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Abstract

Quantifying the evolution of security co-movements is critical for asset pricing and portfolio

allocation, and so we investigate patterns and trends in correlations and tail dependence over

time using weekly returns for developed markets (DMs) and emerging markets (EMs) during

the period 1973-2009. We use the standard DCC and DECO correlation models, but we also

develop a nonstationary DECO model as well as a novel dynamic skewed t-copula to allow

for dynamic and asymmetric tail dependence. We show that it is possible to characterize co-

movements for many countries simultaneously. Correlations have significantly trended upward

for both DMs and EMs, but correlations between EMs are lower than between DMs. The tail

dependence has also increased for both EMs and DMs, but its level is still very low for EMs

as compared to DMs. Thus, while our correlation analysis suggests that the diversification

potential of EMs has reduced over time, the tail dependence analysis suggests that EMs offer

diversification benefits during large market moves.
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1 Introduction

Understanding and quantifying the evolution of security co-movements is critical for asset pricing

and portfolio allocation. The traditional case for international diversification benefits has relied

largely on the existence of low cross-country correlations. Initially, the literature studied developed

markets, but over the last two decades much of the focus has shifted to the diversification ben-

efits offered by emerging markets.1 Two critical questions, with important implications for asset

allocation and international diversification, are of special interest for academics and practitioners

alike.

First, how have cross-country correlations changed through time? It is far from straightforward

to address this ostensibly simple question without making additional assumptions. Computing

rolling correlations is subject to well-known drawbacks. Multivariate GARCH models, as for exam-

ple in Longin and Solnik (1995), seem to provide a solution, but the implementation of these models

using large numbers of countries is subject to well known dimensionality problems, as discussed by

Solnik and Roulet (2000). As a result, most of the available evidence on the time-variation in cross-

country correlations is based on factor models.2 In a recent paper, Bekaert, Hodrick, and Zhang

(2009) convincingly argue that the evidence from this literature is mixed at best and state that (see

p. 2591): “It is fair to say that there is no definitive evidence that cross-country correlations are

significantly and permanently higher now than they were, say, 10 years ago.” Bekaert, Hodrick, and

Zhang (2009) proceed to investigate international stock return co-movements for 23 DMs during

1980-2005, and find an upward trend in return correlations only among the subsample of European

stock markets, but not for North American and East Asian markets.

The second question is whether correlation is a satisfactory measure of dependence in inter-

national markets, or if we need to consider different measures, notably those that focus on the

dependence between tail events? This question is related to the analysis of changes in correlation

as a function of business cycle conditions or stock market performance. Following the seminal pa-

per by Longin and Solnik (2001) and the corroborating evidence of Ang and Bekaert (2002), the

1For early studies documenting the benefits of international diversification, see Solnik (1974) for developed markets
and Errunza (1977) for emerging markets. For more recent evidence, see for example Erb, Harvey and Viskanta
(1994), DeSantis and Gerard (1997), Errunza, Hogan and Hung (1999), and Bekaert and Harvey (2000).

2King, Sentana, and Wadhwani (1994) do not find evidence of increasing cross-country correlations for 16 devel-
oped markets during the period 1970-1988, except around the market crash of 1987. Carrieri, Errunza, and Hogan
(2007) do not find a common pattern in the correlation trend for eight emerging markets (EMs) during 1977-2000. Eil-
ing and Gerard (2007) find an upward time trend in co-movements between 24 developed markets but not between
26 emerging markets over the period 1973-2005. Goetzmann, Li, and Rouwenhorst (2005) document substantial
changes in the correlation structure of world equity markets over the past 150 years. Baele and Inghelbrecht (2009)
report increasing correlations over the period 1973-2007 for their sample of 21 DMs. See also Karolyi and Stulz
(1996), Forbes and Rigobon (2002), Brooks and Del Negro (2003), and Lewis (2006).
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hypothesis that cross-market correlations rise in periods of high volatility has been supplanted by

the notion that correlations increase in bear markets, but not in bull markets.3 Longin and Solnik

(2001) use extreme value theory in bivariate monthly models for the U.S. with either the U.K.,

France, Germany, or Japan during 1959-1996. Ang and Bekaert (2002) develop a regime switching

dynamic asset allocation model, and estimate it for the U.S., U.K., and German system over the

period 1970-1997. Both papers estimate return exceedances at predetermined threshold values, i.e.

they define the tail observations ex ante, and then compute unconditional correlations for the tail

for a small sample of developed markets.4

This paper substantially contributes to our understanding of both these important questions.

Regarding the patterns and trends in correlations over time, we argue that recent advances make

it feasible to overcome dimensionality and convergence problems in international finance applica-

tions. We characterize time-varying correlations using weekly returns during the 1973-2009 period

for a large number of countries (either thirteen or seventeen EMs, sixteen DMs, as well as combi-

nations of the EM and DM samples), without relying on a factor model. We implement models

that overcome the dimensionality problems, and that are easy to estimate. To do so, we rely on

the variance targeting idea in Engle and Mezrich (1996) and the numerically efficient composite

likelihood procedure proposed by Engle, Shephard and Sheppard (2008). To our knowledge, we

are the first to apply the composite likelihood estimation procedure, and therefore the first to be

able to estimate dynamic correlation models, on large sets of international equity data using weekly

returns. We use the flexible dynamic conditional correlation (DCC) model of Engle (2002) and Tse

and Tsui (2002), as well as the dynamic equicorrelation (DECO) model of Engle and Kelly (2009)

that can be estimated on large sets of assets using conventional maximum likelihood estimation. We

thus demonstrate that it is possible to estimate correlation patterns in international markets using

large numbers of countries and extensive time series, without relying on a factor model that may

bias inference. Our implementation is relatively straightforward and computationally fast, which

allows us to report results using several estimation approaches, while assessing the robustness of

our findings.

Regarding the second question, the DECO and DCC correlation models with normal innova-

tions do not generate the kind of tail dependence required by the data. Hence, we introduce copula

approaches to capture nonlinear dependence across markets. We fit the tails of the marginal distri-

butions using the Generalized Pareto distribution (GP), and the joint distribution is modeled using

3On tail dependence, see also Poon, Rockinger, and Tawn (2004). On the related topic of contagion, see for
example Forbes and Rigobon (2002), Bekaert, Harvey, and Ng (2005), and Bae, Karolyi, and Stulz (2003).

4A related literature explores the relationship between industrial structure and the dynamics of equity market
returns and cross-country correlations. See for instance Roll (1992), Heston and Rouwenhorst (1994), Griffin and
Karolyi (1998), Dumas, Harvey and Ruiz (2003), and Carrieri, Errunza and Sarkissian (2007).
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time-varying copulas. We develop a novel skewed dynamic t-copula which allows for asymmetric

and dynamic tail dependence in large portfolios.

Thus, we contribute to the literature in several ways. First, we demonstrate that it is possible

to model correlation dynamics and tail dependence in international markets using large samples,

without relying on factor models. Second, we extend existing results to a more recent period

characterized by significant liberalizations for the EM sample, as well as substantial market turmoil

during 2007-2009, which helps identify tail dependence. Third, we build a new correlation model

with a nonstationary low-frequency component. Fourth, we develop a new fully-specified dynamic

model that can capture nonlinear and asymmetric dependence in a large number of equity markets.

Our results based on DCC and DECO models are extremely robust and suggest that correlations

have been significantly trending upward for both DMs and EMs. However, the correlation between

DMs has been higher than the correlation between EMs at all times in the sample. For developed

markets, the average correlation with other developed markets is higher than the average correlation

with emerging markets. For emerging markets, the correlation with developed markets is generally

somewhat higher than the correlation with the other emerging markets. However, the differences are

small. When dividing our sample into four regions: EU and non-EU, Latin America and Emerging

Eurasia we find that the correlation between all four regions have gone up and so has the average

correlation within each region. While the range of correlations for DMs has narrowed around the

increasing trend in correlation levels, this is not the case for EMs. Emerging markets thus still offer

substantial correlation-based diversification benefits to investors.

Our robust finding of an upward trend in correlations is all the more remarkable because the

parametric models we use enforce mean-reversion in volatilities and correlation, and we estimate

the models using long samples of weekly returns. The data clearly pull the models away from the

average correlation, and any reversion to the mean is temporary in the samples we investigate.

In order to explicitly address the issue of nonstationarity in correlations we develop a new two-

component correlation model which includes a nonstationary long-run correlation component. We

refer to this model as Spline DECO and when estimated it confirms the upward trends in correlation

across DMs and EMs.

We find overwhelming evidence that the assumption of multivariate normality is inappropriate.

Results from the dynamic t-copula indicate substantial tail dependence. Moreover, tail dependence

as measured by the skewed t-copula is asymmetric and increasing through time for both EMs and

DMs. However, the most striking finding is that the level of the tail dependence is still very low

at the end of the sample period for EMs as compared to DMs. Our findings on tail dependence

thus suggest that EMs have offered diversification benefits for large market moves. The underlying

intuition for this finding is that while financial crises in EMs are frequent, many of them are
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country-specific. From this perspective the diversification benefits from adding emerging markets

to a portfolio thus appear to be significant. Thus, we are able to compare the stylized facts for EMs

vis-à-vis those for DMs and provide evidence corroborating the findings of Ang and Bekaert (2002)

regarding the benefits of international diversification. Indeed, our results suggest that although

such benefits might have lessened in the case of DMs, the case for EMs remains strong.

The paper proceeds as follows. Section 2 provides a brief outline of DCC and DECO correlation

models, with special emphasis on the estimation of large systems. Section 3 presents the data, as

well as empirical results on time variation in linear correlations. Section 4 builds and estimates a new

set of copula models with dynamic tail dependence, asymmetry and dynamic copula correlations.

Section 5 analyzes the EM correlations further and develops the new two-component correlation

model that includes a nonstationary long-run correlation component. Section 6 concludes.

2 Dynamic Dependence Models for Many Equity Markets

This section outlines the various models we use to capture the dynamic dependence across equity

markets. We describe how the dynamic conditional correlation model of Engle (2002) and Tse and

Tsui (2002) can be implemented simultaneously on many assets.

2.1 The Dynamic Conditional Correlation Approach

In the existing literature, the scalar BEKK model has been the standard econometric approach

for capturing dynamic dependence.5 The implementation of multivariate GARCH models have

traditionally used a limited number of countries because of dimensionality problems.6 Further,

the defining characteristic of the scalar BEKK model is that the parameters are identical across

all conditional variances and covariances dynamics. This common persistence across all variances

and covariances is clearly restrictive. Cappiello, Engle and Sheppard (2006), have found that the

persistence in correlation differs from that in variance when looking at international stock and bond

markets.7

Equally important is the restriction that the functional form of the variance dynamic is required

5The BEKK model is most often used to estimate factor models with a GARCH structure. See for instance
DeSantis and Gerard (1997, 1998), and Carrieri, Errunza, and Hogan (2007) for examples. See Ramchand and
Susmel (1998), Baele (2005), and Baele and Inghlebrecht (2009) for more general multivariate GARCH models with
regime switching.

6See for instance Solnik and Roulet (2000), Longin and Solnik (1995) and Karolyi (1995) for early examples of
bivariate models.

7See Kroner and Ng (1998) and Solnik and Roulet (2000) for a more elaborate discussion of the restrictions
imposed in the first generation of multivariate GARCH models.
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to be identical to the form of the covariance dynamic. This rules out for example the so-called

leverage effect in volatility, which has been found to be an important stylized fact in equity index

returns (see for example Black, 1976, and Engle and Ng, 1993). The leverage effect is really an

asymmetric volatility response that captures the fact that a large negative shock to an equity market

increases the equity market volatility by much more than a positive shock of the same magnitude.

Hence, we implement the flexible dynamic conditional correlation (DCC) model of Engle (2002)

and Tse and Tsui (2002).8 Allowing for the leverage effect in conditional variance, we assume that

the return on asset i at time t follows the dynamic

Ri,t = µi,t + εi,t = µi,t + σi,tzi,t (2.1)

σ2i,t = ωi + αi (εi,t−1 − θiσi,t−1)2 + βiσ2i,t−1. (2.2)

Because the covariance is just the product of correlations and standard deviations, we can write

Σt = DtΓtDt (2.3)

where Dt has the standard deviations σi,t on the diagonal and zeros elsewhere, and where Γt has

ones on the diagonal and conditional correlations off the diagonal.

We implement the modified DCC model discussed in Aielli (2009), in which the correlation

dynamics are driven by the cross-products of the return shocks

Γ̃t = ΩΓ + βΓΓ̃t−1 + αΓz̃t−1z̃
>

t−1 (2.4)

where z̃i,t = zi,t

√
Γ̃ii,t. These cross-products are used to define the conditional correlations via the

normalization

ΓDCCij,t = Γ̃ij,t/

√
Γ̃ii,tΓ̃jj,t. (2.5)

This normalization ensures that all correlations remain in the −1 to 1 interval.
If N denotes the number of equity markets under study then the DCC model has N(N−1)/2+2

parameters to be estimated. Below we will study up to 17 emerging markets and 16 mature

markets, thus N = 33 and so the DCC model will have 530 parameters. It is well recognized

in the literature that it is impossible to estimate these parameters reliably due to the need to use

numerical optimization techniques, see for instance Solnik and Roulet (2000) for a discussion. In

order to operationalize estimation, we follow for example DeSantis and Gerard (1997) who rely on

8Our findings still hold when using the BEKK approach. Results using the BEKK model are available upon
request.
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the targeting idea in Engle and Mezrich (1996).

Taking expectations on both sides of (2.4) and solving for the unconditional correlation matrix

Γ̃ of the vector z̃t, yields

Γ̃ = ΩΓ/ (1− α− β) . (2.6)

Note that this relationship enables us to rewrite the DCC model in a more intuitive form

Γ̃t = (1− αΓ − βΓ) Γ̃ + βΓΓ̃t−1 + αΓz̃t−1z̃>t−1 (2.7)

which shows that the conditional correlation in DCC is a weighted average of the long-run correla-

tion, yesterday’s conditional correlation, and yesterday’s innovation cross-product.

Now, if we use the sample correlation matrix, Γ̂ = 1

T

∑T

t=1 z̃tz̃
>

t as an estimate of the uncon-

ditional correlation matrix, Γ̃, then the numerical optimizer only has to search in two dimensions,

namely over αΓ and βΓ, rather than in the original 530 dimensions. Note that this implementation

also ensures that the estimated DCC model yields a positive definite correlation matrix, because

z̃tz̃
>

t and thus Γ̂ is positive definite by construction. Appendix A contains more detail on the

implementation of correlation targeting in the DCC model.

Even when using correlation targeting, estimation is cumbersome in large-dimensional problems

due to the need to invert the N by N correlation matrix, Γt, on every day in the sample for every

likelihood evaluation. The likelihood in turn must be evaluated many times in the numerical opti-

mization routine. More importantly, Engle, Shephard and Sheppard (2008) find that in large-scale

estimation problems, the parameters α and β which drive the correlation dynamics are estimated

with bias when using conventional estimation techniques. They propose an ingenious solution based

on the composite likelihood defined as

CL(α, β) =

T∑

t=1

N∑

i=1

∑

j>i

ln f(α, β; zit, zjt) (2.8)

where f(α, β; zit, zjt) denotes the bivariate normal distribution of asset pair i and j and where

correlation targeting is imposed.

The composite log-likelihood is thus based on summing the log-likelihoods of pairs of assets. Each

pair yields a valid (but inefficient) likelihood for α and β, but summing over all pairs produces an

estimator which is relatively efficient, numerically fast, and free of bias even in large-scale problems.

We use the composite log-likelihood in all our estimations below. We have found it to be very

reliable and robust, effectively turning a numerically impossible task into a manageable one. To the

best of our knowledge, we are the first to apply the composite likelihood estimation procedure to
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the estimation of large systems of international equity data using long time series of weekly returns,

which are needed for the identification of variance and covariance patterns, and therefore the first

to be able to estimate dynamic correlation models for such large systems.

2.2 The Dynamic EquiCorrelation Approach

The dynamic equicorrelation (DECO) model in Engle and Kelly (2009) can be viewed as a special

case of the DCC model in which the correlations are equal across all pairs of countries but where

this common so-called equicorrelation is changing over time. The resulting dynamic correlation can

be thought of as an average dynamic correlation between the countries included in the analysis.

Following Engle and Kelly (2009), we parameterize the dynamic equicorrelation matrix as

ΓDECOt = (1− ρt)IN + ρtJN×N

where ρt is a scalar, IN denotes the n-dimensional identity matrix and JN×N is an N × N matrix

of ones.

The scalar dynamic equicorrelation, ρt, is obtained by taking the cross-sectional average each

period of the DCC conditional correlation matrix in (2.5)

ρt =
1

N(N − 1)
(
J1×NΓ

DCC
t JN×1 −N

)
. (2.9)

Note that subtracting N eliminates the trivial term arising from the ones on the diagonal of ΓDCCt .

The determinant of the DECO correlation matrix is simply

∣∣ΓDECOt

∣∣ = (1− ρt)N−1 (1 + (N − 1) ρt)

and from this we can derive the inverse correlation matrix as

(
ΓDECOt

)−1
=

1

(1− ρt)
[IN −

ρt
1 + (N − 1)ρt

JN×N ].

The simple structure of the inverse correlation matrix ensures that the model can be estimated

on large sets of assets using conventional maximum likelihood estimation. The dynamic correlation

parameters, αΓ and βΓ embedded in ρt will not be estimated with bias even when N is large.
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2.3 Measuring Conditional Diversification Benefits

If correlations are changing over time, then the benefits of portfolio diversification will be changing

as well. We therefore need to develop a dynamic measure of diversification benefits. First define

portfolio volatility generically as

σPF,t ≡
√
w>Σtw

Consider then the extreme case where there does not exist any diversification benefits, that is,

the correlation matrix Γt is a matrix of ones. The portfolio volatility in this case at time t can be

expressed as

σ̄PF,t =
√
w>DtJN×NDtw = w

>σt

where Dt is defined as in (2.3) and where σt and Σt denote respectively the vector of individual

volatilities and the covariance matrix at time t.

The opposite extreme would correspond to each pair of assets having a correlation of −1 in
which case it is possible to find a portfolio weight such that the portfolio volatility is 0.

Using these upper and lower bounds of portfolio volatility, we define the conditional diversifica-

tion benefit as

CDBt =
σ̄PF,t − σPF,t

σ̄PF,t
= 1−

√
w>Σtw

w>σt
. (2.10)

This measure describes the level of diversification benefits in a concise manner. It is increasing

as the correlations decrease, and it is normalized to lie between 0 and 1.

When computing CDBt one must first decide on the portfolio weights in the vector w. First, each

week we could choose the weights that maximize CDBt.
9 Second, we could construct the minimum

variance portfolio each week and compute the CDBt value corresponding to this portfolio. We

follow the second approach and further impose that the weights sum to one and are non-negative.

The portfolio weights and thus the CDBt will depend on the asset volatilities as well as correla-

tions. If we want to focus on the contribution to CDBt coming from the dynamic correlations then

we could assume that the conditional volatility is the same across assets but not constant across

time

σi,t = σj,t for all i, j

then we have

CDBEQVt = 1−
√
w>Γtw

w>JN×1
= 1−

√
w>Γtw. (2.11)

Note that in the special case that all correlations are equal to one, the optimal weight maximizing

9See Choueifaty and Coignard (2008).
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the measure will be 1/N for all assets, and CDBEQVt will be zero as in the case of (2.10). If all the

correlations are zero, then CDBEQVt = 1 −
√
w>w and the optimal weights are again 1/N . The

measure is then equal to 1− 1/N , and therefore close to one when N is large.

3 Empirical Correlation Analysis

This section contains our empirical correlation results. We first describe the different data sets

that we use and briefly discuss the univariate models. We then analyze the time-variation in linear

correlations. Subsequently we measure the dispersion in correlations across pairs of assets at each

point in time and check if this dispersion has changed over time.

3.1 Data and Univariate Models

We employ the following three data sets:

First, from DataStream we collect weekly closing U.S. dollar returns for the following 16 de-

veloped markets: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong,

Ireland, Italy, Japan, Netherlands, Singapore, Switzerland, U.K., and U.S. This data set contains

1,901 weekly observations from January 12, 1973 through June 12, 2009.

Second, from Standard and Poor’s we collect the IFCG weekly closing U.S. dollar returns for

the following 13 emerging markets: Argentina, Brazil, Chile, Colombia, India, Jordan, Korea,

Malaysia, Mexico, Philippines, Taiwan, Thailand, and Turkey. This data set contains 1,021 weekly

observations from January 6, 1989 through July 25, 2008.

Third, from Standard and Poor’s we collect the weekly closing investable IFCI U.S. dollar returns

for the following 17 emerging markets: Argentina, Brazil, Chile, China, Hungary, India, Indonesia,

Korea, Malaysia, Mexico, Peru, Philippines, Poland, South Africa, Taiwan, Thailand, and Turkey.

This data set contains 728 weekly returns from July 7, 1995 through June 12, 2009.

We use two emerging markets data sets because they have their distinct advantages. The

IFCG data set spans a longer time period, and represents a broad measure of emerging market

returns, but is not available after July 25, 2008. The IFCI data set tracks returns on a portfolio of

emerging market securities that are legally and practically available to foreign investors. The index

construction takes into account portfolio flow restrictions, liquidity, size and float. It continues to

be updated but the sample period is shorter, which is a disadvantage in model estimation and of

course in assessing long-term trends in correlation.

Table 1 contains descriptive statistics on the 1989-2008 data set. While the cross-country vari-

ations are large, Table 1 shows that the average annualized return in the developed markets was
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12.06%, versus 17.68% in the emerging markets. This emerging market premium is reflective of

an annual standard deviation of 33.63% versus only 18.41% in developed markets. Kurtosis is on

average higher in emerging markets indicating more tail risk. But skewness is slightly positive in

emerging markets and slightly negative in mature markets, suggesting that emerging markets are

not more risky from this perspective. The first-order autocorrelations are small for most countries.

The Ljung-Box (LB) test that the first 20 weekly autocorrelations are zero is not rejected in most

developed markets but it is rejected in most emerging markets. We will use an autoregressive model

of order two, AR(2), for each market to pick up this return dependence. The Ljung-Box test that

the first 20 autocorrelations in absolute returns are zero is strongly rejected for all 29 markets. In

the DECO and DCC models, we will employ a GARCH(1,1) model for each market to pick up

this second-moment dependence. We use the NGARCH model of Engle and Ng (1993) found in

equation 2.2 to account for asymmetries.

Table 2 reports the results from the estimation of the AR(2)-NGARCH(1,1) models on each

market for the 1989-2008 data set. The results are fairly standard. The volatility updating parame-

ter, α, is around 0.1, and the autoregressive variance parameter, β, is around 0.8. The parameter

θ governs the volatility asymmetry also known as the leverage effect. It is commonly found to be

large and positive in developed markets and we find that here as well. Austria is the only outlier in

this regard. Interestingly, the average leverage effect is much closer to zero in the emerging markets.

The slightly negative average is driven largely by the unusual estimate of -3.38 for Jordan. The

model-implied variance persistence is high for all countries, as is commonly found in the literature.

The Ljung-Box (LB) test on the model residuals show that the AR(2) models are able to pick

up the weak evidence of return predictability found in Table 1. Impressively, the GARCH models

are also able to pick up the strong persistence in absolute returns found in Table 1. Note also that

the GARCH model has picked up much of the excess kurtosis found in Table 1. The remaining

nonnormality will be addressed in the copula modeling below.

We conclude from Tables 1 and 2 that the AR(2)-NGARCH(1,1) models are successful in de-

livering the white-noise residuals that are required to obtain unbiased estimates of the dynamic

correlations. We will therefore use the AR(2)-NGARCH(1,1) model in the DECO and DCC appli-

cations.

3.2 Correlation Patterns Over Time

Table 3 reports the parameter estimates and log likelihood values for the DECO and DCC correla-

tion models. We report results for the three data sets introduced above. For each set of countries

we estimate two versions of each model: one version allowing for correlation dynamics and another
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where the correlation dynamics are shut down, and thus αΓ = βΓ = 0. A conventional likelihood ra-

tio test would suggest that the restricted model is rejected for all sets of countries, but unfortunately

the standard chi-squared asymptotics are not available for composite likelihoods.

The correlation persistence (αΓ + βΓ) is close to one in all models implying very slow mean-

reversion in correlations. In the DECO model persistence is estimated to be essentially one, reflect-

ing the upward trend in correlation which we now discuss.

We present time series of dynamic equicorrelations (DECOs) for several samples. The left panels

in Figure 1 present results for twenty-nine developed and emerging markets for the sample period

January 20, 1989 to July 25, 2008. As explained in Section 3.1, sixteen of these markets are

developed and thirteen are emerging markets. We also present DECOs for each group of countries

separately. We refer to this sample as the 1989-2008 sample.

The right panels in Figure 1 present results for thirty-three developed and emerging markets

for the sample period July 21, 1995 to June 12, 2009. This sample contains the same sixteen

developed markets, and seventeen emerging markets. There is considerable overlap between this

sample of emerging markets and the one used in the left panels of Figure 1. Section 3.1 discusses

the differences. We refer to this sample as the 1995-2009 sample.

The left-side panels in Figure 2 contains time series of DECOs for the group of sixteen developed

markets between January 26, 1973 and June 12, 2009. We refer to this sample as the 1973-2009

sample. Figure 2 also shows results for the 1989-2008 and the 1995-2009 data for comparison.

These figures contain some of the main messages of our paper. The DECOs in Figures 1 and

2, which can usefully be thought of as the average of the pairwise correlations between all pairs of

countries in the sample, fluctuate considerably from year to year, but have been on an upward trend

since the early 1970s. Figure 2 shows that for the sixteen developed markets, the DECO increased

from approximately 0.3 in the mid-1970s to between 0.7 and 0.8 in 2009. Figure 1 indicates that

over the 1989-2009 period, the DECO correlations between emerging markets are lower than those

between developed markets, but that they have also been trending upward, from approximately

0.1-0.2 in the early nineties to over 0.5 in 2009.

Because the DECO approach models correlation as time-varying with a model-implied long-

run mean, one may wonder whether the sample selection strongly affects inference on correlation

estimates at a particular point in time. Figure 2 addresses this issue by reporting DECO estimates

for the sixteen developed markets for three different sample periods. Whereas there are some

differences, the correlation estimate at a particular point in time is remarkably robust to the sample

period used, and the conclusion that correlations have been trending upward clearly does not depend

on the sample period used. Comparing the left and right panels of Figure 1, it can be seen that a

similar conclusion obtains for the emerging markets, even though this comparison is more tenuous as
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the sample composition and the return data used for the emerging markets are somewhat different

across panels.

3.3 Cross-Sectional Differences in Dependence

The DECO correlations give us a good idea of the evolution of correlation over time in a given

sample of markets. They can usefully be thought of as an average of all possible permutations of

pairwise correlations in the sample. The next question is how much cross-sectional heterogeneity

there is in the correlations. The DCC framework discussed in Section 2.1 is designed to address

this question. It yields a time-varying correlation series for each possible permutation of markets

in the sample.

Reporting on all these time-varying pairwise correlation paths is not feasible, and we have to

aggregate the correlation information in some way. Figures 2-4 provide an overview of the results.

The right-side panels in Figure 2 provide the average across all markets of the DCC paths, and

compare them with the DECO paths. The top-right panel provides the average DCC for the sixteen

developed markets from 1973 through 2009. The middle-right panel provides the average DCC for

the same sixteen markets for the 1989-2008 sample period, and the bottom-right panel for the 1995-

2009 period. The left-side panels provide the DECO correlations. Figure 2 demonstrates that the

DECO can indeed be thought of as an average of the DCCs. Moreover, Figure 2 demonstrates that

the average DCC correlation at each point in time is robust to the sample period used in estimation,

as is the case for the DECO.10

Figure 3 uses the 1989-2008 sample to report, for each of the twenty-nine countries in the sample,

the average of its DCC correlations with all other countries using light grey lines. Figure 3.A contains

the 16 developed markets and Figure 3.B contains the 13 emerging markets. While these paths are

averages, they give a good indication of the differences between individual countries, and they are

also informative of the differences between developed and emerging markets. In order to further

study these differences, each figure also gives the average of the market’s DCC correlations with

all (other) developed markets using black lines and all (other) emerging markets using dark grey

lines. Figure 3 yields some very interesting conclusions. First, the DCC correlation paths display

an upward trend for all 29 countries, except Jordan. Second, for developed markets the average

correlation with other developed markets is higher than the average correlation with emerging

markets at virtually each point in time for virtually all markets. Third, for emerging markets the

10In Figure 3, and throughout the paper, we report equal-weighted averages of the pairwise correlations from the
DCC models. Value-weighted correlations (not reported here) also display an increasing pattern during the last
10-15 years. Note that in the benchmark DECO model all pairwise correlations are identical and so the weighting is
irrelevant.
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correlation with developed markets is generally higher than the correlation with other emerging

markets. However, the difference between the two correlation paths is much smaller than in the

case of developed markets. In several cases the average correlation paths are very similar. Note

that in Figure 3.A the trend patterns for European countries are also not very different from those

for other DMs. Notice in particular that the correlations for Japan and the US have increased just

as for the European countries during the last decade even if the level of correlation is still somewhat

lower in those two cases. Inspection of the pairwise DCC paths, which are not reported because of

space constraints, reveals that the trend patterns are remarkably consistent for almost all pairs of

countries, and there is no meaningful difference between European countries and other DMs.

Figure 3 reports the average correlation between the DCC of each market and that of other

markets. It could be argued that instead the correlation between each market and the average

return of the other markets ought to be considered. We have computed these correlations as well.

While the correlation with the average return is nearly always higher than the average correlation

from Figure 3, the conclusion that the correlations are trending upwards is not affected. In order

to save space we do not show the plots of the correlation with average returns on other markets.

We can use the correlation paths from the DCC model to assess regional patterns in correlation

dynamics. Figure 3.C does exactly this. We divide our 16 DMs into two regions (EU and non-EU)

and we divide our 13 EMs into another two EM regions: Latin American and Emerging Eurasia.11

Using the DCC model’s country-specific correlation paths we report in Figure 3.C the average

correlation within and across the four regions. Strikingly, Figure 3.C shows that the increasing

correlation patterns are evident within each of the four regions and also across all the six possible

pairs of regions. The highest levels of correlation are found in the upper-left panel which shows the

intra-EU correlations. The lowest level of correlations are found in the bottom-right panel which

shows the intra Emerging Eurasia correlations.

Figure 3 does not tell the entire story, because we have to resort to reporting correlation av-

erages due to space constraints. Figure 4 provides additional perspective by providing correlation

dispersions for the developed markets, emerging markets, and all markets respectively. In particu-

lar, at each point in time, the top panel in Figure 4 considers all DCC correlations for the sixteen

developed markets, and the shaded area shows the range between the 10th and 90th percentile of

these pairwise correlations. The middle panel in Figure 4 reports the same statistics for the emerg-

ing markets for the 1989-2008 sample and the bottom panel shows all 29 markets together. While

the increasing level of correlations is evident, the range of correlations seems to have narrowed

11The European Union (EU) includes Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Netherlands,
and the UK. Developed Non-EU includes Australia, Canada, Hong Kong, Japan, Singapore, Switzerland, and the US.
Latin America includes Argentina, Brazil, Chile, Colombia, and Mexico. Emerging Eurasia includes India, Jordan,
Korea, Malaysia, Philippines, Taiwan, Thailand, and Turkey.
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for developed markets, widened a bit for emerging markets, and the range width seems to have

stayed roughly constant for all markets taken together. The wide range of correlations found within

emerging markets again suggests that the potential for diversification benefits are greater here.

Figure 5 plots the conditional diversification benefit measures developed in equations (2.10)

and (2.11) for developed, emerging, and all markets using the dynamic correlations from the DCC

model. The optimally weighted portfolio in Figure 5 shows a decreasing trend in diversification

benefits in DMs: Correlations have been rising rapidly and the benefits of diversification have

been decreasing during the last ten years. Diversification benefits have also somewhat decreased in

emerging markets but the level of benefits is still much higher than in developed markets. When

combining the developed and emerging markets, the diversification benefits are declining as well but

the level is again much higher than when considering developed markets alone. Emerging markets

thus still offer substantial correlation-based diversification benefits to investors.

4 Dynamic Nonlinear Diversification

We have relied on the multivariate normal distribution to implement the dynamic correlation mod-

els. The multivariate normal distribution is the standard choice in the literature because it is

convenient and because quasi maximum likelihood results ensure that the dynamic correlation pa-

rameters will be estimated consistently even when the normal distribution assumption is incorrect,

as long as the dynamic models are correctly specified.

While the multivariate distribution is a convenient statistical choice, the economic motivation

for using it is more dubious. It is well-known (see for example Longin and Solnik, 2001) that

international equity returns display extreme correlations not captured by the normal distribution:

Large moves in international equity markets are highly correlated, which is of course crucial for

assessing the benefits of diversification. The dynamic correlation models considered above have

some ability to generate extreme correlations but likely not to the degree required by the data. In

this section, we therefore go beyond the dynamic multivariate normal distributions implied by the

DCC and DECO models discussed above and introduce dynamic copula models which have the

potential to generate empirically relevant levels of extreme correlations.

Copulas are an extremely convenient tool that allows us to build a multivariate distribution for

a set of assets from any choice of marginal distributions for each individual asset. It is crucial to

first specify appropriate and potentially non-normal marginal distributions in order to ensure that

the copula-based multivariate distribution will be well specified.12

12McNeil, Frey and Embrechts (2005) provide an authoritative review of the use of copulas in risk management.
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4.1 Building the Marginal Distributions

In order to allow for flexible marginal distributions we use a kernel approach to nonparametrically

estimate the empirical cumulative distribution function (EDF) of each standardized return time

series, zi,t. Recall from (2.1) that

zi,t =
Ri,t − µi,t
σi,t

where µi,t is obtained from an AR model.

Nonparametric kernel EDF estimates are well suited for the interior of the distribution where

most of the data is found, but tend to perform poorly when applied to the tails of the distribution.

Fortunately, a key result in extreme value theory shows that the Generalized Pareto distribution

(GP) fits the tails of a wide variety of distributions. Thus we fit the tails of the marginal distributions

using the GP.

The marginal densities are constructed by combining the kernel EDF for the central 80% of

the distribution mass with the GP distribution for the two tails. We write the cumulative density

function as

ηi = Fi(zi) (4.1)

We refer to McNeil (1999) and McNeil and Frey (2000) for more details on our approach.

4.2 Modeling Multivariate Nonnormality

The most widely applied copula function is built from the multivariate normal distribution and

referred to as the Gaussian copula. Though convenient to use, it is not flexible enough to capture

the tail dependence in asset returns.13 We therefore build our analysis on the t-copula which is

constructed from the multivariate standardized student’s t distribution. The t-copula cumulative

density function is defined as

C(η1, η2, ..., ηN ; Ψ, ν) = tΨ,ν(t
−1

ν (η1), t
−1

ν (η2), ..., t
−1

ν (ηN)) (4.2)

where tΨ,ν (·) is the multivariate standardized student’s t density with correlation matrix Ψ and ν
degrees of freedom. t−1ν (ηi) is the inverse cumulative density function of the univariate Student’s t

distribution, and the marginal probabilities ηi = Fi(zi) are from (4.1). More details on the t- copula

are provided in Appendix B.

Note that the matrix Ψ captures the correlation of the fractiles z∗i ≡ t−1ν (ηi) and not of the

return shock zi. We refer to Ψ as the copula correlation matrix in order to distinguish it from the

13Estimation results from a normal copula with dynamic correlation are available upon request.
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conventional matrix of linear correlation studied above. Notice also that

z∗i ≡ t−1ν (ηi) = t−1ν (Fi(zi))

so that if the marginal distributions Fi are close to the tv distribution then z
∗

i will be close to zi

and the copula correlations will be close to the conventional linear correlations.

4.3 Allowing for Dynamic Copula Correlations

The combination of copula functions with the dynamic correlation models considered above is

straightforward. We again rely on the parsimonious DCC and DECO approaches. Using the

fractiles z∗i ≡ t−1ν (ηi) instead of the return shock in the DCC model provides dynamic matrices for
the conditional copula correlations as follows

Ψ̃t = ΩΨ + βΨΨ̃t−1 + αΨz̃
∗

t−1z̃
∗>

t−1 (4.3)

where z̃∗i,t = z
∗

i,t

√
Ψ̃ii,t. These cross-products are used to define the conditional copula correlations

via the normalization

ΨDCCij,t = Ψ̃ij,t/

√
Ψ̃ii,tΨ̃jj,t. (4.4)

In the empirics below we will refer to the model combining the copula density in (4.2) and the

copula correlation dynamics in (4.3) as the DCC t-copula model. We also estimate the DECO

t-copula in which the dynamic copula correlations are identical across all pairs of assets. The

parameters in these dynamic t-coupla models are easily estimated using the composite likelihood

approach discussed above.

4.4 Allowing for Multivariate Asymmetry

The presence of asymmetry in dependence in international equity portfolios has long been estab-

lished, see for example Longin and Solnik (2001) and Ang and Bekaert (2002). Unfortunately, the

standard t-copula model considered so far implies symmetry in the tail dependence. To address this

problem, we consider the skewed t distribution discussed in Demarta and McNeil (2005) which we

use to develop an asymmetric t-copula. In parallel with the symmetric t-copula we can write the

skewed t-copula cumulative density function

C(η1, η2, ..., ηN ; Ψ, λ, v) = tΨ,λ,ν(t
−1

λ,ν(η1), t
−1

λ,ν(η2), ..., t
−1

λ,ν(ηN))
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where λ is a new asymmetry parameter, tΨ,λ,ν (·) is the multivariate asymmetric standardized stu-
dent’s t density with correlation matrix Ψ, and t−1λ,ν(ηi) is the inverse cumulative density function

of the univariate asymmetric Student’s t distribution. The univariate probabilities ηi = Fi(zi) are

from (4.1) as before. The asymmetric t-copula is built from the asymmetric multivariate t distrib-

ution and the symmetric t-copula is nested when λ = 0. Appendix C provides the details needed

to implement the asymmetric t-copula. Notice that the semiparametric approach to the marginal

distributions capture any univariate skewness present in the equity returns. The new λ parameter

captures multivariate asymmetry.

For the sake of parsimony in our high-dimensional applications we report on a version of the

skewed t-copula where the asymmetry parameter λ is a scalar. It is straightforward to develop a

more general version of the skewed t-copula allowing for an N -dimensional vector of λs. But such

a model is not easily estimated on a large number of countries.

Asymmetry in the bivariate distribution of asset returns has generally been modeled using

copulas from the Archimedean family which include the Clayton, the Gumbel, and the Joe-Clayton

specifications.14 These models are rarely used in high-dimensional applications. The skewed t

copula is parsimonious, tractable in high dimension, and flexible allowing us to model non-linear and

asymmetric dependence with the degree of freedom parameter, v, and the asymmetry parameter,

λ, while retaining a dynamic conditional correlation matrix, Ψ.

4.5 Allowing for Dynamic Degrees of Freedom

So far we have assumed that the degree of freedom parameter, v is constant over time. Allowing

for dynamics in v and thus in the degree of nonnormality can be done in several ways. Inspired by

Engle and Rangel (2008, 2010) we assume that the degree of freedom evolves as a quadratic trend

νt = c
ν exp

(
wν0 t+ w

ν
1(t− t0)2

)
,

where we impose a lower bound on the dynamic so that the degree of freedom νt is above the number

required for finite second moments which is two in the symmetric case and four in the asymmetric

case.15

14See for example Patton (2004, 2006).
15Engle and Rangel (2008, 2010) model multiple quadratic splines thus allowing for structural breaks in the

quadratic part of the trend. Our results are qualitatively similar when allowing for multiple splines functions.
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4.6 Defining Tail Dependence

The various t-copula models developed above generalize the normal copula by allowing for non-zero

dependence in the tails. One way to measure the lower tail dependence is via the probability limit

τLi,j = lim
ζ→0

Pr[ηi ≤ ζ|ηj ≤ ζ] = lim
ζ→0

C(ζ, ζ)

ζ

where ζ is the tail probability. The upper tail dependence can similarly be defined by

τUi,j = lim
ζ→1

Pr[ηi ≥ ζ|ηj ≥ ζ] = lim
ζ→1

1− 2ζ + C(ζ, ζ)
1− ζ

The normal copula has the empirically dubious property that this tail dependence is zero whereas

it is positive in the various t-copula models we develop.16

In the conventional symmetric t-copula models the lower and upper tail dependences are identi-

cal, that is τLi,j = τ
U
i,j. Based on the work by Longin and Solnik (2001) and Ang and Bekaert (2002)

we suspect that this symmetry is not valid in international equity index returns and we therefore in-

vestigate the upper and lower tail dependence separately using the skewed t copula model developed

above.

4.7 Empirical Tail Dependence

The empirical results in Section 3 demonstrate that it is feasible to characterize dynamic correlations

between a large number of markets. While these results are of great interest, it is worthwhile

keeping in mind that correlation is inherently a flawed concept to analyze financial markets, because

it relies on normality, and the deviations of normality for (international) stock returns are well

documented. The methods developed in this section show that it is feasible to analyze dependence

more generally in international stock returns using a fully-specified conditional distribution model

for a large number of markets.

When characterizing multivariate dependence using the DCC and DECO models, the normality

assumption enters in two critical ways: First, the marginal distribution of returns for each country

is assumed to be normal; Second, the joint distribution is also assumed to be normal. The t copula

introduced in Section 4.2 and the skewed t-copula introduced in Section 4.4 allow us to address the

appropriateness of these assumptions.

Table 4 reports the parameter estimates and likelihood values of the different t copula models we

consider. The top row shows the DCC copulas, the second row the DECO copulas, and the third row

16See Patton (2006) for an application of the extreme dependence measure to exchange rates.
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the DECO copulas with dynamic degree of freedom. The left column shows the symmetric t copulas

and the right column shows the skewed t-copulas. Note that the copula correlation persistence is—as

was the case in Table 3—very close to 1 in all models.

Comparing the symmetric to the asymmetric version of the t-copula, we observe that the intro-

duction of the asymmetry parameter does not seem to impact much the correlation parameters nor

the degree of freedom. This suggests that the asymmetry parameter captures a different dimension

of dependence. In the DCC copulas the asymmetry parameter provides a modest increase in the

likelihood but in the more restricted DECO case the asymmetry model increases the likelihood

much more. Comparing the DECO copulas with constant degree of freedom to those with dynamic

degree of freedom we see that the increase in likelihood is modest when allowing for spline dynamics

in vt.

Figure 6 plots the dynamic measure of tail-dependence for the skewed t-copula for the DCC (left

panels) and the DECO (right panels) models. We report the average of the bivariate tail dependence

across all pairs of countries.17 In each graph, the dark line depicts the evolution of the upper tail

dependence, while the gray line is for the lower tail dependence.18 The tail dependence measure

depends on the degree of freedom, v, the copula correlation, Ψi,j, and the asymmetry parameter,

λ. Figure 6 shows quite dramatic differences across markets. The tail dependence in developed

markets has risen markedly during the last twenty years. Remarkably, the emerging market tail

dependence measures in the middle panel of Figure 6 are much lower than the developed market

measures and they are only mildly trending upwards over time. The all markets case in the bottom

row of Figure 6 indicates that while the tail dependence is rising, it is still much lower than for the

developed markets alone. From this perspective, the diversification benefits from adding emerging

markets to a portfolio appear to be large compared to those offered by developed markets, even

if these benefits are getting smaller over time. In all cases, the tail dependence is higher for the

lower tail than for the upper tail echoing Long and Solnik’s (2001) finding of downside threshold

correlations that are much larger than their upside counterparts.

17The tail dependence concept introduced above is inherently bivariate and not easily generalized to the high-
dimensional case. In higher dimension, tail dependence is defined as the probability limit of all variables being below
a threshold conditional on a subset of them being below the same threshold. However, in a portfolio context, it
is not obvious how that conditioning subset should be defined. In order to convey the empirical evoluation of tail
dependence for many countries, we report the average of the bivariate tail dependence across all pairs of countries.
18To the best of our knowledge a closed form solution is not available for the tail dependence measure in the skewed

t copula. We therefore approximate by simulation using ζ = 0.001.
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5 Exploring the Results

Several questions arise from our analysis so far.

First, our key finding above is that the benefits from diversification across developed markets

have largely disappeared, but that the benefits from diversifying across emerging markets are still

intact. Given the significant easing of cross-border capital flow controls and increasing levels of

market integration, it would be important to investigate their effect on correlation dynamics for

EMs.19 We run panel regressions that suggest a positive and significant relationship between market

openness and EM correlation but not between the degree of market integration and EM correlation.

These findings are consistent with prevailing theory.

Second, We employ mean-reverting models in the analysis above. These models should bias

us against finding long-term trends in correlation. Nevertheless the sample-paths we extract from

the models display increasing long-term trends in correlation. A natural question to ask is if these

patterns are confirmed in a model that explicitly allows for non-stationarity in the correlation

dynamics? We develop such a model below and show that they are.

Finally we ask if a fully model-free (but very ad-hoc) approach confirms the long-term upward

trending correlation paths. It does.

5.1 EM Correlation, Volatility and Market Integration

We first investigate the impact of financial development and integration on correlation in emerging

markets. To this end we first rely on Bekaert (1995) and Edison and Warnock (2003) who use a

direct measure of de jure market openness. Their measure is defined as the ratio of the market

capitalizations of the investable and global indexes from S&P/IFC and we denote it by “MCR”

below. The IFC Global (IFCG) index is designed to represent the market portfolio for each country,

whereas the IFC Investable (IFCI) index is designed to represent a portfolio of domestic equities

that are available to foreign investors. When MCR measure is one, the market capitalization of

the investable index is equal to that of the market-wide index indicating that all of that countries’

stocks are available to foreign investors.

We also consider a measure of emerging market integration based on the theoretical model of

Errunza and Losq (1985). The empirical measure is constructed in Carrieri, Chaieb, and Errunza

(2010) and we refer to it as “EMI” below. The MCR and EMI measures have an average

correlation of −0.10 and so clearly measure different aspects of emerging market development.
Due to MCR and EMI data availability, our sample is restricted to the period August 1995 to

19See Bekaert et al (2008), and Carrieri et al (2010) for the evolution of market integration for EMs.
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December 2006 for the 17 emerging markets in the IFCI index. AsMCR and EMI are available on

a monthly basis, we average the weekly GARCH volatilities and the DCC correlations each month.

We consider different dependent variables. First, as in Figure 3a, we examine the effect of market

development and integration on the average DCC correlations for each EM country. We consider

three sets of correlations for each EM country: The average correlation with other EMs, the average

correlation with DMs, or the average correlation with all other markets. Then, we investigate the

effect of MCR and EMI on log EM volatility.

To investigate the impact of MCR and EMI on emerging market correlation we first estimate

a panel regression of the form

ρEMi,t = bi,0+b1τ++b2MCRi,t+b3EMIi,t+b4 log (σEM,t)+b5 log (σi,t)+εi,t, i = 1, ..., NEM (5.1)

where the left-hand-side variable ρEMi,t is the average correlation between EM country i and all other

EM countries in month t. On the right-hand-side bi,0 is a country specific fixed effect, τ is a time

trend, and we also include σEM,t which denotes the average volatility across EMs in month t, and

σi,t which is EM country i’s own volatility. Following Petersen (2009), we compute White standard

errors adjusted for within cluster (country) correlation. We consider specifications that include

MCR and EMI separately as well as both together.

Panel A in Table 5 shows that the correlation time-trend is significantly positive in all three

specifications confirming the visual impression of upward trending correlations in Figures 1-3. The

market cap ratioMCR is positive and significant whereas the market integration indicator EMI is

positive but not significant. This insignificance is not surprising as financial theory does not predict

a relationship between correlation and market integration. The average EM volatility, σEM,t is

significantly positive which is often found in the risk management literature: correlations tend to

rise when volatility rises which clearly lowers the benefits of diversification.

In Panel B of Table 5 we estimate

ρDMi,t = bi,0+b1τ++b2MCRi,t+b3EMIi,t+b4 log (σDM,t)+b5 log (σi,t)+εi,t, i = 1, ..., NEM (5.2)

where the left-hand-side variable ρDMi,t is now the average correlation between EM country i and each

DM country in month t. The variable σDM,t is now the average volatility across DMs. The results

in Panel B shows that the time trend is again significantly positive in all three specifications. The

market openness and integration variables, MCR and EMI are positively related to the average

EM correlation with DMs but EMI is not significant. Somewhat surprisingly σDM,t appears to be

negatively related to ρDMi,t although the relationship is not significant.
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Panel C in Table 5 shows the results from the regression

ρAlli,t = bi,0+ b1τ + b2MCRi,t+ b3EMIi,t+ b4 log (σAll,t)+ b5 log (σi,t)+ εi,t, i = 1, ..., NEM (5.3)

where the left-hand-side variable ρAlli,t is the average correlation between EM country i and all other

countries in month t. On the right-hand-side we now include σAll,t which denotes the average

volatility across all markets in month t. Panel C shows that the time trend is again positive and

significant and so is MCR whereas EMI is not significant but still positive. Volatility is not

significant in this case.

In summary, we find that the EM correlations have clearly trended upwards in this period. They

are related to market openness as measured by share of market cap available to foreign investors.

However, the increase in correlation is not significantly related to the measure of financial integration

implied by the Errunza and Losq (1985) model of mild market segmentation.

5.2 Nonstationary Correlation Dynamics

The correlation regressions in Table 5 show a very clear pattern: The simple linear time-trend in

correlation is positive and strongly significant in all cases. This finding suggests that the mean-

reverting DCC and DECO models considered so far may be inadequate at fully describing the

evolution of international equity index correlations over time. The mean-reverting models will try

to pull the correlation path back down towards the unconditional mean even if the observed returns

keep pushing the correlation paths higher. Even if the correlations were not trending up one could

reasonably argue that a constant long-run correlation is unrealistic for the relatively long time-series

that we are analyzing here.

In this section we therefore propose a new way to model a slowly varying long-run component in

correlation. Engle and Rangel (2008) model low-frequency dynamics in volatility using an extended

GARCHmodel that features a dynamic long-run component given by a quadratic exponential spline.

Engle and Rangel (2010) develop a Factor Spline GARCH for covariance by using a quadratic

spline for the market stationary variance and each assets’ idiosyncratic long run risks. We try to

avoid imposing a factor structure and instead use the Spline GARCH idea in a DECO correlation

framework. We assume that the long-run component of correlation evolves as a quadratic trend

ρLRt = Λ
(
c+ w0t+ w1 (t− t0)2

)
(5.4)

where the double logistic function Λ(x) = 1−e−x

1+e−x
is used to restrict ρLRt to be between −1 and 1.

Our results are qualitatively similar when we generalize (5.4) to allow for multiple quadratic pieces
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each with separate coefficients as is done in Engle and Rangel (2008, 2010).

Our DECO correlation dynamics are built from the DCC model as before, but the constant

matrix of unconditional correlations, Γ̃, is replaced by

Γ̃LRt = (1− ρLRt )IN + ρLRt JN×N

so that we now have the dynamic

Γ̃t = (1− αΓ − βΓ) Γ̃LRt + βΓΓ̃t−1 + αΓz̃t−1z̃
>

t−1. (5.5)

We also need the normalization in (2.5) and the DECO restriction in (2.9).

The estimation results are reported in Table 6. Comparing log likelihoods with the left side of

Panel B in Table 3, we see that the improvements in likelihood compared with the standard DECO

model are quite modest. The simple DECO model with very high persistence seems to be able to

adequately capture the correlation pattern over time. Comparing the Spline DECO likelihoods with

the special case of no stochastics (αΓ = βΓ = 0) shows that the spline function alone is capable of

capturing the correlation dynamics quite well.

The right panels of Figure 7 shows the evolution of total correlation as well as the dynamic

long-run correlation in the new Spline DECO model. For comparison, the basic DECO correlations

from Figure 1 are repeated in the left panels of Figure 7. The dramatic upward trend in correlation

is clear in both models. It is quite striking that the flexible exponential-quadratic Spline DECO

model we develop implies an almost linearly rising trend in correlation through the recent decade.

5.3 Model-Free Correlations

The Spline DECO model developed above is of course just one approach to capturing potential non-

stationarity in the correlation dynamic. However, any parametric approach will require modeling

decisions that could be brought into question. We therefore end our analysis with a completely

model-free (but not assumption free) alternative to correlation estimation.

Figure 8 plots the average (across all pairs of countries) model-free rolling correlations using

a relatively short 6-month estimation window (denoted by grey lines) and using a relatively long

2-year estimation window (denoted by black lines). Both estimates use weekly returns to compute

the rolling correlations.

Figure 8 shows that it is not the DECO model structure nor the Spline DECO model structure

that are driving the upward-sloping trend result. The model-free estimates of dynamic correlation

in Figure 8 show the same upward trend in correlation evident in Figures 1 and 7. The model-
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free estimates of dynamic correlation have the disadvantage that they depend greatly on the width

of the data window chosen: A long window will result in stable but potentially biased estimates

of the true dynamic correlation whereas a very short window will result in very noisy estimates.

The dynamic models we apply have the great advantage of letting the data choose—via maximum

likelihood estimation—the optimal weights on past data points.

6 Summary and Conclusion

We characterize time-varying correlations using long samples of weekly returns for systems consisting

of large number of countries. We implement models that overcome econometric complications arising

from the dimensionality problem, and that are easier to estimate, using variance targeting and the

composite likelihood procedure. Results based on the DCC and the DECO as well as on our new

Spline DECO model are extremely robust and suggest that correlations have been significantly

trending upward for both the DMs and EMs. Correlations between DMs have exceeded correlations

between EMs throughout the 1989-2009 period. Moreover, for developed markets, the average

correlation with other developed markets is higher than the average correlation with emerging

markets. For emerging markets, the correlation with developed markets is generally somewhat

higher than the correlation with the other emerging markets. However, the differences are small.

While the range of correlation for DMs has narrowed around the increasing trend in correlation

levels, this is not the case for EMs where the range instead appears to have widened.

We develop a novel skewed dynamic t-copula which allows for asymmetric and dynamic tail de-

pendence in large portfolios. Results from the dynamic t-copula indicate substantial and asymmetric

tail dependence with lower tail dependence being larger than upper tail dependence. Moreover, tail

dependence as measured by the t-copula is increasing through time for both EMs and DMs. The

level of the tail dependence is still very low at the end of the sample period for EMs as compared

to DMs. Therefore, while the correlation analysis suggests that the diversification potential of EMs

has decreased over time, our findings on tail dependence indicate significant diversification oppor-

tunities, due to the fact that while equity market crises in EMs are frequent, many of them are

country-specific. From this perspective, our results suggest that although diversification benefits

might have lessened in the case of DMs, the case for EMs remains strong.

These results have very important implications for portfolio management, and it may prove

interesting to explore them in future work. It may also prove useful to investigate the robustness of

our findings to allowing for multiple regimes, or to the inclusion of multiple stochastic components,

as for example in the model of Colacito, Engle, and Ghysels (2009). Our new Spline DECO model

represents an initial step in this direction.
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Appendix

Appendix A. Correlation Targeting in DCC

Correlation targeting in the DCC model allows us to significantly reduce the number of parameters

estimated via numerical optimization of the likelihood function. In total we need to estimate αΓ,

βΓ, and Γ̃ in the DCC recursion

Γ̃t = (1− αΓ − βΓ) Γ̃ + βΓΓ̃t−1 + αΓz̃t−1z̃>t−1. (6.1)

But if we can target the long run correlation Γ̃ to its sample analogue Γ̂ = 1

T

∑T

t=1 z̃tz̃
>

t then we

need only to estimate the scalars αΓ and βΓ in the numerical MLE procedure.

Recall that z̃i,t = zi,t

√
Γ̃ii,t. A circularity problem is apparent because we need Γ̃ii,t to estimate

Γ̃ which in turn is required to compute the time series of Γ̃ii,t. Note however that Γ̃ is a correlation

matrix, so that Γ̃ii = 1, for all i, and note also that only the diagonal elements of Γ̃t are needed

to compute z̃i,t. Aielli (2009) therefore proposes to first compute equation (6.1) for the diagonal

elements only, that is

Γ̃ii,t = (1− αΓ − βΓ) + βΓΓ̃ii,t−1 + αΓz̃2i,t−1

for all i and t. Having computed the Γ̃ii,t, the sample correlation matrix of the z̃i,t can be obtained

which in turn yields Γ̂ = 1

T

∑T

t=1 z̃tz̃
>

t , and the recursion in (6.1) can now be run replacing Γ̃ by Γ̂.

Appendix B. The t Copula

The conventional symmetric N -dimensional t distribution has the stochastic representation

X =
√
WZ (6.2)

where W is an inverse gamma variable W ∼ IG
(
ν
2
, ν
2

)
, Z is a normal variable Z ∼ N (0N ,Ψ), and

where Z and W are independent.

The probability density function of the t copula defined from the t distribution is given by

c(u; v,Ψ) =
Γ
(
ν+N
2

)

|Ψ| 12Γ
(
ν
2

)

(
Γ
(
ν
2

)

Γ
(
ν+1
2

)

)N (
1 + 1

v
z∗>Ψ−1z∗

)− ν+N
2

∏N

j=1

(
1 +

z∗2j
ν

)− ν+1
2
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where z∗ = t−1v (u) and tv(u) is the univariate Student’s t density function given by

tv(u) =

u∫

−∞

Γ
(
ν+1
2

)

√
πνΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1
2

dx.

Appendix C. The Skewed t Copula

The skewed t distribution discussed in Demarta and McNeil (2005) has the more general stochastic

representation

X =
√
WZ + λW (6.3)

where λ is the asymmetry parameter, W is again an inverse gamma variable W ∼ IG
(
ν
2
, ν
2

)
, Z is

a normal variable Z ∼ N (0N ,Ψ), and Z and W are again independent. The skewed t distribution

generalizes the t distribution by adding a second term related to the same inverse gamma random

variable which is scaled by an asymmetry parameter λ. Note that the conventional symmetric t

distribution is nested when λ = 0.

The probability density function of the skewed t copula defined from the asymmetric t distrib-

ution is given by

c(u;λ, v,Ψ) =

2
(ν−2)(N−1)

2 K ν+N
2

(√
(ν + z∗>Ψ−1z∗)λ2Ψ−1

)
ez

∗>Ψ−1λ

Γ
(
ν
2

)1−N |Ψ| 12
(√

(ν + z∗>Ψ−1z∗)λ2Ψ−1
)− ν+N

2 (
1 + 1

v
z∗>Ψ−1z∗

) ν+N
2

×
N∏

j=1

(√(
ν + (z∗j )

2
)
λ2
)− ν+1

2
(
1 + 1

v

(
z∗j
)2) ν+1

2

K ν+1
2

(√(
ν + (z∗j )

2
)
λ2
)
ez

∗

j λ
(6.4)

where K(·) is the modified Bessel function of third kind, and where the fractiles z∗ = t−1λ,v(u) are

defined from the asymmetric univariate student t density defined by

tλ,v(u) =

u∫

−∞

21−
ν+N
2 K ν+1

2

(√
(ν + x2)λ2

)
exλ

Γ
(
ν
2

)√
πν

(√
(ν + x2)λ2

)− ν+1
2 (
1 + x2

ν

) ν+1
2

dx. (6.5)

The asymmetric Student t quantile function, t−1λ,v(u), is not known in closed form but can be

well approximated by simulating 100,000 replications of equation 6.3. Note that we constrain the

copula to have the same asymmetry parameter, λ, across all assets.
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The moments of theW variable are given bymi = ν
i/
(∏i

j=1(ν − 2j)
)
, and from the the normal

mixture structure of the distribution, we can derive the expected value

E [X] = E (E [X|W ]) = E(W )λ = ν

ν − 2λ

and the variance-covariance matrix

Cov (X) = E (V ar(X|W )) + V ar (E [X|W ])

=
ν

ν − 2Ψ +
2ν2λ2

(ν − 2)2(ν − 4) . (6.6)

Notice that the covariances are finite if ν > 4. These moments provide the required link between

the multivariate asymmetric t distribution and the copula correlation matrix Ψ.
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Figure 1: Dynamic (DECO) Correlations for Developed, Emerging, and All Markets
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Notes to Figure: We report dynamic equicorrelations (DECOs) for two sample periods. The left-

side panels report on the period January 20, 1989 to July 25, 2008. The right-side panels report

on the period July 21, 1995 to June 12, 2009. The top panels report on developed markets, the

middle panels report on emerging markets, and the bottom panels report on samples consisting of

developed and emerging markets.
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Figure 2: Comparing DECO and DCC Correlations. Developed Markets. Various Sample Periods
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Notes to Figure: We report dynamic equicorrelations (DECOs) and dynamic conditional correlations

(DCCs) for sixteen developed markets for three sample periods. The top panels report on the period

January 26, 1973 to June 12, 2009. The middle panels report on the period January 20, 1989 to

July 25, 2008. The bottom panels report on the period July 21, 1995 to June 12, 2009.
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Figure 3.A: Correlations for Each Developed Market
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Notes to Figure: We report dynamic conditional correlations for sixteen developed markets for the

period January 20, 1989 to July 21, 2008. For each country, at each point in time we report three

averages of conditional correlations with other countries: the average of correlations with the fifteen

other developed markets (black line), with the thirteen emerging markets (dark grey line), and with

the fifteen developed and thirteen emerging markets (light grey line).
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Figure 3.B: Correlations for each Emerging Market
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Notes to Figure: We report dynamic conditional correlations for thirteen emerging markets for the

period January 20, 1989 to July 25, 2008. For each country, at each point in time we report three

averages of conditional correlations with other countries: the average of correlations with sixteen

developed markets (black line), with the twelve other emerging markets (dark grey line), and with

the sixteen developed and twelve emerging markets (light grey line).
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Figure 3.C: Regional Correlation Patterns
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Notes to Figure: We use the DCC model to plot the average correlation within and across four

regions. The European Union (EU) includes Austria, Belgium, Denmark, France, Germany, Ireland,

Italy, Netherlands, and the UK. Developed Non-EU includes Australia, Canada, Hong Kong, Japan,

Singapore, Switzerland, and the US. Latin America includes Argentina, Brazil, Chile, Colombia, and

Mexico. Emerging Eurasia includes India, Jordan, Korea, Malaysia, Philippines, Taiwan, Thailand,

and Turkey.
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Figure 4: Correlation Range (90th and 10th Percentile). Developed, Emerging and All Markets
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Notes to Figure: The shaded areas show the correlation range between the 90th and 10th percentiles

for DCCs. The top panels report on sixteen developed markets for the period January 26, 1973

to June 12, 2009. The middle panels report on thirteen emerging markets for the period January

20, 1989 to July 25, 2008. The bottom panels report on sixteen developed and thirteen emerging

markets for the period January 20, 1989 to July 25, 2008.
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Figure 5: Conditional Diversification Benefits (CDB) using the DCC Model.
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Notes to Figure: Each week for each set of countries, we use the dynamic conditional correlation

(DCC) model to compute the conditional diversification benefits (CDB) as defined in (2.10). The

dark line is the CDB computed on the minimum variance portfolio, while the gray line is the CDB

measure assuming constant variances and computed on the portfolio maximizing (2.11).
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Figure 6: Dynamic Average Bivariate Tail Dependence in skewed t-Copula.
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Notes to Figure: We report estimated average bivariate tail dependence for the DCC (left panels)

and DECO (right panels) constrained skewed t-copula with constant degree of freedom. The black

line is the left tail dependence. The gray line is the tail dependence for the right tail. The top

panels report on sixteen developed markets, the middle panels report on thirteen emerging markets,

and the bottom panels report on sixteen developed and thirteen emerging markets for the period

January 20, 1989 to July 25, 2008.
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Figure 7: DECO and Spline DECO Correlations for Developed, Emerging, and All Markets
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Notes to Figure: We report the DECO and spline DECO correlations for the period January 20,

1989 to July 25, 2008. The left panels correspond to the DECO model with a fixed long run

average, and the right panels are equicorrelations from the Spline DECO. The top panel reports

on developed markets, the second panel reports on emerging markets, the third on all markets. In

the right panels, the black line shows the total correlation while the gray line shows the long-run

correlation mean.
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Figure 8: Rolling Correlations for Developed, Emerging, and All Markets. Two Estimates
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Notes to Figure: We report rolling correlations for two sample periods. The left-side panels report

on the period January 20, 1989 to July 25, 2008. The right-side panels report on the period

July 21, 1995 to June 12, 2009. The top panels report on developed markets, the middle panels

report on emerging markets, and the bottom panels report on samples consisting of developed and

emerging markets. We use 6-month (grey lines) and 2-year (black lines) windows to estimate rolling

correlations for each pair of markets which are then averaged across pairs to produce the plot.
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Annual 

Mean (%)

Annual 

Standard 

Deviation 

(%) Skewness

Excess 

Kurtosis

1st Order 

Auto-

correlation

LB(20) P-

Value on 

Returns

LB(20 P-

value on 

Absolute 

Returns

Developed 

Markets

Australia 13.21 17.13 -0.301 1.94 -0.010 0.2044 0.0000

Austria 14.50 19.63 -0.009 3.69 0.058 0.1364 0.0000

Belgium 10.93 16.55 -0.215 2.00 0.011 0.8316 0.0000

Canada 13.24 16.30 -0.489 2.35 -0.001 0.1611 0.0000

Denmark 14.55 17.83 -0.308 2.11 -0.045 0.2535 0.0000

France 12.75 17.54 -0.120 1.04 0.019 0.0632 0.0000

Germany 11.88 18.66 -0.231 1.65 0.018 0.7596 0.0000

Hong Kong 16.71 24.41 -0.355 3.11 0.030 0.0046 0.0000

Ireland 13.30 18.89 -0.286 1.74 0.011 0.2749 0.0000

Italy 9.18 20.99 0.189 3.32 0.037 0.1494 0.0000

Japan 1.45 22.28 0.339 1.56 -0.068 0.0307 0.0000

Netherlands 13.26 16.62 -0.300 3.00 0.006 0.3920 0.0000

Singapore 11.16 20.66 -0.255 5.15 -0.009 0.0010 0.0000

Switzerland 13.70 16.42 0.002 2.05 -0.012 0.5579 0.0001

United Kingdom 11.37 15.54 0.060 1.80 -0.027 0.6799 0.0019

United States 11.71 15.15 -0.434 3.46 -0.102 0.0005 0.0000

Average 12.06 18.41 -0.170 2.50 -0.005 0.2813 0.0001

Emerging 

Markets

Argentina 29.44 51.18 0.804 12.22 -0.009 0.0001 0.0000

Brazil 29.85 46.23 -0.246 2.22 0.045 0.3060 0.0000

Chile 19.43 21.18 0.008 1.30 0.167 0.0000 0.0000

Colombia 22.66 26.51 0.339 6.29 0.132 0.0000 0.0000

India 15.24 27.89 -0.027 2.05 0.078 0.0494 0.0000

Jordan 15.86 18.21 0.195 5.42 0.083 0.0071 0.0000

Korea 10.18 36.43 0.045 8.54 -0.089 0.0001 0.0000

Malaysia 10.16 28.64 1.394 24.02 0.013 0.0000 0.0000

Mexico 20.99 28.02 -0.387 3.72 0.108 0.0018 0.0000

Philippines 7.21 28.57 -0.393 4.97 0.085 0.0002 0.0000

Taiwan 7.15 32.82 0.318 3.96 -0.007 0.0232 0.0000

Thailand 10.65 35.90 0.250 3.98 0.019 0.0000 0.0000

Turkey 31.02 55.59 0.178 5.27 -0.018 0.1912 0.0000

Average 17.68 33.63 0.191 6.46 0.047 0.0445 0.0000

Table 1: Descriptive Statistics for Weekly Returns on 16 DM and 13 EM (IFCG)

January 1989 to July 2008

Notes to Table: We report the first four sample moments and the first order autocorrelation of the 16 DM and 13 EM 

(IFCG) returns. We also report the p-value from a Ljung-Box test that the first 20 autocorrelations are zero for returns and 

absolute returns. The sample period is from January 20, 1989 to July 25, 2008.



α β θ
Variance 

Persistence

LB(20) P-

Value on 

Residuals

LB(20) P-

Value on 

Absolute 

Residuals

Residual 

Skewness

Residual 

Excess 

Kurtosis

Developed Markets

Australia 0.055 0.804 0.785 0.893 0.633 0.702 -0.419 1.31

Austria 0.078 0.898 -0.166 0.978 0.442 0.321 -0.201 0.95

Belgium 0.136 0.594 0.737 0.804 0.818 0.200 -0.391 0.97

Canada 0.101 0.847 0.323 0.958 0.638 0.825 -0.396 0.92

Denmark 0.049 0.941 0.027 0.990 0.342 0.477 -0.352 1.52

France 0.071 0.697 1.175 0.866 0.124 0.374 -0.138 0.28

Germany 0.119 0.748 0.557 0.903 0.814 0.101 -0.298 0.74

Hong Kong 0.113 0.810 0.530 0.955 0.231 0.537 -0.230 1.20

Ireland 0.043 0.854 1.167 0.955 0.508 0.560 -0.292 1.07

Italy 0.106 0.804 0.452 0.931 0.404 0.076 -0.054 0.90

Japan 0.085 0.837 0.532 0.946 0.418 0.410 0.150 0.97

Netherlands 0.134 0.725 0.554 0.899 0.817 0.671 -0.466 0.62

Singapore 0.095 0.836 0.630 0.968 0.478 0.950 -0.359 1.79

Switzerland 0.091 0.651 0.846 0.807 0.405 0.782 -0.141 0.80

United Kingdom 0.037 0.557 2.648 0.851 0.799 0.278 -0.155 0.55

United States 0.090 0.839 0.658 0.969 0.411 0.496 -0.494 1.33

Average 0.088 0.778 0.716 0.917 0.518 0.485 -0.265 0.994

Emerging Markets

Argentina 0.168 0.807 0.182 0.981 0.844 0.280 0.109 1.03

Brazil 0.084 0.887 0.360 0.982 0.907 0.167 -0.395 1.14

Chile 0.084 0.868 0.043 0.952 0.544 0.917 0.065 1.25

Colombia 0.238 0.599 0.044 0.838 0.625 0.633 0.129 2.13

India 0.122 0.814 0.208 0.941 0.181 0.144 -0.121 0.89

Jordan 0.009 0.879 -3.380 0.992 0.425 0.018 0.243 4.04

Korea 0.110 0.857 0.372 0.982 0.633 0.573 0.041 0.76

Malaysia 0.103 0.886 0.160 0.992 0.937 0.684 -0.241 2.47

Mexico 0.109 0.723 0.903 0.922 0.924 0.524 -0.333 1.22

Philippines 0.076 0.889 0.282 0.971 0.883 0.419 -0.420 3.71

Taiwan 0.143 0.810 0.299 0.967 0.492 0.709 0.082 1.25

Thailand 0.100 0.860 0.336 0.971 0.986 0.209 -0.027 1.48

Turkey 0.080 0.876 -0.166 0.958 0.400 0.232 0.104 2.97

Average 0.110 0.827 -0.027 0.957 0.675 0.424 -0.059 1.872

January 1989 to July 2008

Table 2: Parameter Estimates from NGARCH(1,1) on 16 DM and 13 EM (IFCG)

Notes to Table: We report parameter estimates and residual diagnostics for the NGARCH(1,1) models. The sample period for 16 

DM and 13 EM (IFCG) weekly returns is from January 20, 1989 to July 25, 2008. The conditional mean is modeled by an AR(2) 

model. The coefficients from the AR models are not shown. The constant term in the GARCH model is fixed by variance 

targeting.



αΓ βΓ Persistence

Composite 

Likelihood αΓ βΓ Persistence

Composite 

Likelihood

16 Developed Markets 0.041 0.959 1.000 8693.21 0.018 0.981 1.000 8727.97

No Dynamics 0 0 0 8651.87 0 0 0 8675.94

16 Developed Markets 0.045 0.954 0.999 4882.95 0.023 0.976 0.999 4910.43

No Dynamics 0 0 0 4865.67 0 0 0 4887.19

 

13 Emerging Markets 0.043 0.957 1.000 3759.14 0.014 0.984 0.998 3766.54

No Dynamics 0 0 0 3751.65 0 0 0 3758.05

All 29 Markets 0.053 0.947 1.000 4345.11 0.018 0.981 0.999 4367.83

No Dynamics 0 0 0 4333.14 0 0 0 4353.17

16 Developed Markets 0.054 0.946 1.000 3407.04 0.030 0.967 0.997 3429.36

No Dynamics 0 0 0 3390.00 0 0 0 3408.39

17 Emerging Markets 0.050 0.941 0.991 2610.30 0.022 0.964 0.986 2612.97

No Dynamics 0 0 0 2602.52 0 0 0 2606.60

All 33 Markets 0.060 0.940 1.000 2975.17 0.024 0.969 0.994 2987.03

No Dynamics 0 0 0 2963.22 0 0 0 2974.97

Notes to Table: We report parameter estimates for the DCC and DECO models for the 13 emerging markets (IFCG), 17 emerging markets (IFCI), 16 

developed markets, and all markets. The composite likelihood is the average of the quasi-likelihoods (correlation log likelihood + all marginal volatility log 

likelihood) of all unique pairs of assets. We also report the special case of no dynamics.

B: Weekly IFCG Returns, January 20, 1989 to July 25, 2008

C: Weekly IFCI Returns, July 21, 1995 to June 12, 2009

Table 3: Parameter Estimates for DECO and DCC Models. Developed, Emerging and All Markets. January 1989 to July 2008

DECO DCC

A: Weekly Returns, January 26, 1973 to June 12, 2009



αΓ βΓ Persistence ν
Composite 

Likelihood αΓ βΓ Persistence λ ν
Composite 

Likelihood

16 Developed Markets 0.019 0.976 0.996 11.862 4910.46 0.017 0.979 0.996 -0.348 11.210 4912.20

No Dynamics 0 0 0 8.834 4890.44 0 0 0 -0.329 8.537 4892.48

13 Emerging Markets 0.013 0.981 0.994 17.151 3767.74 0.012 0.985 0.996 -0.417 17.801 3768.46

No Dynamics 0 0 0 14.269 3760.22 0 0 0 -0.446 14.003 3761.33

All 29 Markets 0.016 0.981 0.997 15.428 4368.34 0.014 0.983 0.997 -0.484 15.040 4369.52

No Dynamics 0 0 0 11.998 4355.50 0 0 0 -0.389 12.134 4356.96

αΓ βΓ Persistence ν
Composite 

Likelihood αΓ βΓ Persistence λ ν
Composite 

Likelihood

16 Developed Markets 0.039 0.952 0.990 8.517 4886.23 0.033 0.956 0.989 -0.261 7.833 4887.67

No Dynamics 0 0 0 7.315 4872.07 0 0 0 -0.219 6.756 4873.84

13 Emerging Markets 0.041 0.953 0.994 13.973 3760.58 0.038 0.955 0.993 -0.295 12.682 3761.33

No Dynamics 0 0 0 12.667 3753.95 0 0 0 -0.332 11.853 3755.18

All 29 Markets 0.045 0.948 0.993 10.526 4347.44 0.043 0.950 0.993 -0.241 10.682 4348.36

No Dynamics 0 0 0 9.305 4337.40 0 0 0 -0.287 9.451 4338.75

αΓ βΓ Persistence

Average 

ν
Composite 

Likelihood αΓ βΓ Persistence λ
Average 

ν
Composite 

Likelihood

16 Developed Markets 0.039 0.949 0.988 9.580 4886.84 0.039 0.950 0.988 -0.261 10.250 4888.32

No Dynamics 0 0 0 8.439 4875.26 0 0 0 -0.219 13.878 4875.32

13 Emerging Markets 0.041 0.949 0.990 18.073 3761.24 0.041 0.949 0.991 -0.284 17.573 3761.84

No Dynamics 0 0 0 15.304 3755.16 0 0 0 -0.332 21.165 3757.41

All 29 Markets 0.044 0.947 0.992 11.954 4347.97 0.046 0.946 0.992 -0.248 12.953 4348.96

No Dynamics 0 0 0 10.613 4339.23 0 0 0 -0.287 19.057 4340.86

Notes to Table: We report parameter estimates for the DECO and DCC t-copula and constrained skewed t-copula models for the 13 emerging markets (IFCG), 16 

developed markets, and all markets. The bottom panel presents the results with dynamic degree of freedom. The composite likelihood is the average of the quasi-

likelihoods (copula log likelihood + all marginal QML log likelihoods) of all pairs of assets. We also report the special case of each model with no dynamics.

Table 4: Parameter Estimates for DECO and DCC t-Copula Models. Developed, Emerging and All Markets. January 1989 to July 2008.

C: DECO t-Copula

E: DECO t-Copula with Dynamic Degree of Freedom F: DECO Skewed t-Copula with Dynamic Degree of Freedom

D: DECO Skewed t-Copula

B: DCC Skewed t-CopulaA: DCC t-Copula



Time Trend MCR EMI Vol DMs Vol EMs Vol All Vol(i) R
2

Panel A: Regressand: Average Monthly Emerging Market DCC Correlation with all other Emerging Markets

0.0103 ** 0.1143 * 0.0609 ** 0.0123 0.2094

(0.0016) (0.0420) (0.0163) 0.0172         

0.0128 ** 0.0162 0.0726 ** 0.0097 0.1997

(0.0017) (0.0453) (0.0171) (0.0175)         

0.0102 ** 0.1142 * 0.0147 0.0598 ** 0.0119 0.2156

(0.0016) (0.0421) (0.0473) (0.0152) (0.0176)         

Panel B: Regressand: Average Monthly Emerging Market DCC Correlation with all Developed Markets

0.0137 ** 0.1045 * -0.0300 0.0204 0.2609

(0.0018) (0.0362) (0.0178) (0.0189)         

0.0156 ** 0.0425 -0.0256 0.0198 0.2326

(0.0018) (0.0515) (0.0193) (0.0191)         

0.0135 ** 0.1039 * 0.0403 -0.0325 0.0189 0.2779

(0.0018) (0.0359) (0.0542) (0.0173) (0.0197)         

Panel  C: Regressand: Average Monthly Emerging Market DCC Correlation with all other Markets

0.0116 ** 0.1111 * 0.0134 0.0190 0.2400

(0.0017) (0.0384) (0.0158) (0.0179)         

0.0138 ** 0.0294 0.0231 0.0168 0.2173

(0.0018) (0.0474) (0.0171) (0.0184)         

0.0114 ** 0.1108 * 0.0279 0.0113 0.0183 0.2525

(0.0017) (0.0383) (0.0499) (0.0144) (0.0186)         

Table 5: Panel Regressions on IFCI Correlation. August 1995 to December 2006

Note to Table: We estimate panel regressions for the 17 emerging markets in the IFCI index from August 1995 to December 2006. 

Country fixed effects are included in each specification, and White standard errors adjusted for within cluster correlations are 

provided in parentheses. "MCR" denotes the ratio of market capitalizations of the S&P/IFC investable index to the S&P/IFC global 

index. "EMI" denotes the integration measure implied by the Errunza and Losq (1985) model. We also include a time trend, and 

different measures of volatilities as controls. Each measure of weekly correlation is averaged for the month. Vol DMs, Vol EMs, and 

Vol All are the equally-weighted averages of log monthly volatilities across all DMs, all EMs and all markets respectively. Vol(i) is 

the market specific log monthly volatility. * indicates significance at the 5% level, and ** indicates significance at the 1% level.



αΓ βΓ

Stochastic 

Persistence c w0 w1

Composite 

Likelihood

16 Developed Markets 0.0522 0.880 0.932 0.8694 -5.72E-04 1.57E-06 4884.65

No Stochastics 0 0 0 0.8407 -6.12E-04 1.59E-06 4882.25

13 Emerging Markets 0.0416 0.852 0.893 -0.0163 8.44E-04 8.57E-08 3761.11

No Stochastics 0 0 0 0.0209 7.44E-04 1.14E-07 3760.46

All 29 Markets 0.0622 0.814 0.876 0.2906 1.72E-04 8.49E-07 4346.78

No Stochastics 0 0 0 0.3027 1.30E-04 8.39E-07 4345.69

Table 6: Parameter Estimates for Spline DECO Models. January 1989 to July 2008

Emerging Markets, Developed Markets, and All Markets

Notes to Table: We report parameter estimates for the spline DECO models for the 13 emerging markets (IFCG), 16 developed markets, 

and all 29 markets. The composite likelihood is the average of the quasi-likelihoods (correlation log likelihood + all marginal volatility log 

likelihood) of all unique pairs of assets. We also report the special case of no stochastics (αΓ=βΓ=0) where the spline captures all the 

dynamics in the correlations. 
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