characteristic function on

the interval [xm−1, xm]. Then the exact solution of the boundary value problem (3.1)
is given by

um(x) :=
1

k2 (xm − xm−1)







2 sin
(

k xm−xm−1

2

)

eik
xm+xm−1

2 sin (kx) for x ≤ xm−1,

−ieikxm sin (kx) + cos (kxm−1) e
ikx − 1

for xm−1 < x < xm,

2 sin
(

k xm−xm−1

2

)

sin
(

k xm+xm−1

2

)

eikx for x ≥ xm.

(3.10)
(b) Let f ∈ S0

h and u denote the corresponding solution of (3.1). Let hk < π and
v ∈ Cn be defined as the solution of

Gstabv = Qstabf.

Let v := Ev be the finite element solution. Then v coincides with the piecewise linear
nodal interpolant of u.

Proof. Case (a). Statement (a) follows easily by explicitly computing

um (x) =

∫ 1

0

G(x, y)fm (y) dy.

Case (b). By the linearity of the Helmholtz equations it is sufficient to prove the
assertion only for fm = χm, 1 ≤ m ≤ n. Define the vector um ∈ Cn by

um
i = um (xi) ∀1 ≤ i ≤ n.

Now applying Gstab to um we get, after somewhat tedious algebra which is skipped
here,

(
Gstabum

)

i
=







0 if i 6= m and i 6= m− 1,

h
2 tan kh

2

tan
(

k
xm−xm−1

2

)

k(xm−xm−1)
otherwise.

(3.11)
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Now computing Qstabfm, we obtain

(
Qstabfm

)

i
= h

2 tan kh
2

∑min(i+1n)
j=i

tan
(

k
xj−xj−1

2

)

(xj−xj−1)

∫
xj
xj−1

fm(x)dx

(xj−xj−1)

=







0 if i 6= m and i 6= m− 1,

h
2 tan kh

2

tan
(

k
xm−xm−1

2

)

(xm−xm−1)
otherwise.

Thus, we conclude that Gstabum = Qstabfm for all 1 ≤ m ≤ n.
It remains to prove that Gstab is regular. The matrix Fl,m := (Qfm)l has the

form

F =











⋆ ⋆
⋆ ⋆

⋆
. . .

. . . ⋆
⋆











,

whereas the entries marked by a star are nonzero elements due to hk < π. All other
entries of F vanish. Thus, F is regular, yielding that Gstab has full rank and therefore
that Gstab is regular.

We come now to the main result of this section, which shows that, under certain
assumptions, the finite element solution corresponding to Gstab and Qstab is pollution-
free.

THEOREM 3.3. Let the right-hand side f of (3.1) be in H1 (0, 1). Let Gstab and
Qstab be defined by (3.5) and (3.6) and let ufe denote the solution of

Gstabufe = Qstabf .

Then, the corresponding finite element solution ufe = Eufe satisfies
∥
∥(ufe − u)

′∥∥
0

≤ ch ‖f‖1 ,

provided hk < π.
Remark 3. Let f ∈ H1 (0, 1) and u denote the solution of (3.1). Using (3.8) the

error of the best approximation uopt
h in Sh with respect to the H1-seminorm can be

estimated by
∥
∥
∥

(
uopt

h − u
)′
∥
∥
∥

0
≤ ch ‖u′′‖0 ≤ ch ‖f‖1 .

According to Definition 2.1 the stabilized FEM is pollution-free.
Proof. Let the bilinear form a : V × V → C corresponding to problem (3.1) be

defined by (3.3) and let K : V → V ′ denote the operator associated with a (·, ·). For
f ∈ V ′, let u ∈ V be the solution of

Ku = f.

Let P 0 denote the L2-projection of f onto S0
h, and u0, the corresponding solution in

V , i.e.,

Ku0 = f0
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with f0 := P 0f . Using the definition of Qstab it follows that Qstabf = Qstabf0. Using
Lemma 3.2 we see that the finite element solution ufe corresponding to Gstab and
Qstab coincides with the nodal interpolant u0

int of u0. Therefore, we have

u− ufe = u− u0 + u0 − u0
int,

and using the triangle inequality, it is sufficient to estimate the norms of the differences
u− u0 and u0 − u0

int separately. We begin by estimating u− u0.
We will need the following stability estimate of K which is proved in [15, Thm.

1], namely,

∥
∥
∥

(
K−1g

)′
∥
∥
∥

0
≤ Ck ‖g‖−1 ∀g ∈ H−1 (Ω) .

Thus, using the approximation property of P0, we conclude that

∥
∥
∥

(
u− u0

)′
∥
∥
∥

0
≤ Ck

∥
∥f − P 0f

∥
∥

−1
≤ ckh2 ‖f‖1 ≤ cπh ‖f‖1 .(3.12)

To estimate the difference
∥
∥
∥

(
u0 − u0

int

)′
∥
∥
∥

0
, we proceed as follows:

∥
∥
∥

(
u0 − u0

int

)′
∥
∥
∥

0
≤ ch

∥
∥
∥

(
u0
)′′
∥
∥
∥

0
≤ ch

(∥
∥
∥

(
u− u0

)′′
∥
∥
∥

0
+ ‖u′′‖0

)

.(3.13)

We have u−u0 = K−1
(
f − P 0f

)
. Applying Lemma 3.1 for the problemK

(
u− u0

)
=

f − P 0f yields

∥
∥
∥

(
u− u0

)′′
∥
∥
∥

0
≤ C ‖f‖H1(0,1) .(3.14)

Using Lemma 3.1 again, we have

‖u′′‖0 ≤ c ‖f‖H1(0,1) .(3.15)

Inserting (3.14) and (3.15) into (3.13) we get

∥
∥
∥

(
u0 − u0

int

)′
∥
∥
∥

0
≤ ch ‖f‖1 .(3.16)

Estimating (3.12) together with (3.16) yields

∥
∥(u− ufe)

′∥∥
0

≤ ch ‖f‖1 ,

which completes the proof.
In this chapter we have presented a pollution-free GFEM for a one-dimensional

model problem. The principal underlying idea was to insure that if the right-hand side
belongs to a sufficiently large subspace of V ′ ×H−1/2 (∂B), the GFEM interpolates
the exact solution. Sufficiently large means that the continuous right-hand side can be
approximated in this subspace consistently. Since the zero function will always belong
to this subspace, the GFEM has to reproduce the fundamental system. We state that
similar constructions can be made for boundary conditions possibly different from
those chosen in (3.1) and also for higher-order approximations.

In the following we will show how significantly the stabilized FEM improves the
classical FEM for the Helmholtz problem.
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FIG. 4.1. Relative error in the H1-seminorm for example 1.

4. Numerical examples. In this section we will illustrate the pollution effect of
the Galerkin FEM and the behavior of the stabilized FEM. We choose f = 1+x2 as the
right-hand side of (3.1). Our first example is characterized by choosing piecewise linear
elements on a uniform mesh, while for example 2, we consider a highly nonuniform
mesh in the following way. Let the step size h satisfy h−1 ∈ N, and xj = jh denote
the grid points of the uniform mesh. We disturb these grid points randomly in the
range

xdis
j ∈

[

xj − h

2c
, xj +

h

2c

]

∩ Ω

with c = 1.1. The grid of example 2 consists of the intervals
[
xdis

j−1, x
dis
j

]

1≤j≤h−1
.

As explained in the first chapter, the standard Galerkin method is quasi-optimal
if h is sufficiently small, but in the preasymptotic range the pollution effect influences
the precision substantially. The error is always measured in the H1-seminorm. The
error of the best approximation uopt differs from the error of the stabilized finite
element solution ustab

fe by less than 0.1%. Therefore, the plotted lines corresponding

to uopt and ustab
fe coincide.

Figures 4.1 and 4.2 elucidate the effect of the pollution for the Galerkin method.
As h becomes small, the corresponding error line approaches the error line of the best
approximation, while for larger h the solution is spoiled substantially. The range of
h, where the solution of the Galerkin FEM is polluted, increases with higher k. We
state that even if kh is relatively large, i.e., kh ∈ [1, 2], the solution of the stabilized
FEM already has the expected asymptotic behavior of O (kh). As can be seen from
Figure 4.2, the stabilized FEM works also on nonuniform grids, while the effect of the
pollution is higher for the Galerkin FEM.
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The aim of our numerical investigation was to illustrate the improvement of the
stabilized FEM compared with Galerkin FEM. A more thorough investigation of the
pollution effect of the Galerkin FEM can be found in [15].

5. On the stabilization of the Helmholtz equation in two dimensions.

In this chapter we will show that in two dimensions it is impossible to eliminate the
pollution effect completely. To be more concrete, we will consider a very simple model
situation, by employing bilinear elements on a uniform grid. Furthermore, in order
to avoid boundary effects we will consider a sequence of increasingly large domains
and employ weighted norms. However, as pointed out in the introduction, this model
situation is appropriate for drawing conclusions to practical applications as well.

In a mathematical setting this means that we focus on the question of whether,
for such a simple model problem, it is possible to choose the coefficients of a GFEM
for the interior difference equations such that the pollution is eliminated. If this is not
possible for this simplified situation, we must expect that in more general situations
it is not possible either.

However, the analysis will show that a GFEM which has minimal pollution must
have the property that the difference equations for interior grid points satisfy

n∑

j=1

Gi,juj = 0

for a maximal number of homogeneous solutions of the Helmholtz equation. Since, in
contrast to the one-dimensional case, the number of homogeneous solutions is infinite,
the above relation cannot be satisfied for all homogeneous solutions. It will turn out
that this is the reason that the pollution effect is inevitable.



2406 IVO M. BABUŠKA AND STEFAN A. SAUTER

5.1. The GFEM for the Helmholtz equation in two dimensions. In this
chapter, x always denotes a two-dimensional vector, i.e., x = (x1, x2)

T
. We will use

two-dimensional multi-indices ν ∈ Z2. The abbreviation |ν| is defined by |ν| = ν1+ν2,
and for a two-dimensional vector g, the notation gν means gν := gν1

1 · gν2

2 .
Throughout this chapter we assume that the wave number k is bounded away

from zero, i.e., k ≥ k0 > 0.
Let the domains Ωn be defined by

Ωn := (−cn, cn)
2
, cn ∈ N, cn < cn+1.(5.1)

We consider the homogeneous Helmholtz equation on the domain Ωn.

Lkun := −∆un − k2un = 0 in Ωn,(5.2)

with boundary conditions

Bnun = rn on Γ := ∂Ωn.(5.3)

We will assume that problem (5.2), (5.3) has a unique solution un ∈ H1 (Ωn) for all
rn. To avoid notational technicalities we assume that the boundary conditions are
not of Dirichlet type.

We consider GFEM discretizations to (5.2), (5.3) with piecewise bilinear ele-
ments. Let h denote a positive parameter denoting the step size which satisfies
h−1 ∈ N. The Cartesian grid points are given by Θn = hZ2 ∩ Ω̄n. For convenience,
we identify grid points xν with the multi-index ν. The notation ν ∈ Θn stands for
ν ∈

{
µ ∈ Z2 | xµ ∈ Θn

}
. The corresponding Cartesian grid τh consists of squares of

side length h.

�ν : = h (ν1, ν1 + 1) × h (ν2, ν2 + 1) ,

τh : = {�ν}ν∈Z2 ∩ Ωn.

The bilinear finite element space is denoted by Sh, and the nodal basis, by φh
ν . The set

of interior grid points is given by Θint
n := hZ2 ∩ Ωn. The system matrix of a GFEM

method has to have the same sparsity pattern as the classical Galerkin discretization.
For xν ∈ Θint, the difference equations of the corresponding Galerkin FEM can be
written in the form

G2uν1−1,ν2+1 + G1uν1,ν2+1 + G2uν1+1,ν2+1

+ G1uν1−1,ν2
+ G0uν1,ν2

+ G1uν1,ν2+1

+ G2uν1−1,ν2−1 + G1uν1,ν2−1 + G2uν1+1,ν2−1 = 0.

(5.4)

For convenience we have used two-dimensional indices for the vector u. Thus, the
prolongation takes the form

E [u] (x) =
∑

ν∈Θ

uνφν (x) .

The interior matrix stencil

(
Gh

n

)

ν
=





G2 G1 G2

G1 G0 G1

G2 G1 G2



(5.5)
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expresses the sparsity of the matrix and has to be understood in the sense of (5.4).
Since the matrix stencil contains nine coefficients, it is called a nine-point stencil (see
[12]). For the Galerkin method, we have

G =






− 1
3 − 1

3 − 1
3

− 1
3

8
3 − 1

3

− 1
3 − 1

3 − 1
3




− α2






1
36

1
9

1
36

1
9

4
9

1
9

1
36

1
9

1
36




 .(5.6)

The GFEM is determined by defining a family of regular matrices Gh
n and func-

tionals Qh mapping the right-hand side of (5.3) onto the right-hand side vector of the
linear system. According to Definition 2.5 the stencils of the GFEM have to satisfy
the following conditions, A1–A2.

A1. The matrix Gh
n which depends on k is sparse in the sense that for every

nodal point xν ∈ Θint the corresponding matrix row can be represented by a
nine-point stencil.

A2. The functional Qh is local in such a way that, for xν ∈ Θint, the corresponding
entry of the right-hand side vector

(
Qhrn

)

ν
is zero.

We will impose further conditions which any reasonable GFEM should satisfy.
Without the following assumptions, we would have to discuss much more pathological
cases. Some detailed comments on these conditions are given in Remark 4.

A3. The interior stencils have constant entries, i.e.,

(
Gh

n

)

ν
=





G2 G1 G2

G1 G0 G1

G2 G1 G2



 ∀xν ∈ Θint.

Furthermore, we require that the interior stencils are invariant of the domain
Ω but depend only on k and the step size h. For xν ∈ Θint

n ∩ Θint
n′ and all

h, k > 0 we assume that the interior stencils coincide with

(
Gh

n

)

ν
=
(
Gh

n′

)

ν
∀h, k > 0.

A4. We assume that coefficients of the interior stencils of the finite element ma-
trices G (5.5) satisfy the following conditions:
(i) G0 =

∑∞
m=0 (G0)m α2m,

(ii) G1 =
∑∞

m=0 (G1)m α2m,
(iii) G2 =

∑∞
m=0 (G2)m α2m,

with α = kh and (Gt)m independent of k and h for all t ∈ {0, 1, 2} ,m ∈ N0.
A5. We assume that the principal part of G, i.e.,

Gprincipal :=





(G2)0 (G1)0 (G2)0
(G1)0 (G0)0 (G1)0
(G2)0 (G1)0 (G2)0



 ,

is an approximation of the principal part a0 (u, v) =
∫

Ω
〈∇u,∇v̄〉 dx of order

2, implying

(G0)0 > 0,

(G0)0 + 4 ((G1)0 + (G2)0) = 0,

− (G1)0 − 2 (G2)0 = 1.

(5.7)
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These restrictions are very natural considering linear finite elements. Some com-
ments are given in the following remark.

Remark 4. Condition A3 corresponds to the rotational symmetry and translation
invariance of the Helmholtz equation and the mesh τh.

Condition A4 reflects the fact that the Laplacian and the identity are operators
of even order.

Condition A5 is the usual consistency condition if “−∆” is discretized by (bi)linear
elements.

Obviously, the Galerkin FEM satisfies conditions A1–A5.

5.2. Weighted norms and the Fourier transform. Now we will specify the
norm in which the error of the approximation will be measured. In the introduction
we have already explained why, for the Helmholtz problem, the L2-norm is of main
physical relevance and why the domain of computation might be much larger than
the domain of interest. In this light, it is natural to introduce the following weighted
L2-norms. On a domain Ω ⊂ R2 the norms ‖·‖− and ‖·‖+ are defined by

‖u‖2
− =

∫

Ω

u (x) ū (x)

1 + ‖x‖2 dx

and

‖w‖2
+ =

∫

Ω

w (x) w̄ (x)
(

1 + ‖x‖2
)

dx.

Let the space V− := V− (Ω) be defined by the closure of C∞ (Ω) with respect to the
norm ‖·‖− and the space V+ correspondingly. If Ω = R2, the norm ‖v‖− can be
expressed by the Fourier transform of v. Before going into the details, we have to
recall some facts about the theory of tempered distributions and the Fourier transform
which will be needed below. The theory of the Fourier transform (integral) and the
discrete Fourier transform could be found in [10, pp. 185 ff.], [3], [5].

Let us now define some function spaces and the integral and discrete Fourier
transforms.

Let S be the space of all arbitrary, often differentiable, complex-valued functions
φ, defined on R2, such that for all multi-indices q, k ∈ N2

0, there exist numbers Cq,k

such that
∣
∣
∣xkφ(q) (x)

∣
∣
∣ ≤ Cq,k.

Let S⋆ denote the space of tempered distributions on S. If φ ∈ S, the Fourier
transform φ̃ is defined by

φ̃ (σ) :=

∫

R2

φ (x) ei〈σ,x〉dx.

The Fourier transform of a distribution ψ is defined by the relation

ψ̃
(

φ̃
)

= 4π2ψ (φ) ∀φ ∈ S.(5.8)

To define the discrete Fourier transform, let S⋆ denote the space of all infinite two-
dimensional sequences a = {aν}ν∈Z2 having the property that for every a ∈ S⋆ there
exists a nonnegative integer q and a constant C such that

|aν | ≤ C (‖µ‖q
+ 1) .
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If a ∈ S⋆, then the discrete Fourier transform of this element is defined by

ã (σ) :=
∑

ν∈Z2

aνe
i〈ν,σ〉,

whereas ã (σ) is understood as a distribution over S. Obviously, ã (σ) is a periodic
function.

The relation between the norm ‖v‖± and the norm of ṽ is explained in the fol-
lowing

LEMMA 5.1. The norm ‖v‖− can be expressed by the Fourier transform ṽ of v:

‖v‖− = sup
w∈H1(R2)

∣
∣
∫

R2 ṽ (σ) w̄ (σ) dσ
∣
∣

2π ‖w‖H1(R2)

.(5.9)

Proof. The relation

‖v‖− = sup
w∈V+

∣
∣
∫

R2 v (x) w̄ (x) dx
∣
∣

‖w‖+

(5.10)

is proved in the following two steps.
(i) “≤”: Choosing w = v

1+‖x‖2 results in

sup
w∈V+

∣
∣
∫

R2 v (x) w̄ (x) dx
∣
∣

‖w‖+

≥ ‖v‖2
−

‖v‖−

= ‖v‖− .

(ii) “≥”:

sup
w∈V+

∣
∣
∫

R2 v (x) w̄ (x) dx
∣
∣

‖w‖+

= sup
w∈V+

∣
∣
∣
∣

∫

R2

v(x)√
1+‖x‖2

w̄ (x)

√

1 + ‖x‖2
dx

∣
∣
∣
∣

‖w‖+

≤ sup
w∈V+

∥
∥
∥
∥

v√
1+‖·‖2

∥
∥
∥
∥

L2(R2)

∥
∥
∥
∥
w̄

√

1 + ‖·‖2

∥
∥
∥
∥

L2(R2)

‖w‖+

= sup
w∈V+

‖v‖− ‖w‖+

‖w‖+

= ‖v‖− .

Using the well-known relation ‖
√

1 + ‖·‖2
w‖L2(R2) = 1

2π ‖w̃‖H1(R2) and Parse-

val’s equality (5.8), one concludes that the right-hand side of (5.10) coincides with

sup
w∈H1(R2)

∣
∣
∫

R2 ũ (σ)w (σ) dσ
∣
∣

2π ‖w‖H1(R2)

,

which completes the proof.

5.3. On the pollution effect of the GFEM for the Helmholtz equation

in two dimensions. In this chapter we will show that, for each GFEM, there exists
a family of right-hand sides rn for problem (5.2), (5.3) dependent on k, such that
the error of the finite element solution contains a pollution term. It will turn out
that, for any GFEM, we can choose values β0, β1 ∈ [−π, π[ such that the generalized
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finite element approximation of the following homogeneous solution to the Helmholtz
equation does not converge with the rate of the best approximation:

u0 (x) := uk,β0,β1
(x) :=

k

4π2

∫ β1

β0

e−ik(x1 cos β+x2 sin β)dβ.(5.11)

Some properties of u0 are stated in the following lemma.
LEMMA 5.2. (a) The Fourier transform of u0 is given by

ũ0 (r cosβ, r sinβ) = δ (r − k)χ[β0,β1] (β) ,(5.12)

whereas δ denotes the Dirac point functional, and χ[β0,β1], the characteristic function
on the interval [β0, β1].

(b) The function u0 satisfies the homogeneous Helmholtz equation in the whole
plane.

(c) The function u0 belongs to V−

(
R2
)
.

(d) Let the family of right-hand sides rn be defined by

rn := rn (k, β0, β1) := Bnuk,β0,β1
.(5.13)

Then, the restriction of u0 on Ωn is the unique solution of the Helmholtz problem
(5.2), (5.3).

Proof. The first statement follows by computing the inverse Fourier transform of
(5.12) (cf. [10, pp. 190 ff.]).

Transforming the homogeneous Helmholtz equation on the whole plane into the
Fourier image results in

(

‖σ‖2 − k2
)

ũ = 0.

Obviously, this equation is satisfied by (5.12), yielding statement (b).
The support of the Fourier transform of u0 is given by

supp ũ0 = A :=
{

σ ∈ R2 | ∃β ∈ [β0, β1] , σ = k (cosβ, sinβ)
T
}

.

In combination with Lemma 5.1, we obtain

‖u0‖− = sup
v∈H1(R2)

∣
∣
∫

R2 ũ0 (σ) v̄ (σ) dσ
∣
∣

2π ‖v‖H1(R2)

= sup
v∈H1(R2)

∣
∣
∫

A v̄ (σ) dσ
∣
∣

2π ‖v‖H1(R2)

(5.14)

≤ sup
v∈H1(R2)

‖1‖L2(A) ‖v‖L2(A)

‖v‖H1(R2)

=
√

k (β1 − β0) sup
v∈H1(R2)

‖v‖L2(A)

‖v‖H1(R2)

.

Using the trace theorem we know that

‖v‖L2(A) ≤ Č ‖v‖H1(A1)
≤ Č ‖v‖H1(R2)

with

A1 =
{

σ ∈ R2 | ∃β ∈ [β0, β1] , κ ∈ [k, k + 1] , σ = κ (cosβ, sinβ)
T
}

.
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We had imposed the general condition that k ≥ k0 > 0; therefore, the constant Č
depends only on the length of A. Combining this estimate with (5.14) results in

‖u0‖− ≤ C
√

k (β1 − β0),(5.15)

where consequently, C depends only on the length of A.
Assertion (d) is an immediate consequence of (a), (b), (c), and our assumption

on Bn.
In the following we will use infinite matrices having a sparse and constant stencil.

For this, the space M of infinite, sparse matrices is defined by

M : =






M : Z × Z → C | ∀ν ∈ Z2 : Mν =





M2 M1 M2

M1 M0 M1

M2 M1 M2










,

where Mν denotes the stencil (cf. (5.5)) of the νth matrix row. In the following we
will identify infinite matrices with its matrix stencil.

By assumption A3 the interior stencils of the matrices Gh
n are independent of n.

Let Gh
∞ ∈ M be the infinite matrix consisting of the interior stencils of Gh

n, i.e., for
xν ∈ Θint

n , we put

(
Gh

n

)

ν
=





G2 G1 G1

G1 G0 G1

G2 G1 G2



 =:
(
Gh

∞

)

λ
∀λ ∈ Z2.

THEOREM 5.3. Let Gh
∞ ∈ M denote an arbitrary but fixed infinite matrix, as

explained above. Then, there exists constants cA and cs, independent of k and h,
but possibly depending on (Gt)m (cf. A4) and constants β0, β1 ∈ [−π, π[ having the
property that β1 − β0 = cA

k such that every solution u ∈ S⋆ of

Gh
∞u = 0

fulfills

‖uk,β0,β1
− Ehu‖− ≥ csk

3.5h3,(5.16)

with uk,β0,β1
defined by (5.11), provided k3.5h3 is bounded.

Proof. The proof of this theorem is somewhat sophisticated and needs some
preparatory lemmas; therefore, it is postponed to the appendix.

In the following, the constants β0 and β1 are fixed by Theorem 5.3.
In the following, we will show that the convergence rate of the best approximation

is (kh)
2
. In view of (5.16) it remains to generalize Theorem 5.3 to finite domains in

order to prove that any GFEM contains the pollution effect. This is done by choosing
the right-hand side in (5.2), (5.3) such that the restriction of u0 to Ωn denotes the
exact solution.

We begin by estimating the error of the interpolant of u0 to obtain an error
estimate of the best approximation by using

∥
∥u0 − uopt

n

∥
∥

V−(Ωn)
≤
∥
∥u0 − uint

n

∥
∥

V−(R2)
.

THEOREM 5.4 (interpolation error). Let the function u0 be defined by (5.11) with
β1 − β0 = cA

k . Then we have
∥
∥u0 − uh,int

n

∥
∥

−
≤ cint (kh)

2
,

with a constant cint independent of k, h, and n.
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Proof. We have

∥
∥u0 − uh,int

n

∥
∥

2

−
=

∫

R2

∣
∣
(
u0 − uh,int

n

)
(x)
∣
∣
2

1 + ‖x‖2 dx =
∑

�ν⊂τh

∫

�ν

∣
∣
(
u0 − uh,int

n

)
(x)
∣
∣
2

1 + ‖x‖2 dx

≤
∑

�ν⊂τh

1

1 + h2 ‖ν‖2

∥
∥u0 − uh,int

n

∥
∥

2

L2(�ν)
.

Applying standard interpolation estimates (see [7, Rem. 15.2]) yields
∥
∥u0 − uh,int

n

∥
∥

L2(�ν)
≤ ch2 |u0|H2(�ν) .

We conclude that

∥
∥u0 − uh,int

n

∥
∥

2

−
≤ ch4

∑

�ν⊂τh

1

1 + h2 ‖ν‖2

∑

|λ|=2

∫

�ν

∣
∣
∣
∣

∂2u0 (x)

∂xλ

∣
∣
∣
∣

2

dx

≤ ch4



 sup
0<h<h0

sup
ν∈Z2

1 + h2
(

(ν1 + 1)
2

+ (ν2 + 1)
2
)

1 + h2 (ν2
1 + ν2

2)




∑

|λ|=2

∫

R2

∣
∣
∣
∂2u0(x)

∂xλ

∣
∣
∣

2

1 + ‖x‖2 dx.

Using the estimate

sup
0<h<h0

sup
ν∈Z2

1 + h2
(

(ν1 + 1)
2

+ (ν2 + 1)
2
)

1 + h2 (ν2
1 + ν2

2)
≤ sup

ν∈Z2

1 + h2
0

(

(ν1 + 1)
2

+ (ν2 + 1)
2
)

1 + h2
0 (ν2

1 + ν2
2)

≤ sup
ν∈Z2

(

1 +
2h2

0 (ν1 + ν2) + h2
0

1 + h2
0 (ν2

1 + ν2
2)

)

≤ sup
ν∈Z2

(

1 + 2
h2

0

(
ν2
1 + ν2

2

)

1 + h2
0 (ν2

1 + ν2
2)

+ h2
0

)

≤ sup
ν∈Z2

(

1 + 2
1

h−2
0 (ν2

1 + ν2
2)

−1
+ 1

+ h2
0

)

≤ 3 + h2
0 ≤ c

results in

∥
∥u0 − uh,int

n

∥
∥

−
≤ ch2

∑

|λ|=2

∥
∥
∥
∥

∂2u0

∂xλ

∥
∥
∥
∥

−

.

The proof is completed by showing that
∥
∥
∥
∥

∂|ν|u0

∂xν

∥
∥
∥
∥

−

≤ ck|ν|

for ν ∈ N2
0, |ν| = ν1 + ν2 ≤ 2.

In view of (5.11) we get

∥
∥
∥
∥

∂|ν|u0

∂xν

∥
∥
∥
∥

−

= |kν1

1 k
ν2

2 | ‖u0‖−

with (k1, k2)
T

:= k (cosβ, sinβ)
T
. Using the relation β1 − β0 = cA

k and (5.15), we
obtain

‖u0‖− ≤ Č.
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The length of the arc A which appeared in the proof of Lemma 5.2 is now of order
1, and hence Č is independent of k. The estimate |kj | ≤ k for j = 1, 2 completes the
proof.

The proof of Theorem 5.6 is done by contradiction. Thus, in the following lemma,
some conclusions are drawn under the assumption that there exists a pollution-free
GFEM. These conclusions concern the relation of the Helmholtz problem on the finite
domain Ωn with the one on the whole plane.

LEMMA 5.5. Let us assume that there exists a pollution-free GFEM satisfying
conditions A1–A5, i.e.,

∥
∥uex

n − uh
n

∥
∥

V−(Ωn)
≤ c (kh)

2
,(5.17)

with a constant c independent of k, h, and n.
(a) Let rn = Bnu0 be the right-hand side of the Helmholtz problem (5.2), (5.3)

and uh
n the finite element solution. Let Uh

n ∈ V−

(
R2
)

be the extension of uh
n onto the

whole plane by zero, which means that

Uh
n (x) :=

{

uh
n (x) if x ∈ Ωn,

0 otherwise.

Then, there exists a subsequence Uh
nj

which for nj → ∞ converges weakly to a function

uh
∞ ∈ V−

(
R2
)
.

(b) Furthermore, the subsequence uh
nj

converges to uh
∞ on every compact domain,

implying that, for every domain Ωn0
, the following holds:

∀ǫ > 0, and ∃j0,∀j ≥ j0 we have
∥
∥
∥uh

∞ − uh
nj

∥
∥
∥

V−(Ωn0)
≤ ǫ.

(c) Let Ωn be an arbitrary but fixed domain. For any m > n, the relation

∑

ν∈Θm

(
Gh

m

)

λ,ν

(
uh

m

)

ν
= 0 ∀λ ∈ Θn

holds, with uh
m denoting the nodal values of uh

m.
(d) The limit function uh

∞ has the property that the corresponding nodal vector
uh

∞ satisfies

∑

ν∈Z2

(
Gh

∞

)

λ,ν

(
uh

∞

)

ν
= 0 ∀λ ∈ Z2.

Proof. (a) The space V−

(
R2
)

is a Hilbert space with scalar product

(u, v)− :=

∫

R2

u (x) v̄ (x)

1 + ‖x‖2 dx.

Since the constant c of assumption (5.17) is independent of k, h, and n, it follows that
the sequence

∥
∥u0 − Uh

n

∥
∥

V−(R2)
is bounded independent of n. In view of Lemma 5.2

we know that u0 ∈ V−

(
R2
)
, and consequently, the sequence

∥
∥Uh

n

∥
∥

V−(R2)
is bounded

independent of n. Hence, we can choose a subsequence Uh
nj

, which for nj → ∞
converges weakly to a function uh

∞ ∈ V−

(
R2
)
.
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For simplicity we will skip the index j in the following.
(b) Let n0 be fixed and n > n0. Using assumption (5.17), we get

∥
∥u0 − uh

n

∥
∥

V−(Ωn0)
≤ C,

with C independent of n. The function uh
n on Ωn0

is characterized by the (countable)
number of nodal values in Ωn0

. Therefore we can choose a subsequence uh
nj

which

converges to uh
∞ on Ωn0

.
(c) From assumption A2 it follows that, for all xλ ∈ Θn, the right-hand side

(
rh

m

)

λ
is zero, yielding statement (c).

(d) By contradiction. Assume
∑

ν∈Z2

(
Gh

∞

)

λ,ν

(
uh

∞

)

ν
6= 0 for an index λ ∈ Z2.

Choose n ∈ N such that xλ ∈ Θint
n . Thus, by using A3, we get

∑

ν∈Z2

(
Gh

∞

)

λ,ν

(
uh

∞

)

ν
=
∑

ν∈Θn

(
Gh

n

)

λ,ν

(
uh

∞

)

ν
6= 0.(5.18)

On the other hand, from statement (c) it follows that

∑

ν∈Θn

(
Gh

m

)

λ,ν

(
uh

m

)

ν
= 0(5.19)

for all sufficiently large indices m > n. By assumption A3 we have for sufficiently
large m > n that

(
Gh

∞

)

λ,ν
=
(
Gh

m

)

λ,ν
∀ν ∈ Θn,(5.20)

and therefore, (5.19) together with (5.20) imply that

∑

ν∈Θn

(
Gh

∞

)

λ,ν

(
uh

m

)

ν
= 0 ∀m sufficiently large.

Passing to the limit m → ∞ yields
∑

ν∈Ωn

(
Gh

∞

)

λ,ν

(
uh

∞

)

ν
= 0,

which contradicts (5.18).
We are now able to prove that, for every GFEM, there exists a sequence of domains

Ωn with n dependent on k and h and a family of right-hand sides for the Helmholtz
equation (5.2), (5.3) such that the error of the corresponding finite element solution
contains a pollution term.

THEOREM 5.6. For every GFEM which satisfies conditions A1–A5, there exists a
family of domains Ωn and right-hand sides rn with n = n (k, h) for (5.2), (5.3) such
that the error of the finite element solution uh

n compared with the exact solution uex
n

can be estimated from below by
∥
∥uex

n − uh
n

∥
∥

V−(Ωn)
≥ Ck3.5h3,(5.21)

provided k3.5h3 ≤ C.
The error of the best approximation uh,opt

n ∈ Sh of uex
n with respect to the ‖·‖−-

norm can be estimated by
∥
∥uex

n − uh,opt
n

∥
∥

V−(Ωn)
≤ C (kh)

2
.
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Hence, for k → ∞ and h chosen such that k3.5h3 = 1, the error of the best approxi-
mation tends to zero, while the error of the finite element solution is larger than C.
Therefore, the pollution effect is unavoidable in two dimensions.

Proof. The proof is given by contradiction. Let us assume that there exists regular
matrices Gh

n corresponding to the domains Ωn with n = n (k, h) , such that for every
right-hand side rn and corresponding exact solution uex

n the error of the finite element
solution uh

n can be estimated by
∥
∥uex

n − uh
n

∥
∥

−
≤ c (kh)

2
,(5.22)

with a constant c independent of k, h, and n.
Let the right-hand side of the Helmholtz equation be given by (5.13) with β1−β0 =

cA

k . Then, u0 defined by (5.11) denotes the exact solution.
Let uh

∞ := limn→∞ uh
n denote the limit of the finite element solutions, as explained

in Lemma 5.5. Therefore, for every domain Ωn0
, there exists n > n0 such that

∥
∥uh

∞ − uh
n

∥
∥

V−(Ωn0)
≤ cs

3
k3.5h3.(5.23)

From assumption (5.22) and Lemma 5.5 it follows that u0 − uh
∞ ∈ V−

(
R2
)
. Hence,

for every ǫ > 0 there exists n0 such that
∥
∥u0 − uh

∞

∥
∥

V−(R2\Ωn0)
≤ ǫ.

Choosing ǫ = cs

3 k
3.5h3 with cs defined in Theorem 5.3 and sufficiently large n0,

possibly dependent on k and h, we obtain that, for all sufficiently large n ≥ n0,
estimate (5.23) and

∥
∥u0 − uh

∞

∥
∥

V−(R2\Ωn0)
≤ cs

3
k3.5h3

are satisfied. Using Theorem 5.3 and the estimate above we conclude that
∥
∥u0 − uh

n

∥
∥

V−(Ωn)
≥
∥
∥u0 − uh

n

∥
∥

V−(Ωn0)
≥
∥
∥u0 − uh

∞

∥
∥

V−(Ωn0)
−
∥
∥uh

∞ − uh
n

∥
∥

V−(Ωn0)

≥
∥
∥u0 − uh

∞

∥
∥

V−(R2)
−
∥
∥u0 − uh

∞

∥
∥

V−(R2\Ωn0)
− cs

3 k
3.5h3 ≥ cs

3 k
3.5h3

(5.24)
is satisfied. Combining assumptions (5.22) and (5.24), we obtain

cs
3
k3.5h3 ≤ c (hk)

2
.(5.25)

Let k → ∞ and h be chosen such that k3.5h3 = 1, i.e., h = k−3.5/3. There-
fore, (hk)

2
= k−1/3 tends to zero for k → ∞. Hence, for k → ∞, the left-hand

side of (5.25) is cs/3, while the right-hand side tends to zero, which contradicts our
assumption.

This theorem shows that the pollution effect is unavoidable in two dimensions.
However, this theorem does not make any assertion about the size of the pollution for
a fixed domain. From this theorem it is clear that a GFEM which satisfies

∥
∥uk,β0,β1

− uh
fe

∥
∥

−
≤ Ck3.5h3

has “optimal” interior stencils. In the following appendix it will be explained how
such stencils can be constructed. These insights have been used in [6] to design a
GFEM with minimal pollution.
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6. Appendix. In this appendix we will prove Theorem 5.3.
We use the notations introduced in section 3. We will consider an infinite matrix

G ∈ M that has a constant nine-point stencil,

G =





G1 G2 G2

G1 G0 G1

G2 G1 G2



 ,(6.1)

and that satisfies conditions A1–A5. Let uh ∈ S⋆ denote a solution of

Guh = 0,(6.2)

which is identified with a finite element function uh ∈ Sh via uh := Ehuh. We will
discuss here the question of which precision functions of the type

u0 (x) =
k

4π

∫ β1

β0

e−ik(x1 cos β+x2 sin β)dβ

can be approximated by solutions of (6.2). We recall the definition of the norms ‖·‖±
(see section 5.2). Using Lemma 5.1, the error u0 − uh can be expressed by

‖u0 − uh‖− = sup
w∈H1(R2)

∣
∣
∫

R2 (ũ0 − ũh) (σ) w̄ (σ) dσ
∣
∣

2π ‖w‖H1(R2)

.(6.3)

In view of (6.3) we will now compute the Fourier transformation of a finite element
function uh corresponding to a solution uh of (6.2), while ũ0 is given by (5.12).

LEMMA 6.1. The discrete Fourier transform of any solution ũh ∈ S⋆ of (6.2)
satisfies

ĝ (σ) ũh (σ) = 0,(6.4)

with

ĝ (σ) := G0 + 2G1 (cosσ1 + cosσ2) + 4G2 cosσ1 cosσ2

in the distributional sense.
Proof. Let e1 = (1, 0)

T
and e2 = (0, 1)

T
. The proof follows from

G̃uh (σ) =
∑

ν∈Z2 (Guh)ν e
i〈σ,ν〉

=
∑

ν∈Z2

(
G0 (uh)ν +G1

(
(uh)ν+e1

+ (uh)ν−e1
+ (uh)ν+e2

+ (uh)ν−e2

)

+ G2

(
(uh)ν−e1−e2

+ (uh)ν+e1−e2
+ (uh)ν−e1+e2

+ (uh)ν+e1+e2

))
ei〈σ,ν〉

= G0ũh (σ) +G1

(
e−i〈σ,e1〉ũh (σ) + ei〈σ,e1〉ũh (σ) + e−i〈σ,e2〉ũh (σ)

+ ei〈σ,e2〉ũh (σ)
)

+ G2

(
ei〈σ,e1+e2〉ũh (σ) + ei〈σ,−e1+e2〉ũh (σ)

+ ei〈σ,e1−e2〉ũh (σ) + ei〈σ,−e1−e2〉ũh (σ)
)

= ĝ (σ) ũh (σ) .

From assumption A5, it follows that G0 6= 0 is fulfilled for sufficiently small kh;
thus, the function g is well defined:

g (σ) = 4 + 2g1 (cosσ1 + cosσ2) + 4g2 cosσ1 cosσ2,
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with

g1 = 4
G1

G0
, g2 = 4

G2

G0
.

Using A5, the coefficients g1 and g2 can be expanded accordingly:
(a) g1 =

∑∞
m=0 bmα

2m,
(b) g2 =

∑∞
m=0 cmα

2m,
with α = kh.

Note that conditions (5.7) imply that

1 + b0 + c0 = 0,

b0 + 2c0 6= 0.
(6.5)

In view of (6.4) we conclude that

supp ũh ⊂ N 1
G :=

{
σ ∈ R2 | g (σ) = 0

}
.

For later use we define the scaled set N h
G

by

N h
G :=

{
σ ∈ R2 | g (hσ) = 0

}
.

The relation of the discrete Fourier transform of a solution uh of (6.2) and the (in-
tegral) Fourier transform of the corresponding finite element function is discussed in
the following lemma.

LEMMA 6.2. Let uh = Ehuh denote the finite element function corresponding to
a solution uh of (6.2). Then, we have

supp ũh ⊂ N h
G.

Proof. The inverse of the discrete Fourier transform is given by

(uh)ν =
1

4π2

∫

[−π,π[2
ũh (σ) e−i〈ν,σ〉dσ.

Therefore, the Fourier transform of the corresponding finite element function can be
written in the following form:

ũh (σ) =
∑

ν∈Z2

φ̃h
ν (σ)

1

4π2

∫

[−π,π[2
ũh (s) e−i〈ν,s〉ds,(6.6)

with φh
ν denoting the bilinear basis functions. Explicit calculations yield that

φ̃h
ν (σ) =

16 sin2 hσ1

2 sin2 hσ2

2

h2σ2
1σ

2
2

eih〈σ,ν〉.(6.7)

Inserting (6.7) into (6.6) results in

ũh (σ) =
16 sin2 hσ1

2 sin2 hσ2

2

h2σ2
1σ

2
2

∫

[−π,π[2
ũh (s)

(

1

4π2

∑

ν∈Z2

ei〈ν,hσ−s〉

)

ds.

Using the well-known relation

1

4π2

∑

ν∈Z2

ei〈ν,σ−s〉 =
∑

ν∈Z2

δ (σ − s+ 2πν) ,
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whereas δ denotes the Dirac point functional, one obtains

ũh (σ) =
16 sin2 hσ1

2 sin2 hσ2

2

h2σ2
1σ

2
2

∑

ν∈Z2

∫

[−π,π[2
ũh (s) δ (hσ − s+ 2πν) ds

=
16 sin2 hσ1

2 sin2 hσ2

2

h2σ2
1σ

2
2

∑

ν∈Z2

ũh (hσ + 2πν) .

If σ /∈ N h
G

then hσ /∈ N 1
G

. Using the periodicity of g (σ) it is obvious that hσ /∈ N 1
G

implies hσ + 2πν /∈ N 1
G

resulting in ũh (hσ + 2πν) = 0. Consequently, we conclude
that if σ /∈ N h

G
then ũh (σ) = 0, which completes the proof.

The norm ‖u0 − uh‖− will be estimated as follows. For given GFEM we will

choose u0, i.e., β0, β1, such that supp ũ0 ∩ suppũh = ∅ and a function η ∈ H1
(
R2
)
,

having the property that

D := supp η ∩ N h
G = ∅.

Under these assumption and taking into account (6.3) and (5.12), the norm ‖u0 − uh‖−
can be estimated from below by

‖u0 − uh‖− ≥

∣
∣
∣

∫

suppũ0
η̄ (σ) dσ

∣
∣
∣

2π ‖η‖H1(R2)

.

To determine the domain D we will use the following lemma.
LEMMA 6.3. Let G ∈M be an arbitrary but fixed matrix, fulfilling A1–A5. We

assume that kh is sufficiently small. Then there exist positive constants c0 and cs,
independent of h and k, but possibly dependent on the stencils (Gt)m (cf. A4) and

constants β̃0, β̃1 ∈ [−π, π] having the property that

β̃0 − β̃1 ≥ c0

such that

D1 :=

{

σ = r

(
cosβ
sinβ

)∣
∣
∣
∣

∀r ∈
[
kh− csk

7h7, kh+ csk
7h7
]
, β ∈

[

β̃0, β̃1

]}

∩ N 1
G = ∅.

Proof. We have to show that σ ∈ N 1
G

implies that σ /∈ D1. Therefore, we
investigate the roots of g (σ). The zeros of g are 2π-periodic; i.e., if g (σ) = 0, then
g (σ + 2πν) = 0 for all ν ∈ Z2. In view of the definition of D1, we are interested only
in the zeros of g which are of order hk, i.e., are small. We make the following ansatz
using the abbreviation α := kh:

σ = r (β, α)

(
cosβ
sinβ

)

(6.8)

with r : [−π, π[ × R+ → R+,

r (β, α) = α+

∞∑

m=1

rm (β)α2m+1.(6.9)
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To simplify the notation we write r = r (β, α) , rm = rm (β). Formally, we set r0 = 1.
We make use of the abbreviations

κn =

(
− cos2 β

)n

(2n)!
, λn =

(
− sin2 β

)n

(2n)!
, (κ ⋆ λ)n =

n∑

m=0

κmλn−m,

and

ρ2n,m =







δ0,m if n = 0,


 r ⋆ r ⋆ · · · ⋆ r
︸ ︷︷ ︸

2n-fold convolution





m

otherwise,

with δn,m denoting the Kronecker delta and r = (r0, r1, . . .)
T
. We state that

(

α+

∞∑

m=1

rmα
2m+1

)2n

= α2n
∞∑

m=0

ρ2n,mα
2m,

which will be used later.
Using ansatz (6.8), the condition g (σ) = 0 is equivalent to

g (r cosβ, r sinβ) = 4+2g1 (cos (r cosβ) + cos (r sinβ))+4g2 cos (r cosβ) cos (r sinβ) = 0.

Replacing cos (r cosϕ) and cos (r sinϕ) by the corresponding Taylor series about r = 0
and inserting expansions (a), (b), and (6.9) results in

4 + 2g1
∑∞

n=0 (κn + λn) r2n + 4g2
∑∞

n=0 κnr
2n
∑∞

n=0 λnr
2n

= 4 + 2
∑∞

l=0 blα
2l
∑∞

n=0 (κn + λn)α2n
∑∞

m=0 ρ2n,mα
2m

+ 4
∑∞

l=0 clα
2l
∑∞

n=0 (κ ⋆ λ)n α
2n
∑∞

m=0 ρ2n,mα
2m

= 4 + 2
∑∞

l=0 blα
2l
∑∞

n=0 α
2n
∑n

m=0 (κm + λm) ρ2m,n−m

+ 4
∑∞

l=0 clα
2l
∑∞

n=0 α
2n
∑n

m=0 (κ ⋆ λ)m ρ2m,n−m

= 4 + 4
∑∞

l=0 α
2l
(
∑l

m=0 bl−m

∑m
n=0

κn+λn

2 ρ2n,m−n

+
∑l

m=0 cl−m

∑m
n=0 (κ ⋆ λ)n ρ2n,m−n

)

= 4 + 4
∑∞

l=0 α
2l
(
∑l

n=0

∑l
m=n bl−m

κn+λn

2 ρ2n,m−n + cl−m (κ ⋆ λ)n ρ2n,m−n

)

= 4 + 4
∑∞

l=0 α
2l
∑l

n=0

∑l−n
m=0 ρ2n,m

(
bl−n−m

κn+λn

2 + cl−n−m (κ ⋆ λ)n

) !
= 0.

We conclude that the condition “
!
=” is equivalent to the conditions

γ0 := 4 + 4 (b0 + c0) = 0(6.10)

and

γl :=
l∑

n=0

l−n∑

m=0

ρ2n,m

(

bl−n−m
κn + λn

2
+ cl−n−m (κ ⋆ λ)n

)

= 0 ∀l ≥ 1.(6.11)
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Condition (6.10) is fulfilled by using (6.5). Condition (6.11) can be rewritten in
the form

−rl−1

2
(b0 + 2c0) + l.o.t = 0.(6.12)

(The abbreviation l.o.t. denotes the remaining sum of (6.11) containing only functions
rj with j < l − 1.) In view of (6.5), relation (6.12) serves as a recursion formula for
the functions rj .

In the following, we will show that it is impossible to choose the stencil coefficients
(Gt)m of A4 (or equivalently the coefficients bm, cm of g1,2) such that all coefficients
rj (β) of expansion (6.9) vanish.

For l = 0 and l = 2, conditions (6.10) and (6.11) can be written in the explicit
form.
l = 0 :

1 + (b0 + c0) = 0.(6.13)

l = 2 :

b2 + c2 − b1 + 2c1
4

+
3 (b0 + 4c0) + (b0 − 4c0) cos 4β

192
=
r1 (β)

2
(b0 + 2c0) .(6.14)

A necessary condition for r1 (β) ≡ 0 is that (6.13) and b0 − 4c0 = 0 are satisfied,
yielding

b0 = −4

5
, c0 = −1

5
.(6.15)

Inserting (6.15), condition (6.11) for l = 1 and l = 3 takes the following form.
l = 1 :

b1 + c1 +
3

10
= 0.(6.16)

l = 3 :

b3 + c3 − b2 + 2c2
4

+
3 (b1 + 4c1) + (b1 − 4c1) cos (4β)

192
+

5 − cos (4β)

4800
= −3

5
r2 (β) .

Again, a necessary condition for r2 (β) ≡ 0 is that (6.16) and

(b1 − 4c1) cos (4β)

192
− cos (4β)

4800
= 0

hold, resulting in

b1 = − 29

125
, c1 = − 17

250
.(6.17)

Using (6.15) and (6.17), condition (6.11) for l = 2 and l = 4 can be written in
the following form.
l = 2 :

b2 + c2 +
67

1000
= 0.
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l = 4 :

3

5
r3 (β) =

1427

4608000
+ b4 + c4 − b3 + 2c3

4
+
b2 + 4c2

64

−
(

131

1920000
− b2 − 4c2

192

)

cos (4β) − cos (8β)

1290240
.

(6.18)

Now, it is impossible to choose b2 and c2 in such a way that r3 (β) vanishes
identically. That means for any stencil (Gt)m there exist values of β such that r3 (β) 6=
0. By easy analysis one obtains that the number of extrema of r3 (β) is bounded by

16. Therefore, it is possible to choose β̂0 and β̂1 with β̂1 − β̂0 ≥ 2π
32 such that

sup
β∈[β̂0,β̂1]

|r3 (β)| ≥ ĉ,

while ĉ is independent of h and k, but possibly depends on (Gt)m. Consequently, if
α = hk is sufficiently small, the function r of (6.9) can be estimated by

|r (β, α) − α| ≥ csα
7

for all β ∈
[

β̃0, β̃1

]

with β̃0, β̃1 ∈
[

β̂0, β̂1

]

and β̃1 − β̃0 ≥ c, while c and cs do not

depend on k and h.
The set N h

G
is defined by a suitable scaling of N 1

G
; thus, by using the previous

lemma, it follows that the scaled domain

Dh :=

{

σ = r

(
cosβ
sinβ

)∣
∣
∣
∣

∀r ∈
[
k − csk

7h6, kh+ csk
7h6
]
, β ∈ [β0, β1]

}

satisfies

Dh ∩ N h
G = ∅.

We are now able to prove Theorem 5.3.
Proof of Theorem 5.3. Let β̃0, β̃1 be defined as in the proof of Lemma 6.3. We

had assumed that the wave number k ≥ k0 > 0 is bounded from below, and hence

that there exists β0, β1 ∈
[

β̃0, β̃1

]

with

β1 − β0 =
cA
k
.

Let the function η be defined by

η (σ) = η (r cosβ, r sinβ) := ρ (r)χ (β)

with

ρ (r) :=







r−k+δ
δ if r ∈ [k − δ, k] ,

δ+k−r
δ if r ∈ [k, k + δ] ,

0 otherwise,

whereas δ := csk
7h6 with cs from Lemma 6.3 and

χ (β) :=







sin
(

β−β1

β0−β1
π
)

if β ∈ [β0, β1] ,

0 otherwise.
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The function η has the property that supp η ⊂ Dh. We will use the function η to
estimate the right-hand side of

‖u0 − uh‖− = supw∈H1(R2)

∣
∣
∣

∫

Ak
ũ0 (σ) w̄ (σ) dσ −

∫

suppũh
ũh (σ) w̄ (σ) dσ

∣
∣
∣

2π ‖w‖H1(R2)

≥

∣
∣
∣

∫

Ak
ũ0 (σ) η (σ) dσ −

∫

suppN h
G

ũh (σ) η (σ) dσ
∣
∣
∣

2π ‖η‖H1(R2)

,

while the set Ak is defined by

Ak :=

{

σ = k

(
cosβ
sinβ

)

,∀β ∈ [β0, β1]

}

.

We have that supp ũh ⊂ N h
G

, and by construction, supp η ∩ N h
G

= ∅. Using (5.12),
one obtains

‖u0 − uh‖− ≥

∣
∣
∣

∫

Ak
η (σ) dσ

∣
∣
∣

2π ‖η‖H1(R2)

.

The proof of Theorem 5.3 is given by showing that the function η satisfies
∣
∣
∣
∣

∫

Ak

η (σ) dσ

∣
∣
∣
∣
=

2cA
π

(6.19)

and

‖η‖H1(R2) =

√
(
δ

3
+

1

δ

)

cA +
k

cA
· (k + δ)

2
log k+δ

k − (k − δ)
2
log k−δ

k − 2kδ

δ2
π2

2

=

√
√
√
√cA

δ
+
c2A + π2

3cA
δ + δO

((
δ

k

)2
)

≤ c√
δ

(6.20)

for sufficiently small hk.
Statement (6.19) follows from

∣
∣
∫

A ηdµ
∣
∣ = k

∣
∣
∣

∫ β1

β0
η (k cosβ, k sinβ) dβ

∣
∣
∣ = k

∣
∣
∣

∫ β1

β0
χ (β) dβ

∣
∣
∣ = k

∣
∣
∣
∣

∫ β1

β0
sin

(
β − β1

β0 − β1
π

)

dβ

∣
∣
∣
∣

=
k (β1 − β0)

π
cos

(
β − β1

β0 − β1
π

)∣
∣
∣
∣

β1

β0

=
2cA
π
.

To prove estimate (6.20), we proceed as follows:

‖η‖2
H1(R2) =

∫ k+δ

k−δ

∫ β1

β0
rρ (r)

2
sin2

(
β − β1

β0 − β1
π

)

dβdr

+
∫ k+δ

k−δ

∫ β1

β0
r

(
∂ρ (r)

∂r

)2

sin2

(
β − β1

β0 − β1
π

)

dβdr

+
∫ k+δ

k−δ

∫ β1

β0

1
rρ (r)

2

(
∂

∂β
sin

(
β − β1

β0 − β1
π

))2

dβdr.
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Explicit calculations yield

‖η‖2
H1(R2) = k (β1 − β0)

(
δ

3
+

1

δ

)

+
π2

2 (β1 − β0)

(k + δ)
2
log k+δ

k − (k − δ)
2
log k−δ

k − 2kδ

δ2

=

(
δ

3
+

1

δ

)

cA +
kπ2

2cA

(
1 + δ

k

)2
log
(
1 + δ

k

)
−
(
1 − δ

k

)2
log
(
1 − δ

k

)
− 2 δ

k
(

δ
k

)2 .

Using the Taylor expansion about δ
k = 0, we conclude that

‖η‖2
H1(R2) =

(

cA
δ

+

(
c2A + π2

)
δ

3cA
+ δO

((
δ

k

)2
))

.

In the theorem, we assumed that k3.5h3 is bounded; therefore, δ = csk
7h6 is also

bounded. Hence, one obtains from the equation above that

‖η‖2
H1(R2) ≤ c

δ
.
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[5] I. BABUŠKA, M. PRÁGER, AND E. VITÁSEK, Numerical Processes in Differential Equations,

Wiley, New York, 1966.
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[15] F. IHLENBURG AND I. BABUŠKA, Finite element solution to the Helmholtz equation with high
wave number. Part I: The h-version of the FEM, Comput. Math. Appl., 39 (1995), pp.
9–37.
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