
Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is the Potential for International Diversi…cation 

Disappearing? A Dynamic Copula Approach 

 

Peter Christoffersen, Vihang Errunza, Kris Jacobs and 

Hugues Langlois 

 
CREATES Research Paper 2012-48 

 

 

 

 

 

 

 



Electronic copy available at: http://ssrn.com/abstract=2066076Electronic copy available at: http://ssrn.com/abstract=2066076

Is the Potential for International Diversification

Disappearing? A Dynamic Copula Approach∗

Peter Christoffersen Vihang Errunza Kris Jacobs Hugues Langlois

University of Toronto McGill University University of Houston McGill University

May 24, 2012

Abstract

International equity markets are characterized by nonlinear dependence and asymmetries. We

propose a new dynamic asymmetric copula model to capture long-run and short-run depen-

dence, multivariate nonnormality, and asymmetries in large cross-sections. We find that copula

correlations have increased markedly in both developed markets (DMs) and emerging markets

(EMs), but they are much lower for EMs than for DMs. Tail dependence has also increased

but its level is still relatively low for EMs. We propose new measures of dynamic diversification

benefits that take into account higher order moments and nonlinear dependence. The benefits

from international diversification have reduced over time, drastically so for DMs. EMs still

offer significant diversification benefits, especially during large market downturns.
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1 Introduction

Understanding and quantifying the evolution of security co-movements is critical for asset pricing

and portfolio allocation. The co-movements between equity markets in different countries determine

how the diversification benefits of international investing have evolved over time. Measuring these

benefits requires an answer to three distinct questions.

First, how has cross-country dependence changed through time? Most of the available evidence

on the time-variation in cross-country correlations is based on factor models.1 Bekaert, Hodrick,

and Zhang (2009) convincingly argue that the evidence from this literature is mixed at best and

state that (see p. 2591): “It is fair to say that there is no definitive evidence that cross-country

correlations are significantly and permanently higher now than they were, say, ten years ago.” They

investigate international stock return co-movements for 23 DMs during 1980-2005, and find an

upward trend in return correlations only among the subsample of European stock markets.

Second, is correlation a satisfactory measure of dependence in international markets, or do we

need to consider different measures, notably those that focus on the dependence between tail events?

This question is related to the analysis of correlation asymmetries, and changes in correlation

as a function of business cycle conditions or stock market performance. Following Longin and

Solnik (2001), Ang and Bekaert (2002) and Ang and Chen (2002), the hypothesis that cross-market

correlations rise in periods of high volatility has been supplanted by the notion that correlations

increase in down markets, but not in up markets. Longin and Solnik (2001) use extreme value

theory in bivariate monthly models for the U.S. with either the U.K., France, Germany, or Japan

during 1959-1996. Ang and Bekaert (2002) develop a regime switching dynamic asset allocation

model, and estimate it for the U.S., U.K., and Germany over the period 1970-1997. Both papers

estimate return extremes at predetermined threshold values, i.e. they define the tail observations

ex ante, and then compute unconditional correlations for the tail for the developed markets above.

Third, over the last two decades much of the focus in international finance has shifted to the

diversification benefits offered by emerging markets.2 Hence, it is important to investigate whether

1King, Sentana, and Wadhwani (1994) do not find evidence of increasing cross-country correlations for 16 devel-
oped markets during the period 1970-1988, except around the market crash of 1987. Carrieri, Errunza, and Hogan
(2007) do not find a common pattern in the correlation trend for eight emerging markets (EMs) during 1977-2000. Eil-
ing and Gerard (2007) find an upward time trend in co-movements between 24 developed markets but not between
26 emerging markets over the period 1973-2005. Goetzmann, Li, and Rouwenhorst (2005) document substantial
changes in the correlation structure of world equity markets over the past 150 years. Baele and Inghelbrecht (2009)
report increasing correlations over the period 1973-2007 for their sample of 21 DMs. See also Karolyi and Stulz
(1996), Forbes and Rigobon (2002), Brooks and Del Negro (2003), Lewis (2006), and Rangel (2011).

2For early studies documenting the benefits of international diversification, see Solnik (1974) for developed markets
and Errunza (1977) for emerging markets. For more recent evidence, see for example Erb, Harvey and Viskanta
(1994), DeSantis and Gerard (1997), Errunza, Hogan and Hung (1999), and Bekaert and Harvey (2000).
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there are meaningful differences between emerging markets (EMs) and developed markets (DMs)

in cross-country dependence and tail dependence. Existing studies analyze tail dependence for a

few DMs, and there is limited evidence on time variation in tail dependence. Moreover, with some

exceptions, most notably the paper by Bekaert, Hodrick, and Zhang (2009), there is little regional

analysis.

In this paper, we provide a comprehensive empirical study of the dynamic evolution of depen-

dence and tail dependence for a large set of developed and emerging markets, as well as for regional

subsets. We offer two methodological contributions. First, to accommodate well-documented em-

pirical regularities in the literature, we propose a new model that allows for asymmetries, trends

in dependence, and deviations from multivariate normality. To capture these stylized facts, we

generalize the flexible dynamic conditional correlation (DCC) model of Engle (2002) and Tse and

Tsui (2002) in two ways: First, we do not model dependence as mean-reverting but instead al-

low it to mean revert to a possibly nonlinear trend. Second, we do not model linear correlations,

which are only sufficient under multivariate normality, instead we model the joint distribution using

time-varying copulas to capture nonlinear dependence across markets. Our second methodological

contribution is the development of a dynamic measure of diversification benefits that takes into

account higher order moments and non-linear dependence. We also analyze this measure under the

special case of multivariate normal returns.

We develop a novel dynamic asymmetric copula (DAC) model which allows for asymmetric and

dynamic tail dependence in large portfolios. We implement this model relying on recent econometric

innovations that overcome dimensionality problems, and that facilitate estimation using large num-

bers of countries and long time series. Specifically, we rely on the numerically efficient composite

likelihood procedure proposed by Engle, Shephard, and Sheppard (2008). The composite likelihood

estimation procedure is essential for estimating dynamic dependence models on international equity

data with large cross-sections and long time series.

Using our new framework, we characterize time-varying dependence using weekly returns during

the 1973-2009 period for a large number of countries (either thirteen or seventeen EMs, sixteen

DMs, as well as combinations of the EM and DM samples). We also provide evidence on threshold

correlations and other indicators of asymmetric tail dependence. Our implementation is relatively

straightforward and computationally fast. We thus demonstrate that it is possible to estimate

dependence patterns in international markets using large numbers of countries and extensive time

series. We extend existing results on dependence to a more recent period characterized by significant

liberalizations for the EM sample, as well as substantial market turmoil during 2007-2009, which

helps identify tail dependence. We obtain the following findings.

First and foremost, we find extremely robust evidence that international dependence between
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stock markets, as measured by copula correlations, has been significantly trending upward for

both DMs and EMs. However, the dependence between DMs has been higher than the dependence

between EMs at all times in our sample. For developed markets, the average dependence with other

developed markets is higher than the average dependence with emerging markets. For emerging

markets, the dependence with developed markets is generally somewhat higher than the dependence

with other emerging markets, but the differences are small. When dividing our sample into four

regions: EU, developed non-EU, Latin America, and Emerging Eurasia, we find that the dependence

between all four regions has gone up, and so has the average dependence within each region. While

the range of dependence for DMs has narrowed around the increasing trend in dependence levels,

this is not the case for EMs.

Second, we find overwhelming evidence that the assumption of multivariate normality is inap-

propriate, which is consistent with the existing literature. Our parameter estimates for the dynamic

copula models indicate substantial tail dependence, which furthermore appears to be asymmetric

and increasing through time for both EMs and DMs.

Third, the most striking finding regarding tail dependence is that the level of tail dependence is

still very low at the end of the sample period for EMs as compared to DMs. Our findings on tail

dependence thus suggest that EMs offer diversification benefits during large market moves. The

underlying intuition for this finding is that while financial crises in EMs are frequent, many of them

are country-specific. Our new diversification measure that takes into account the time-variation in

dependence and nonnormalities present in the data indicates that EMs provide better diversification

potential than DMs. Thus, although the benefits of international diversification might have lessened

over time both for DMs and EMs, a strong case can still be made for EMs. Indeed, the diversification

benefits of adding emerging markets to a portfolio appear to be significant.

Fourth, we demonstrate that the new DAC model can capture the empirical asymmetries in

threshold correlations. We document asymmetric threshold correlation patterns for EMs, and find

that they differ from those for DMs. Longin and Solnik (2001) and Ang and Bekaert (2002) docu-

ment asymmetric threshold correlation patterns among a select group of major developed markets,

but to the best of our knowledge the literature does not contain evidence on EMs. We demonstrate

that our multivariate asymmetric model can capture the threshold correlation patterns observed in

DMs and EMs.

Fifth, we use a regression analysis to link the time variation in dependence to economic fun-

damentals, market characteristics, and measures of financial openness. We also investigate the

relationship between dependence and volatility. Our model does not assume a factor structure but

we do find a significant positive association between copula correlations and volatilities. We find

that neither volatility nor other financial and macro variables are able to drive out the trend in
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copula correlations.

The paper proceeds as follows. Section 2 introduces the new DAC model with dynamic copula

correlations, allowing for dynamic tail dependence and asymmetries. We place special emphasis

on the estimation of this model for large systems. Section 3 presents the data, as well as the

empirical results on time variation in copula correlations. Section 4 introduces a new non-linear

conditional measure of diversification benefits that can take into account the nonlinear dependence,

asymmetries, and nonnormalities in the DAC model. We also discuss empirical estimates of this

measure. Section 5 discusses additional economic implications, including tail dependence, threshold

correlations, and dependence over longer horizons. Section 5 also contains a regression analysis of

the economic determinants of the dependence measures. Section 6 concludes.

2 Dynamic Dependence Models for Many Equity Markets

This section outlines the general model we use to capture dynamic dependence across equity mar-

kets. Our dynamic copula approach allows for multivariate nonnormalities, and models copula

correlations as reverting back to a long-run mean which consists of a constant as well as a time-

varying part. This model feature is critical to capture dependencies that are potentially trending

over time. We also describe how this model can be reliably estimated using a large cross-section of

assets.

2.1 The Dynamic Conditional Copula Approach

Our objective is to characterize dependence in a general way using the largest possible cross-section

of international equity markets. In the existing literature, implementations of multivariate GARCH

models have traditionally used a limited number of countries because of dimensionality problems.3

Recent modeling innovations by Engle (2002) and Tse and Tsui (2002), combined with implemen-

tation techniques discussed in Section 2.5 below, make it possible to study larger cross-sections of

countries.

However, in characterizing international stock market dependence, a crucial issue is the use of

the multivariate normal distribution which is usually relied upon to implement dynamic correlation

models. The multivariate normal distribution is the standard choice in the literature because it

is convenient, and because quasi maximum likelihood results ensure that the dynamic correlation

parameters will be estimated consistently even when the normal distribution assumption is incorrect,

3See Kroner and Ng (1998) and Solnik and Roulet (2000) for a more elaborate discussion of the restrictions
imposed in the first generation of multivariate GARCH models.
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as long as the dynamic models are correctly specified.

While the multivariate normal distribution is a convenient statistical choice, the economic mo-

tivation for using it is more dubious. It is well-known (see for example Longin and Solnik (2001),

and Ang and Bekaert (2002)) that international equity returns display threshold correlations not

captured by the normal distribution: Large down moves in international equity markets are highly

correlated, which is of course crucial for assessing the benefits of diversification. The dynamic cor-

relation models of Engle (2002) can generate more realistic threshold correlations, but likely not to

the degree required by the data. Moreover, they are symmetric by design, and cannot accommodate

Longin and Solnik’s (2001) finding that returns are more correlated in down markets. We there-

fore go beyond the dynamic multivariate normal distributions used in Engle (2002) and Tse and

Tsui (2002) and introduce dynamic copula models which have the potential to generate empirically

relevant levels of threshold correlations, as well as asymmetric threshold correlations.

Copulas constitute an extremely convenient tool for building a multivariate distribution for a set

of assets from any choice of marginal distributions for each individual asset.4 From Patton (2006),

who relies on Sklar (1959), we can decompose the conditional multivariate density function of a

vector of returns for N countries, ft (Rt), into a conditional copula density function, ct, and the

product of the conditional marginal distributions fi,t (Ri,t)

ft (Rt) = ct (F1,t (R1,t) , F2,t (R2,t) , ..., FN,t (RN,t))

N∏

i=1

fi,t (Ri,t) .

where Rt is a vector of returns at time t comprised of individual returns R1,t to RN,t, and Fi,t is the

cumulative distribution function of Ri,t.

From this the multivariate log-likelihood function can be constructed as

L =

T∑

t=1

N∑

i=1

log (fi,t (Ri,t)) +

T∑

t=1

log (ct (F1,t (R1,t) , F2,t (R2,t) , ..., FN,t (RN,t)))

The upshot of this decomposition is that we can make assumptions about the marginal densities

that are independent of the assumptions made about the copula function. We now discuss the

modeling of the marginal densities, and subsequently we address how copula techniques can capture

asymmetric threshold correlations.

4McNeil, Frey and Embrechts (2005) provide an authoritative review of the use of constant copulas in risk
management.
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2.2 Modeling the Marginal Density

For modeling the marginal density, the critical issues are dynamic volatility and the modeling of

asymmetries. Asymmetries are traditionally modeled through the leverage effect, which has been

found to be an important stylized fact in equity index returns. The leverage effect is an asymmetric

volatility response that captures the fact that a large negative shock to an equity market increases

the equity market volatility by much more than a positive shock of the same magnitude. See

for example Black (1976) and Engle and Ng (1993). See Bekaert and Wu (2000) for evidence on

international markets.

Existing studies usually find that even when including a leverage effect, model residuals contain

evidence of remaining skewness and fat tails. We therefore allow for asymmetry in the marginal

return distribution by modeling a leverage effect, but also by using an asymmetric marginal dis-

tribution for the return innovation in each country. To capture both effects as well as volatility

persistence and heteroskedasticity, we assume that the return on asset i at time t follows an Engle

and Ng (1993) dynamic

Ri,t = µi,t + εi,t = µi,t + σi,tzi,t (2.1)

σ2i,t = ωi + αi (εi,t−1 − γiσi,t−1)2 + βiσ2i,t−1. (2.2)

We assume that the distributions of the innovations differ across assets, but are constant over time

and follow the skewed t distribution of Hansen (1994) which is detailed in Appendix A. Here we

simply denote it by Fi,t(zi,t) = Fχ
i
,%i
(zi,t).

5 Country i’s residual conditional skewness is driven by

the parameter χ
i
and its degree of conditional kurtosis is controlled by the parameter %i. We write

the cumulative distribution function as

ηi,t = Fχ
i
,%i
(zi,t). (2.3)

Note that in our approach the individual return shock distributions are constant through time but

the individual return distributions do vary through time because the return mean and variance are

dynamic.

5Alternatively, one can also use a nonparametric approach for modeling the marginals in copula modeling, see for
example Chen and Fan (2006). We use Hansen’s (1994) skewed t distribution to ensure that the copula-based multi-
variate distribution will be well specified, which allows us to conduct statistical inference, relying on the asymptotic
theory discussed in Engle, Shephard and Sheppard (2008) which requires a parametric approach. We verified that
our parameter estimates are similar to semiparametric estimates that rely on combining the empirical distribution
function with a Generalized Pareto distribution for the tails of the distribution. See McNeil (1999) and McNeil and
Frey (2000) for more detail on this approach.
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2.3 Allowing for Multivariate Nonnormality and Asymmetry

A useful model of international equity returns needs to account for tail dependence and asymmetries

in threshold correlations mentioned in Section 2.1, which are well-established empirical facts. The

asymmetries discussed in Section 2.2 only address asymmetries in the marginal densities, and not

the well-known multivariate asymmetries and asymmetric threshold correlations. We rely on copula

models to capture these multivariate asymmetries.

Within the class of copula models, the most widely applied copula function is based on the multi-

variate normal distribution and referred to as the normal copula. Though convenient to use, it is not

flexible enough to capture the tail dependence in asset returns. While allowing for tail dependence,

the more flexible t copula unfortunately implies symmetric threshold correlations. Asymmetry

in the bivariate distribution of asset returns has generally been modeled using copulas from the

Archimedean family which include the Clayton, the Gumbel, and the Joe-Clayton specifications.6

However, these models are not easily generalized to high-dimensional applications.

We therefore consider the skewed t distribution discussed in Demarta and McNeil (2004) and

use the implied skewed t copula whose cumulative distribution function, Ct, is given by

Ct(η1,t, η2,t, ..., ηN,t; Ψ, λ, ν) = tΨ,λ,ν(t
−1
λ,ν(η1,t), t

−1
λ,ν(η2,t), ..., t

−1
λ,ν(ηN,t))

where λ is an asymmetry parameter, ν is the degree of freedom parameter, tΨ,λ,ν is the multivariate

skewed Student’s t density with correlation matrix Ψ, and t−1λ,ν is the inverse cumulative distribution

function of the univariate skewed t distribution.

Note that the copula correlation matrix Ψ is defined by the correlation of the copula shocks

z∗i,t ≡ t−1λ,ν(ηi,t) and not of the return shocks zi,t. Notice also that

z∗i,t ≡ t−1λ,ν(ηi,t) = t−1λ,ν(Fχi ,%i(zi,t))

so that if the marginal distributions Fχ
i
,δi are close to the tλ,ν distribution, then z

∗

i,t will be close to

zi,t. The skewed t copula is built from the skewed multivariate t distribution and the symmetric t

copula is nested when λ tends to zero. If the degree of freedom tends to infinity, the normal copula

is obtained. Appendix A provides the details needed to implement the skewed t copula. Note that

the marginal model in Section 2.2 captures any univariate skewness present in the equity returns.

The λ parameter captures multivariate asymmetry.

The skewed t copula is parsimonious, tractable in high dimension, and flexible, allowing us to

model non-linear and asymmetric dependence with the degree of freedom parameter, ν, and the

6See for example Patton (2004, 2006).
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asymmetry parameter, λ, while retaining a copula correlation matrix, Ψ, which can be made time-

varying as we will see in the next section. Figure A.1 plots probability contours for the bivariate

case for two parameterizations of the skewed t copula, as well as the special cases of the t copula and

the normal copula. The probability levels for each contour are kept the same for all four figures.

The ability of the skewed t copula to generate substantial asymmetries with realistic parameter

values is evident. For the sake of parsimony in our high-dimensional applications, we report on a

version of the skewed t copula where the asymmetry parameter λ is a scalar. It is straightforward

to develop a more general version of the skewed t copula allowing for an N -dimensional vector of

asymmetry parameters, but it is difficult to estimate such a model on a large number of countries.

2.4 Dynamic Copula Correlations

We now build on the linear correlation techniques developed by Engle (2002) and Tse and Tsui

(2002) to model dynamic copula correlations. As in the standard dynamic conditional correlation

(DCC) model, dynamic correlations are driven by a multivariate GARCH process. However, the

copula shocks z∗i,t ≡ t−1λ,ν(ηi,t) are used as the model’s building block instead of the return shocks

zi,t.
7

The copula correlation dynamic is driven by the matrix Υt and the cross-products of the return

shocks

Γt = (1− βΓ − αΓ) [(1− ϕΓ)Ω + ϕΓΥt] + βΓΓt−1 + αΓz̄∗t−1z̄∗>t−1 (2.4)

where z∗i,t = z
∗

i,t

√
Γii,t using the Aielli (2009) modification, βΓ, αΓ, and ϕΓ are scalars, and z̄

∗

t is an

N -dimensional vector with typical element z∗i,t. The conditional copula correlations are defined via

the normalization

Ψij,t = Γij,t/
√
Γii,tΓjj,t.

This normalization ensures that all copula correlations remain in the −1 to 1 interval.
Note that the dynamic conditional copula correlation matrix mean-reverts at time t to a weighted

average of a constant Ω and a time-varying matrix Υt with weighting parameter ϕΓ. We refer to

this model as the dynamic asymmetric copula (DAC) model. Its components are as follows.

First, Ω is a constant copula correlation matrix. Therefore, by setting ϕΓ to 0 we obtain the

DCC approach of Engle (2002) as applied to copula correlations. Second, the matrix Υt contains

information about time trends and explanatory variables. While this matrix can take on a very

general form, as described in Appendix B, we consider here a simplified version with only a time

7Unless one uses the normal copula, the fractiles do not have zero mean and unit variance. We therefore standardize
the z∗

i
in the dynamic copula dependence model.
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trend. For simplicity, we further constrain the time trend parameters to be equal across all developed

markets and also across all emerging markets. The resulting matrix Υt is given by

Υt =

[
ΥDM,t ΥDM,EM,t

Υ>DM,EM,t ΥEM,t

]
(2.5)

where ΥDM,t is a NDMxNDM correlation matrix with all off-diagonal elements equal to
δ2DM t

2

1+δ2DM t
2 ,

ΥEM,t is a NEMxNEM correlation matrix with all off-diagonal elements equal to
δ2EM t

2

1+δ2EM t
2 , and

ΥDM,EM,t is a NDMxNEM matrix with all elements equal to δDM δEM t
2

1+δDM δEM t2
, where δDM and δEM

are parameters to be estimated.8

The conditional copula correlation matrix can be seen as the weighted average of a slowly varying

component, (1−ϕΓ)Ω+ϕΓΥt, the lagged conditional correlation matrix, Γt−1, and the lagged cross-
product of the standardized copula shocks. Note that a negative pair of copula shocks impact

correlation in the same way as do a positive pair of copula shocks of the same magnitude. We also

investigated an alternative specification using the cross-products of the re-centered copula shocks,(
z̄∗t−1 − ξΓι

) (
z̄∗t−1 − ξΓι

)>
, where ξΓ is a scalar and ι is an N-dimensional vector of ones. This

specification introduces additional multivariate asymmetry into the model. However, our results

showed that the estimates of parameter ξΓ are not statistically significant, and the more general

model does not yield a better fit than the model in (2.4). We therefore conclude that the skewed t

distribution adequately captures the multivariate asymmetries in the data.

2.5 Estimation

If N denotes the number of equity markets under study, then the DAC model has N(N − 1)/2 + 8
parameters to be estimated. Below we will study up to 17 emerging markets and 16 developed

markets, thus N = 33 and so the DAC model will have 536 parameters. It is well recognized in the

literature that it is impossible to estimate so many parameters reliably using numerical optimization

techniques.9 In order to operationalize estimation, we use the average level of the copula correlations

over the entire sample to fix the time-invariant parameters

Ω =
1
T

∑T

t=1 z̄
∗

t z̄
∗>

t − ϕΓ 1T
∑T

t=1Υt

1− ϕΓ
. (2.6)

8The parameterization of our trend correlation matrix is motivated by the approach in Marsaglia and Olkin
(1984).

9See for instance Solnik and Roulet (2000) for a discussion.
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The numerical optimizer now only has to search in eight dimensions corresponding to the parameter

vector θ = (αΓ, βΓ, ϕΓ, ξΓ, δDM , δEM , ν, λ)
>, rather than in the original 536 dimensions. Note that

this implementation also ensures that the estimated DAC model yields a positive semi-definite

correlation matrix, because z̄∗t z̄
∗>

t and thus Γ is positive semi-definite by construction. Appendix C

contains more details on the estimation of Ω in the DAC model.

Even in parsimonious models estimation is cumbersome with many assets due to the need to

invert the N by N correlation matrix, Ψt, for every observation in the sample. Furthermore, the

likelihood must be evaluated many times in the numerical optimization routine. More importantly,

Engle, Shephard and Sheppard (2008) find that in large-scale estimation problems, the parameters

αΓ and βΓ which drive the correlation dynamics are estimated with bias when using conventional

estimation techniques. They propose an ingenious solution based on the composite likelihood which,

in our context, is defined as

CL(θ) =
T∑

t=1

N∑

i=1

∑

j>i

ln ct(ηi,t, ηj,t; θ) (2.7)

where ct(ηi,t, ηj,t; θ) denotes the bivariate copula distribution of asset pair i and j.

The composite log-likelihood is thus based on summing the log-likelihoods of pairs of assets.

Each pair yields a valid (but inefficient) likelihood for θ, but summing over all pairs produces an

estimator which is relatively efficient, numerically fast, and free of bias even in large-scale problems.

We use the composite log-likelihood in all our estimations below. We have found it to be very

reliable and robust, effectively turning a numerically impossible task into a manageable one. The

composite likelihood procedure allows us to estimate dynamic copula correlations in larger systems

of international equity data using longer time series of returns than previously done in the literature.

This is important because long time series on large sets of countries are needed for the identification

of variance and covariance dynamics.

3 Empirical Dependence Analysis

This section contains our empirical findings on dependence patterns. We first describe the different

data sets and briefly discuss the univariate results. We then analyze the time-variation in copula

correlations and dispersion in copula correlations across pairs of assets at each point in time and

check if this dispersion has changed over time.
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3.1 Data and Univariate Models

We employ the following three data sets:

First, from DataStream we collect weekly closing U.S. dollar returns for the following 16 de-

veloped markets: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong,

Ireland, Italy, Japan, Netherlands, Singapore, Switzerland, U.K., and U.S. This data set contains

1,901 weekly observations from January 12, 1973 through June 12, 2009.

Second, from Standard and Poor’s we collect the IFCG weekly closing U.S. dollar returns for

the following 13 emerging markets: Argentina, Brazil, Chile, Colombia, India, Jordan, Korea,

Malaysia, Mexico, Philippines, Taiwan, Thailand, and Turkey. This data set contains 1,021 weekly

observations from January 6, 1989 through July 25, 2008.

Third, from Standard and Poor’s we collect the weekly closing investable IFCI U.S. dollar returns

for the following 17 emerging markets: Argentina, Brazil, Chile, China, Hungary, India, Indonesia,

Korea, Malaysia, Mexico, Peru, Philippines, Poland, South Africa, Taiwan, Thailand, and Turkey.

This data set contains 728 weekly returns from July 7, 1995 through June 12, 2009.

We use two emerging markets data sets because each has their distinct advantages. The IFCG

data set spans a longer time period, and represents a broad measure of emerging market returns,

but is not available after July 25, 2008. The IFCI data set tracks returns on a portfolio of emerging

market securities that are legally and practically available to foreign investors. The index con-

struction takes into account portfolio flow restrictions, liquidity, size and float. It continues to be

updated but the sample period is shorter, which is a disadvantage in model estimation and of course

in assessing long-term trends in correlation.

Table 1 contains descriptive statistics on the 1989-2008 data set. While the cross-country vari-

ations are large, Table 1 shows that the average annualized return in the developed markets was

12.06%, versus 17.68% in the emerging markets. This emerging market premium is reflective of

an annual standard deviation of 33.63% versus only 18.41% in developed markets. Kurtosis is on

average higher in emerging markets, indicating more tail risk. But skewness is slightly positive in

emerging markets and slightly negative in mature markets, suggesting that emerging markets are

not more risky from this perspective.

The first-order autocorrelations are small for most countries. The Ljung-Box (LB) test that

the first 20 weekly autocorrelations are zero is not rejected in most developed markets but it is

rejected in most emerging markets. We use an autoregressive model of order two, AR(2), for each

market to pick up this return dependence. The Ljung-Box test that the first 20 autocorrelations in

absolute returns are zero is strongly rejected for all 29 markets. We employ a GARCH model for

each market to pick up this second-moment dependence. As discussed in Section 2.2, we use the
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NGARCH model of Engle and Ng (1993) in equation (2.2) and skewed t innovations to account for

univariate asymmetries.

Table 2 reports the results from the estimation of the AR(2)-NGARCH(1,1) models with skewed

t innovations on each market for the 1989-2008 data set. The results are fairly standard. The

volatility updating parameter, α, is around 0.1, and the autoregressive variance parameter, β, is

around 0.8. The parameter γ governs the volatility asymmetry and is also known as the leverage

effect. It is commonly found to be large and positive in developed markets and we find that here

as well for most countries. Interestingly, the average leverage effect is much closer to zero in the

emerging markets and it is negative in quite a few cases. The model-implied variance persistence is

high for all countries, as is commonly found in the literature.

The Ljung-Box (LB) tests on the model residuals show that the AR(2) models are able to pick

up the weak evidence of return predictability found in Table 1. Impressively, the GARCH models

are also able to pick up the strong persistence in absolute returns found in Table 1. Note also that

the skewed t GARCH model picks up much of the excess kurtosis found in Table 1.

We conclude from Tables 1 and 2 that the skewed t AR(2)-NGARCH(1,1) models are successful

in delivering the white-noise residuals that are required to obtain unbiased estimates of the dynamic

copula correlations.

3.2 Copula Correlation Patterns Over Time

Table 3 reports the parameter estimates and composite log likelihood values for the DAC model.

We report results for the three data sets introduced above. For each set of countries we estimate two

versions of each model: one version allowing for copula correlation dynamics, and another where the

correlation dynamics are completely shut down, and thus αΓ = βΓ = 0. A conventional likelihood

ratio test would suggest that the last model is rejected for all sets of countries, but unfortunately

the standard chi-squared asymptotics are not available for composite likelihoods.

The dependence persistence (αΓ + βΓ) is close to one in all models, implying very slow mean-

reversion in copula correlations, despite the presence of a trend.

Figure 1 presents time series of averages of the dynamic copula correlations across countries for

several samples. The left panels in Figure 1 present results for twenty-nine developed and emerging

markets for the sample period January 20, 1989 to July 25, 2008. We refer to this sample as the

1989-2008 sample. As explained in Section 3.1, sixteen of these markets are developed and thirteen

are emerging markets.

The right panels in Figure 1 present results for thirty-three developed and emerging markets

for the sample period July 21, 1995 to June 12, 2009. This sample contains the same sixteen
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developed markets, and seventeen emerging markets. There is considerable overlap between this

sample of emerging markets and the one used in the left panels of Figure 1. Section 3.1 discusses

the differences. We refer to this sample as the 1995-2009 sample.

The top panel in Figure 2 contains results for the group of sixteen developed markets between

January 26, 1973 and June 12, 2009. We refer to this sample as the 1973-2009 sample. Figure 2

also shows results for the 1989-2008 and the 1995-2009 data for comparison.

These figures contain some of the main messages of our paper. The dynamic copula correlations

in Figure 1 and 2 fluctuate considerably from year to year, but have been on an upward trend since

the beginning of the sample. Figure 2 shows that for the sixteen developed markets, the average

copula correlation increased from approximately 0.2 in the mid-1970s to around 0.8 in 2009. Figure

1 indicates that over the 1989-2009 period, the copula correlations between emerging markets are

lower than those between developed markets, but that they have also been trending upward, from

approximately 0.1-0.2 in the early nineties to over 0.5 in 2009. Figure 1 also indicates that the

model-implied trend, indicated by the dashed line, is roughly linear for the emerging markets, while

the increase in copula correlations has somewhat slowed in recent years for the developed markets.

When estimated on all markets, recall that our DAC model has two different time trend para-

meters; one for developed markets and one for emerging markets. The last row in Figure 1 presents

the resulting time trend for cross-correlation between developed and emerging markets, which de-

pends on these two parameters. While the first three rows of graphs indicate that correlation have

increased within DMs, within EMs and on average across all markets, the bottom graphs confirm

that average correlation between DMs and EMs have also increased.

Table 3 also reports the standard errors for all parameter estimates using the technique in Engle,

Shephard and Sheppard (2008).10 The total increase in long run average correlation depends on

the time trend parameters, δDM and δEM , as well as on the weighting parameter ϕΓ. We report

the increase in copula correlation for DMs over the sample that is due to the time trend component

using (2.4) and (2.5) as follows

{ϕΓΥDM,t}t=T − {ϕΓΥDM,t}t=0 = ϕΓ
δ2DMT

2

1 + δ2DMT
2
= ϕΓΥDM,T

and similarly for EMs. The increases in long-run copula correlation ranges from 0.25 to 0.39 for

DMs and 0.29 to 0.38 for EMs and are all positive and most often significant as seen from Table

10Asymptotic standard errors are computed using each bivariate element of the composite log-likelihood in equation
(2.7). The standard errors are a function of the gradient and the Hessian of the copula parameters, the gradient
of the moment estimator in equation (2.6), the gradient of the AR-NGARCH models, and their cross-derivatives.
Please see Engle, Shephard and Sheppard (2008) for further detail.
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3.11 To illustrate further the importance of the evolution of the general level of dependence, we

also report in Figure 1 and 2 the average constant copula correlation estimated on each sample

along with bootstrapped 90% confidence intervals (dashed line and gray area).12 In all cases, both

the dynamic and the long-run copula correlations are significantly lower than the constant copula

correlation at the start of the sample, and higher at the end.

Because the model allows for dynamic copula correlations with a long-run trend, one may won-

der whether the choice of sample period strongly affects inference on dependence estimates at a

particular point in time. Figure 2 addresses this issue by reporting estimates for the sixteen de-

veloped markets for three different sample periods. Whereas there are some differences, the copula

correlation estimate at a particular point in time is remarkably robust to the sample period used,

and the conclusion that copula correlations have been trending upward clearly does not depend on

the sample period used. Comparing the left and right panels of Figure 1, it can be seen that a

similar conclusion obtains for emerging markets, even though this comparison is more tenuous, as

the sample composition and the return data used for the emerging markets are somewhat different

across panels.

3.3 Cross-Sectional Differences in Copula Correlations

The average copula correlations indicate that dependence has increased on average over our sample.

The next question is how much cross-sectional heterogeneity there is in the copula correlations,

and if the increases in dependence are different across countries and regions.13 Reporting on all

these time-varying pairwise copula correlation paths is not feasible, and we have to aggregate the

correlation information in some way. Figures 3-5 provide an overview of the results.14

Figure 3 uses the 1989-2008 sample to report, for each of the twenty-nine countries in the sample,

the average of its copula correlations with all other countries using light grey lines. Figure 3.A

contains the 16 developed markets and Figure 3.B contains the 13 emerging markets. While these

paths are averages, they give a good indication of the differences between individual countries, and

11We compute asymptotic standard errors of the correlation trend increase using the delta method.
12In the bootstrap we generate 10,000 samples by randomly drawing with replacement from η

t
defined in equation

(2.3). For each bootstrap sample, we compute the average pairwise copula correlation. Using the 10,000 average
copula correlations, we then form a 90% confidence interval around the constant copula correlation. Alternatively,
we can construct confidence intervals around the time-varying copula correlations, but this is computationally much
more expensive.
13A related literature explores the relationship between industrial structure and the dynamics of equity market

returns and cross-country correlations. See for instance Roll (1992), Heston and Rouwenhorst (1994), Griffin and
Karolyi (1998), and Dumas, Harvey and Ruiz (2003).
14Throughout the paper, we report equal-weighted averages of the pairwise copula correlations. Value-weighted

correlations (not reported here) also display an increasing pattern over our samples.
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they are also informative of the differences between developed and emerging markets. In order to

further study these differences, each figure also gives the average of the market’s copula correlations

with all (other) developed markets using black lines and all (other) emerging markets using dark

grey lines. Figures 3.A and 3.B yield some very interesting conclusions. First, the copula correlation

paths display an upward trend for all 29 countries, except perhaps Jordan. Second, for developed

markets the average copula correlation with other developed markets is higher than the average

copula correlation with emerging markets at virtually each point in time for virtually all markets.

Third, for emerging markets the copula correlation with developed markets is generally higher

than the copula correlation with other emerging markets. However, the difference between the two

copula correlation paths is much smaller than in the case of developed markets, and in several

cases the average paths are very similar. Note that in Figure 3.A the trend patterns for European

countries are also not very different from those for other DMs. Notice that, even if their level is

still somewhat lower, the correlations for Japan and the US have increased just as for the European

countries during the last decade. Inspection of the pairwise DAC paths, which are not reported

because of space constraints, reveals that the trend patterns are remarkably consistent for almost

all pairs of countries, and there is no meaningful difference between European countries and other

DMs.

Figure 3 reports the averages of the copula correlations between each market and all other

markets. It could be argued that instead the correlation between each market and the average

return of the other markets ought to be considered. We have computed these correlations as well,

but we do not show them in order to save space. While the correlation with the average return is

nearly always higher than the average correlation from Figure 3, the conclusion that the correlations

are trending upwards is not affected.

We can use the correlation paths from the DAC model to assess regional patterns in correlation

dynamics. Figure 4 does exactly this. We divide the 16 DMs into two regions (EU and non-EU)

and we divide the 13 EMs into another two EM regions: Latin America and Emerging Eurasia.15

We report in Figure 4 the average copula correlation within and across the four regions, based

on the model’s country-specific correlation paths. Strikingly, Figure 4 shows that the increasing

dependence patterns are evident within each of the four regions and also across all the six possible

pairs of regions. The highest levels of copula correlation are found in the upper-left panel which

shows the intra-EU copula correlations. The lowest levels are found in the bottom-right panel which

shows the intra Emerging Eurasia copula correlations. Emerging Eurasia in the right-most column

15The European Union (EU) includes Austria, Belgium, Denmark, France, Germany, Ireland, Italy, Netherlands,
and the UK. Developed Non-EU includes Australia, Canada, Hong Kong, Japan, Singapore, Switzerland, and the US.
Latin America includes Argentina, Brazil, Chile, Colombia, and Mexico. Emerging Eurasia includes India, Jordan,
Korea, Malaysia, Philippines, Taiwan, Thailand, and Turkey.
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generally has the lowest interregional copula correlations.

Figures 3 and 4 do not tell the entire story, because we have to resort to reporting copula cor-

relation averages due to space constraints. Figure 5 provides additional perspective by providing

copula correlation dispersions for the developed markets, emerging markets, and all markets respec-

tively. In particular, at each point in time, the shaded areas in Figure 5 show the range between

the 10th and 90th percentile based on all pairwise copula correlations between groups of countries.

The top panel considers the sixteen developed countries. The middle panel in Figure 5 reports the

same statistics for the emerging markets for the 1989-2008 sample and the bottom panel shows all

29 markets together. While the increasing level of dependence is evident, the range seems to have

narrowed for developed markets, widened a bit for emerging markets, and the range width seems

to have stayed roughly constant for all markets taken together.

4 Conditional Diversification Benefits

If the level of dependence is changing over time, then the benefits of portfolio diversification are

likely changing as well. We therefore need to develop a dynamic measure of diversification benefits

that takes into account higher order moments and nonlinear dependence. Motivated by the analysis

in Basak and Shapiro (2001), we develop a dynamic measure based on expected shortfall. We first

discuss this measure in detail. We then provide more intuition by considering this measure under

the special case of multivariate normality, and subsequently we report our empirical estimates.

4.1 A Conditional Measure of Diversification Benefits

Our approach is based on the expected shortfall measure defined as

ESqt (Ri,t) = −E
[
Ri,t|Ri,t ≤ F−1i,t (q)

]
.

where F−1i,t (q) is the inverse cumulative distribution function of asset i at time t, and q is a probability

commonly set to 5% or 1%. Expected shortfall is a coherent risk measure16 and so the upper bound

on the portfolio ES is the weighted average of the assets’ individual expected shortfalls

ES
q

t ≡
N∑

i=1

wi,tES
q
t (Ri,t).

16See Artzner, Delbaen, Eber and Heath (1999).
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where wi,t is the portfolio weight on asset i at time t. This corresponds to the case of no diversifi-

cation benefits.

The lower bound on expected shortfall is

ESqt ≡ −F−1P,t (q)

This corresponds to the extreme case where the portfolio never loses more than its qth quantile.

Using these two extreme cases, we define the conditional diversification benefit (CDB) measure

by

CDBt(wt, q) ≡
ES

q

t − ESqt (wt)
ES

q

t − ESqt
. (4.1)

where ESqt (wt) denotes the expected shortfall of the portfolio at hand. This measure is designed to

take values on the [0, 1] interval, and is increasing in the level of diversification benefit. Note also

that it does not depend on the level of expected returns.

Below we report on the case where q is 5% and we choose wt to maximize CDBt(wt, q) subject

to the weights being non-negative and summing to one.17

In order to assess how much of the conditional diversification benefit derives from active asset

allocation, we also construct a CDBEWt measure for an equal-weighted portfolio. By definition

CDBEWt will be less than or equal to its optimal counterpart CDBt at any point in time. The

difference between these two measures indicates if equal-weighted portfolios are close to optimal,

and measures to what extent changing volatilities and dependence can be exploited via dynamic

asset allocation.

4.2 The Special Case of Normality

Our CDBt measure is designed to capture nonnormalities and simplifies greatly when returns are

normally distributed. Under normality, we have

ESq = −µ+ σφ (Φ
−1(q))

q

where µ and σ are the mean and the standard deviation of returns, and φ and Φ are the standard

normal density and cumulative distribution functions, respectively. Substituting in equation (4.1),

we obtain

CDBt(wt, q) =
w>t σt − σP,t

w>t σt + σP,t
Φ−1(q)q
φ(Φ−1(q))

(4.2)

17The results for different values of q are qualitatively similar and available from the authors upon request.
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where σt denotes the vector of individual asset volatilities at time t and σP,t is portfolio volatility.

Note that in the special case of q = 50%, the measure reduces to

V olCDBt(wt) ≡ CDBt(wt, 0.5) =
w>t σt − σP,t
w>t σt

= 1−
√
w>t Σtwt
w>t σt

, (4.3)

where Σt denotes the variance-covariance matrix of returns. The denominator w
>

t σt represents

portfolio volatility in the extreme case of no diversification benefits, and V olCDBt measures condi-

tional diversification benefits as the degree of portfolio volatility reduction from this upper bound.

We report V olCDB estimates in our empirical analysis below along with the more general CDB

estimates.

4.3 Diversification Benefits

Figure 6 plots the conditional diversification benefit measures developed in equations (4.1) and (4.3)

for developed, emerging, and all markets, evaluated using our estimates of the DAC model. The

left-hand panels present results for the general measure in (4.1), and the right-hand panels present

results for the special case in (4.2) where only the volatilities and linear correlations from the model

are used.

The top-left panel shows a clearly decreasing trend in diversification benefits in DMs for both

the optimal (black) and equal-weighted (grey) allocations: Dependence has been rising rapidly and

the benefits of diversification have been decreasing during the last ten years. Diversification benefits

have also decreased in emerging markets (middle left panel) but the level of benefit is still higher

than in developed markets. When combining the developed and emerging markets (bottom left

panel), the diversification benefits are declining as well but the level is again much higher than

when considering developed markets alone. Emerging markets thus offer substantial diversification

benefits to investors.

In the case of the volatility-based measure in the right-side panels, similar conclusions obtain, but

there are some interesting differences. Compared to the general CDB case, the declining V olCDB

trend seems more pronounced for emerging markets. We therefore conclude that the diversification

benefits offered by emerging markets are partly due to the diversification of large market downturns.

For both the general CDB and the V olCDB measures, the differences between the optimal and

the equally-weighted portfolio are nonzero, but not very large. The differences are somewhat larger

for the volatility based measure in the right panels and largest when considering EMs and DMs

jointly in the bottom-right panel. Overall, the relatively modest differences between optimal and

equal-weighted diversification benefits suggest that the “1/N” style portfolios recently advocated
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in a normal setting may work relatively well in our nonnormal context as well.18

5 Further Economic Implications

The declining diversification benefits constitute an important implication of the rising dependence

across international equity markets. We now explore some further economic implications of our

empirical estimates. We document the models’ implications for tail dependence, and investigate if

the models can match well-known stylized facts regarding threshold correlations. We also derive the

implications of our estimates for copula correlations over longer horizons. Finally, we use regression

analysis to assess how equity market correlations are related to market openness as well as to

financial and macro variables more generally.

5.1 Tail Dependence

Tables 4 and 5 present additional estimation results for two nested copula models, the dynamic

symmetric t copula (DSC) and the dynamic normal copula (DNC). This provides an alternative

way to assess the importance of asymmetries and nonnormalities in the copula, as opposed to

the statistical significance of the estimates of ν and λ in Table 3. While we cannot use standard

asymptotics to compare the composite likelihoods, it is clear that the DAC likelihoods in Table 3

are much larger than the DSC likelihoods in Table 4 and the DNC likelihoods in Table 5. Note that

the copula correlation persistence is—as was the case in Table 3—very close to one in all models. To

further illustrate the differences between the DAC model and the two nested cases, we now discuss

model-implied tail dependence coefficients, while the next section discusses threshold correlations.

The DAC model generalizes the DNC model by allowing for non-zero dependence in the tails,

and it generalizes the DSC model by allowing for different dependence in the lower and upper tails.

One way to measure the lower tail dependence is via the probability limit

τLi,j,t = lim
ζ→0

Pr[ηi,t ≤ ζ|ηj,t ≤ ζ] = lim
ζ→0

Ct(ζ, ζ)

ζ
(5.1)

where ζ is the tail probability. The upper tail dependence at time t can similarly be defined by

τUi,j,t = lim
ζ→1

Pr[ηi,t ≥ ζ|ηj,t ≥ ζ] = lim
ζ→1

1− 2ζ + Ct(ζ, ζ)
1− ζ (5.2)

18In the multivariate normal case, DeMiguel, Garlappi and Uppal (2009) and Tu and Zhou (2011) analyze the
relative performance of equal-weighted versus optimally-weighted portfolios in an unconditional setting.
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The normal copula has the empirically questionable property that its tail dependence is zero. The

tail dependence is positive in DAC and DSC models we develop, and the tail dependence measure

depends on the degree of freedom, ν, the copula correlation, Ψi,j, and the skewness parameter, λ.
19

In the DSC model the lower and upper tail dependence is identical, that is τLi,j,t = τ
U
i,j,t. Based on

the work by Longin and Solnik (2001) and Ang and Bekaert (2002), we suspect that such symmetry

does not characterize international equity index returns, and we therefore investigate the difference

between upper and lower tail dependence using the DAC model.20

Figure 7 plots the dynamic measure of tail-dependence in equations (5.1) and (5.2) for the DAC

model. We report the average of the bivariate tail dependence across all pairs of countries.21 In

each graph, the dark line depicts the evolution of the lower tail dependence, while the gray line is

for the upper tail dependence.22 Figure 7 shows quite dramatic differences across markets. The tail

dependence in developed markets has risen markedly during the last twenty years. Remarkably,

while the emerging market tail dependence measures in the middle panel of Figure 7 have also

increased, they remain very low compared to developed markets. When considering all markets in

the bottom panel of Figure 7, we find that while the tail dependence is rising, it is still much lower

than for the developed markets alone. From this perspective, the diversification benefits from adding

emerging markets to a portfolio appear to be large compared to those offered by developed markets

alone, even if these benefits have become smaller over time. In all cases, lower tail dependence

is higher than upper tail dependence, suggesting substantial negative skewness in the multivariate

distribution of international equity returns.

The relatively modest tail dependence found for EMs in Figure 7 helps explain the diversification

benefits offered by EMs in the left panels of Figure 6 where the general CDB measure is used.

5.2 Threshold Correlations

For each pair of countries we compute threshold correlations from return shocks, as follows

ρ̃π(zi, zj) =

{
Corr (zi, zj|zi ≤ π, zj ≤ π) if π ≤ 0,
Corr (zi, zj|zi > π, zj > π) if π > 0.

19See Patton (2006) for an application of the tail dependence measure to exchange rates.
20On tail dependence, see also Poon, Rockinger, and Tawn (2004). On the related topic of contagion, see for

example Forbes and Rigobon (2002), Bekaert, Harvey, and Ng (2005), and Bae, Karolyi, and Stulz (2003).
21The tail dependence concept introduced above is inherently bivariate and not easily generalized to higher dimen-

sions. In order to convey the empirical evolution of tail dependence for many countries, we report the average of the
bivariate tail dependence across all pairs of countries.
22To the best of our knowledge a closed form solution is not available for the tail dependence measure in the case

of the skewed t copula. We therefore approximate it by numerical integration using ζ = 0.001.
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where zi are shocks for country i. We also compute similar threshold correlations based on standard-

ized returns. Figure 8 plots the pairwise empirical threshold correlations averaged across countries.

The left panels report the threshold correlations corresponding to returns, which are standardized

by their unconditional mean and standard deviations, and the right panels report the threshold

correlations computed on shocks, which are returns standardized by the AR-NGARCH model with

skewed t innovations discussed in Section 2.2. The correlations are computed for a grid of thresholds

π (denoted in standard deviations), provided that at least twenty observations are available. The

dashed line reports threshold correlations implied by a normal distribution using the average linear

correlation estimated from the data. As is well-known, asymmetric threshold correlations cannot be

captured using a multivariate normal distribution: threshold correlations in the normal distribution

are symmetric, and also decrease rather quickly in the tails.

When considering monthly returns in the US versus other DMs, Longin and Solnik (2001) found

that the downside threshold correlations were much larger than their upside counterparts. The solid

black line in the top left panel of Figure 8 confirms the findings of Longin and Solnik (2001): When

computing the average of all possible pairwise threshold correlations for weekly returns in sixteen

DMs we find that the downside threshold correlations indeed are much larger than upside threshold

correlations regardless of how returns are standardized.

The bottom left panel of Figure 8 shows the average threshold correlations for EMs, which has

not yet been documented in the literature. Threshold correlations are also asymmetric for EMs. As

in the case of DMs, the downside threshold correlations are larger than upside threshold correla-

tions. When comparing the top and bottom panels of Figure 8 we see that the downside threshold

correlations are higher for developed markets than for emerging markets, which is consistent with

our earlier findings.

The comparison of the left-side panels based on returns and the right-side panels based on

shocks is very instructive to illustrate the advantages of copula modeling, and of the DAC model

in particular. The asymmetries and nonnormalities built into the model for the marginals do

generate multivariate asymmetries and nonnormalities. If these asymmetries and nonnormalities

are sufficient to capture the stylized facts in the data, we should not observe asymmetries in the

right-side panels. This is clearly not the case. In fact, the right-side panels are very similar to the

left-side panels, indicating the limited role that the modeling of the marginals can play in capturing

multivariate asymmetries, and emphasizing the need for asymmetric copula models.

To see how well our models fare, we follow the empirical setup in Ang and Bekaert (2002) and

compare the pattern in empirical threshold correlations with threshold correlations from simulated

data generated using the models. Figure 9 presents the threshold correlations for NGARCH shocks

implied by the DAC and DSC models. Note that the DSC model (marked by ‘+’) is successful
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in producing higher threshold correlations than the Gaussian distribution, but by design these

correlations are also symmetric. The DAC model (marked by ‘©’) produces an asymmetric pattern
in threshold correlations, with substantially higher downside threshold correlations.

The DAC model does not capture the threshold correlation patterns perfectly. This is not sur-

prising, because its parameters optimize the composite likelihood and not the distance between

model based threshold correlations and their empirical counterpart. Moreover, the averaging of

empirical threshold correlations and model parameters may induce biases in the empirical compar-

ison. To demonstrate the model’s potential, we simulate data using a bivariate DAC model with

the average values for all parameter estimates, except for λ, which we set equal to minus one to

roughly match the threshold asymmetry in the data. The threshold correlation (marked by ‘×’)
shows that if the objective is to match the average level of threshold correlation, the DAC model is

able to do so.

5.3 Implied Copula Correlations for Longer Horizons

We have used weekly returns in order to be able to capture volatility and dependence dynamics

while avoiding non-synchronicity and other problems with daily data. However, not all investors

have a weekly horizon. Hence, we now consider the implications of our findings for longer horizons.

The left panels in Figure 10 present monthly copula correlations averaged across countries, while

the right panels report annual copula correlations. Each month (year), we simulate returns from

the AR-NGARCH and DAC models over the next 4 (52) weeks, compound them, and compute the

copula correlations of the resulting returns. Not surprisingly, the long horizon copula correlations

are smoother than the shorter horizon correlations. Further, the dependence is clearly increasing

over time for DMs as well as EMs and confirms our earlier finding that the dependence between

EMs is lower than between DMs.

5.4 Correlation Regressions

In this section we ask how the copula correlations plotted in Figure 3 are related to volatility,

market openness, and financial and macro variables more generally. We run country level panel

regressions on the copula correlations from the DAC model. Table 6 reports the results in four

panels. The regressand in Panel A is the natural logarithm of the average developed market copula

correlation with other developed markets. In Panel B it is the natural logarithm of the average

developed market copula correlation with all emerging markets. Panels C and D report on the

natural logarithm of the average emerging market copula correlations with all developed markets

and all other emerging markets respectively. Due to macro data availability, the data frequency is
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quarterly, and our sample is restricted between the third quarter of 1995 and the second quarter of

2008. We include a quadratic trend in all specifications and assess if the explanatory variables are

able to render the correlation trend insignificant. The specifications labeled (i) in Table 6 contain

only the trend which is significant throughout Panels A-D.

Factor models typically imply a positive relationship between correlation and volatility. Because

we obtain our results without the aid of a factor model, it is worth investigating if this positive

relationship is confirmed. Specification (ii) reports the results in each of the panels. We regress

correlation on the average log GARCH volatility across EM or DM countries and find a positive

relationship throughout Panels A-D. Comparing the results of specification (ii) with those of spec-

ification (i) we see that including volatility in the regression does not affect the trend coefficient

estimates nor the statistical significance of the estimated coefficients much.23 We conclude that the

documented trend in correlation cannot be explained by volatility movements.

We now investigate the relationship between financial development and dependence in emerging

markets. In order to measure financial development, we rely on Bekaert (1995) and Edison and

Warnock (2003), who use a direct measure of de jure market openness. Their measure is defined

as the ratio of the market capitalizations of the investable (IFCI) and global (IFCG) indexes from

S&P/IFC, and we denote it by “MCR”. When theMCR measure is one, the market capitalization

of the investable index is equal to that of the market-wide index. We report the regression results

in specification (iii) of Panels C and D. The relationship between the openness indicator MCR and

dependence is statistically significant at the 5% level in both cases, and the estimate is positive

as expected. However, the estimates of the time trend coefficients are little affected and still

statistically significant.

Finally we regress copula correlations on the following financial variables: the volatility risk

premium defined as the VIX less a moving 22-day standard deviation on daily index returns; the

3-month U.S. T-bill; the U.S. term spread (10-year less 1-year); the U.S. credit spread; and the

average of the real interest rate in the G7 economies. We also include MCAP defined as the

market value divided by the preceding year’s GDP. Finally, we include turnover, which is measured

as trading value divided by market capitalization, and which serves as a liquidity proxy. In addition

we use the following macro variables: the world real GDP growth rate, and the ratio of the sum of

exports and imports of goods and services to the gross domestic product denoted by “Trade”.24

We have investigated all permutations of the financial and macroeconomic variables, but for

23Following Petersen (2009), we compute White standard errors adjusted for within clusters (country and quarter)
correlation.
24Our variable selection is motivated by the work of Schwert (1989), Engle, Ghysels, and Sohn (2008), Engle and

Rangel (2008), Boyer, Mitton, and Vorkink (2010), Ghysels, Plazzi, and Valkanov (2011), Bekaert, Harvey, Lundblad,
and Siegel (2012), Carrieri, Chaieb, and Errunza (2011), and Baele, Bekaert, and Inghelbrecht (2010).
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brevity we report the most general specification including all variables. The results are in speci-

fication (iii) for Panels A and B, and in specification (iv) for Panels C and D. We find that it is

possible to identify financial variables that affect international return dependence, even with these

small samples. The volatility risk premium coefficient is significantly positive in all cases. The U.S.

3-month T-bill rate coefficient is significantly negative in all cases. The point estimate on the U.S.

term spread is negative in all cases, and it is statistically significant in three of four cases. The

credit spread is significant in Panel D only. The G7 real rate positively impacts dependence but

it is only significant in two of four cases. MCAP is not significant and turnover is significantly

positive in Panel A and B only. In terms of the macro variables, the World GDP growth is positive

in all cases and significant in three out of four. The trade variable is not significant.

Finally, note that in Table 6, although the various variables we have considered are often signif-

icant, the time trend coefficients remain highly significant. We therefore conclude that the long-run

dynamics in dependence cannot be explained by standard macroeconomic and financial variables.

Clearly, these results raise important questions as to which factors drive cross-country dependence.

6 Summary and Conclusion

We characterize time-varying dependence using long samples of weekly returns for a large num-

ber of countries. We propose a new dynamic asymmetric copula model that can capture dynamic

dependence while accommodating multivariate nonnormality, asymmetries, and trends in depen-

dence. We overcome econometric complications arising from the dimensionality problem using the

composite likelihood procedure.

Our results are extremely robust and suggest that dependence has significantly trended upward

for both DMs and EMs. Copula correlations between DMs have exceeded copula correlations

between EMs throughout the 1989-2009 period. Moreover, for developed markets, the average

dependence with other developed markets is higher than the average dependence with emerging

markets. For emerging markets, the dependence with developed markets is generally somewhat

higher than the dependence with the other emerging markets, but the differences are small. While

the range of copula correlations for DMs has narrowed around the increasing trend in correlation

levels, this is not the case for EMs.

We find substantial evidence of asymmetric tail dependence with lower tail dependence being

larger than upper tail dependence. Moreover, tail dependence as computed from the DAC model is

large and increasing through time for DMs, but remains low for EMs. We propose a new measure of

diversification benefits that takes into account tail dependence, and find that whereas diversification

benefits have largely disappeared for DMs, EMs still offer substantial diversification benefits. From

25



this perspective, our results suggest that although diversification benefits have lessened in the case

of DMs, the case for EMs remains strong. This is due to the fact that while equity market crises in

EMs are frequent, many of them are country-specific.

These results have very important implications for portfolio management, and it may prove

interesting to further explore them in future work. It may also prove useful to investigate the

robustness of our findings to allowing for multiple regimes, or to the inclusion of multiple stochastic

components, as for example in the model of Colacito, Engle, and Ghysels (2011).
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Appendix

Appendix A. The Skewed t Copula

The skewed t distribution discussed in Demarta and McNeil (2005) has the stochastic representation

X =
√
WZ + λW (6.1)

where λ is the asymmetry parameter,W is an inverse gamma variableW ∼ IG
(
ν
2
, ν
2

)
, Z is a normal

variable Z ∼ N (0N ,Ψ), and Z and W are independent. The skewed t distribution generalizes the

t distribution by adding a second term related to the same inverse gamma random variable which

is scaled by a vector λ of asymmetry parameters. Note that we constrain the copula to have the

same asymmetry parameter across all assets, that is, λi = λj for all i, j.

The probability density function of the skewed t copula defined from the skewed t distribution

is given by

c(u;λ, ν,Ψ) =

2
(ν−2)(N−1)

2 K ν+N
2

(√
(ν + z∗>Ψ−1z∗)λ>Ψ−1λ

)
ez

∗>Ψ−1λ

Γ
(
ν
2

)1−N |Ψ| 12
(√

(ν + z∗>Ψ−1z∗)λ>Ψ−1λ

)− ν+N
2 (

1 + 1
ν
z∗>Ψ−1z∗

) ν+N
2

×
N∏

j=1

(√(
ν + (z∗j )

2
)
λ2j

)− ν+1
2
(
1 + 1

ν

(
z∗j
)2) ν+1

2

K ν+1
2

(√(
ν + (z∗j )

2
)
λ2j

)
ez

∗

j λj

(6.2)

where K(·) is the modified Bessel function of third kind, and where the copula shocks z∗i = t−1λ,ν(ui)
are defined from the skewed univariate student t density defined by

tλ,ν(ui) =

ui∫

−∞

21−
ν+1
2 K ν+1

2

(√
(ν + x2)λ2i

)
exλi

Γ
(
ν
2

)√
πν

(√
(ν + x2)λ2i

)− ν+1
2 (
1 + x2

ν

) ν+1
2

dx. (6.3)

The skewed Student t quantile function, t−1λ,ν(ui), is not known in closed form but can be well

approximated by simulating 100,000 replications of equation (6.1).

The moment of order i of the W variable is given by mi = ν
i/
(∏i

j=1(ν − 2j)
)
, and from the
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normal mixture structure of the distribution, we can derive the expected value

E [X] = E (E [X|W ]) = E(W )λ = ν

ν − 2λ

and the variance-covariance matrix

Cov (X) = E (V ar(X|W )) + V ar (E [X|W ])

=
ν

ν − 2Ψ +
2ν2λ2

(ν − 2)2(ν − 4) . (6.4)

Notice that the covariances are finite if ν > 4. These moments provide the required link between

the multivariate skewed t distribution and the copula correlation matrix Ψ.

We also provide results for the conventional symmetric t distribution, which is nested when λ

tends to zero. The symmetric N -dimensional t distribution has the stochastic representation

X =
√
WZ (6.5)

where W is an inverse gamma variable W ∼ IG
(
ν
2
, ν
2

)
, Z is a normal variable Z ∼ N (0N ,Ψ), and

where Z and W are independent.

The probability density function of the t copula defined from the t distribution is given by

c(u; ν,Ψ) =
Γ
(
ν+N
2

)

|Ψ| 12Γ
(
ν
2

)
(
Γ
(
ν
2

)

Γ
(
ν+1
2

)
)N (

1 + 1
ν
z∗>Ψ−1z∗

)− ν+N
2

∏N

j=1

(
1 +

z∗2j
ν

)− ν+1
2

where z∗i = t
−1
ν (ui) and tν(ui) is the univariate Student’s t density function given by

tν(ui) =

ui∫

−∞

Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

)
(
1 +

x2

ν

)− ν+1
2

dx.

The Normal Copula is further nested as ν → ∞. The probability density function of the normal
copula defined from the normal distribution is given by

c(u; Ψ) =
1

|Ψ| 12
e−

1
2
z∗>(Ψ−1−IN)z∗
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where z∗i = Φ
−1(ui) and Φ(ui) is the univariate normal density function given by

Φ(ui) =

ui∫

−∞

1√
2π
e−

1
2
x2dx.

Appendix B. The General Form of Υt

Let N denote the number of assets, and NX the number of explanatory variables. Define A as a

Nx(N + NX) matrix whose first N columns are an identity matrix. The last NX columns are the

Hadamard product of a NxNX matrix of coefficients θ and a matrix of explanatory regressors Xt

A =




1 0 . . . 0 θ11X11,t . . . θ1NXX1NX ,t

0 1 . . . 0 θ21X21,t . . . θ2NXX2NX ,t

...
...
. . . 0

...
...

...

0 0 . . . 1 θNX1XNX1,t . . . θNXNXXNXNX ,t




The matrix A is standardized by dividing each element by its row’s root mean square

Āi,j =
Ai,j√∑N+NX
k=1 A2i,k

=
Ai,j√

1 +
∑N+NX

k=N+1A
2
i,k

,

and then Υt is given by

Υt = ĀĀ
>.

These restrictions ensure that Υt is a proper correlation matrix. Up to a normalizing constant, this

matrix will have as a typical off-diagonal element

Υij,t =

NX∑

k=1

θikθjkXik,tXjk,t, i 6= j.

This specification can easily accommodate for a time trend (Xik,t = t), a common positive factor

(Xik,t = Xjk,t =
√
Ft), and asset specific variables, for example, volatilities Xik,t = σi,t.

Appendix C. Copula Correlation Moment Matching

Equating the elements of Ω in the DAC model to the sample average
1
T

∑T
t=1 z̄

∗
t z̄
∗>
t −ϕΓ

1
T

∑T
t=1Υt

1−ϕΓ
allows

us to significantly reduce the number of parameters estimated via numerical optimization of the

likelihood function.
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Recall that the DAC recursion is given by

Γt = (1− βΓ − αΓ) [(1− ϕΓ)Ω + ϕΓΥt] + βΓΓt−1 + αΓz̄∗t−1z̄∗t−1. (6.6)

where z∗i,t = z
∗

i,t

√
Γii,t. A circularity problem is apparent because we need Γii,t to estimate Ω, which

in turn is required to compute the time series of Γii,t. Note however that Ω is a copula correlation

matrix, so that Ωii = 1, for all i, and note also that only the diagonal elements of Γt are needed

to compute z∗i,t. Aielli (2009) therefore proposes to first compute equation (6.6) for the diagonal

elements only, that is

Γii,t = (1− αΓ − βΓ) + βΓΓii,t−1 + αΓ(z̄∗ii,t−1)2

for all i and t. Having computed the Γii,t, the sample correlation matrix of the z
∗

i,t can be obtained

which in turn yields Ω̂, and the recursion in (6.6) can now be implemented replacing Ω by Ω̂.
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Figure 1: Average Dynamic Copula Correlations for Developed, Emerging, and All Markets.
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Notes to Figure: We report dynamic copula correlations, long run copula correlations and constant

copula correlation averaged across countries along with a 90% bootstrap confidence interval. The

left-side panels report on the period January 20, 1989 to July 25, 2008. The right-side panels

report on the period July 21, 1995 to June 12, 2009. The top panels report on developed markets,

the middle panels report on emerging markets, the third panels report on both, and the bottom

panels report the average cross-correlations between developed and emerging markets. The copula

correlations are computed from the DAC model.
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Figure 2: Average Dynamic Copula Correlations for Developed Markets. Various Sample Periods.
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Notes to Figure: We report dynamic copula correlations, long run copula correlations and constant

copula correlation averaged across developed markets along with a 90% bootstrap confidence in-

terval. The top panel reports on the period January 26, 1973 to June 12, 2009. The middle panel

reports on the period January 20, 1989 to July 25, 2008. The bottom panel reports on the period

July 21, 1995 to June 12, 2009. The copula correlations are computed from the DAC model.
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Figure 3.A: Copula Correlations for Each Developed Market.

90 95 00 05 10

0

0.2

0.4

0.6

Australia

90 95 00 05 10

0

0.2

0.4

0.6

Austria

90 95 00 05 10

0

0.2

0.4

0.6

Belgium

90 95 00 05 10

0

0.2

0.4

0.6

Denmark

90 95 00 05 10

0

0.2

0.4

0.6

France

90 95 00 05 10

0

0.2

0.4

0.6

Germany

90 95 00 05 10

0

0.2

0.4

0.6

Ireland

90 95 00 05 10

0

0.2

0.4

0.6

Italy

90 95 00 05 10

0

0.2

0.4

0.6

Japan

90 95 00 05 10

0

0.2

0.4

0.6

Singapore

90 95 00 05 10

0

0.2

0.4

0.6

Switzerland

90 95 00 05 10

0

0.2

0.4

0.6

UK

Notes to Figure: We report dynamic copula correlations for sixteen developed markets for the

period January 20, 1989 to July 21, 2008. For each country, at each point in time we report: the

average copula correlations with the fifteen other developed markets (black line), with the thirteen

emerging markets (dark grey line), and with all the 28 other markets (light grey line). The copula

correlations are computed from the DAC model.
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Figure 3.B: Copula Correlations for each Emerging Market.
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Notes to Figure: We report dynamic copula correlations for thirteen emerging markets for the

period January 20, 1989 to July 25, 2008. For each country, at each point in time we report:

the average copula correlations with sixteen developed markets (black line), with the twelve other

emerging markets (dark grey line), and with all the 28 other markets (light grey line). The copula

correlations are computed from the DAC model.
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Figure 4: Regional Copula Correlation Patterns.
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Notes to Figure: We use the DACmodel to plot the average copula correlation within and across four

regions. We also plot the constant copula correlation along with a 90% bootstrap confidence interval

(dashed line with gray area). The European Union (EU) includes Austria, Belgium, Denmark,

France, Germany, Ireland, Italy, Netherlands, and the UK. Developed Non-EU includes Australia,

Canada, Hong Kong, Japan, Singapore, Switzerland, and the US. Latin America includes Argentina,

Brazil, Chile, Colombia, and Mexico. Emerging Eurasia includes India, Jordan, Korea, Malaysia,

Philippines, Taiwan, Thailand, and Turkey.
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Figure 5: Copula Correlation Range (90th and 10th Percentile).

Developed, Emerging, and All Markets.
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Notes to Figure: The shaded areas show the DAC correlation range between the 90th and 10th

percentiles. The top panel reports on sixteen developed markets for the period January 26, 1973

to June 12, 2009. The middle panel reports on thirteen emerging markets for the period January

20, 1989 to July 25, 2008. The bottom panel reports on sixteen developed and thirteen emerging

markets for the period January 20, 1989 to July 25, 2008.
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Figure 6: Conditional Diversification Benefits (CDB) using the DAC Model.

Developed, Emerging, and All Markets.
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Notes to Figure: Each week and for each set of countries, we use the DAC model to compute the

conditional diversification benefit (CDB) in equation (4.1) in the left panels. In the right panels

we use the volatility-based measure conditional diversification benefit (V olCDB) measure from

equation (4.3). The superscript “EW” refers to equal-weighted portfolios.
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Figure 7: Dynamic Average Bivariate Tail Dependence for the DAC Model.
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Notes to Figure: We report the average bivariate tail dependence for the DAC model. The black

line denotes lower tail dependence and the gray line denotes upper tail dependence. The top panels

report on sixteen developed markets, the middle panels report on thirteen emerging markets, and

the bottom panels report on all 29 markets for the period January 20, 1989 to July 25, 2008.
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Figure 8: Empirical Threshold Correlations.
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Notes to Figure: The top panels report threshold correlations for sixteen developed markets for the

period January 26, 1973 to June 12, 2009. The bottom panels report the threshold correlations

for thirteen emerging markets for the period January 20, 1989 to July 25, 2008. The left column

reports the average pairwise threshold correlations computed on returns, which are standardized by

their unconditional means and standard deviations. The right column presents the average pairwise

threshold correlations computed on shocks, which are returns standardized using the AR-NGARCH

model with skewed t innovations. In each case, we compare the empirical threshold correlation (solid

line) to the one implied by a normal distribution (dashed line) using the average linear correlation

estimated from the data.
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Figure 9: Model Threshold Correlations.
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Notes to Figure: The top panel reports the average pairwise threshold correlations for sixteen

developed markets for the period January 26, 1973 to June 12, 2009. The bottom panel reports the

average pairwise threshold correlations for thirteen emerging markets for the period January 20, 1989

to July 25, 2008. We compute threshold correlations using the empirical AR-NGARCH residuals as

well as threshold correlations based on generated data from three models: the multivariate Gaussian

distribution, the DSC model, and the DAC model. The DAC model with λ = −1 calibrates the λ
parameter rather than using the empirical estimate.
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Figure 10: Monthly and Annual Model-Based Copula Correlations.
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Notes to Figure: We report monthly and annual copula correlations averaged across countries simu-

lated from the AR-NGARCH and DAC models. The left panels report monthly copula correlations,

and the right panels report annual copula correlations. The top panels report on sixteen developed

markets, the middle panels report on thirteen emerging markets, and the bottom panels report on

sixteen developed and thirteen emerging markets for the period January 20, 1989 to July 25, 2008.
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Figure A.1: Contours of the Normal, t and Skewed t Copulas.

z
1

z
2

Normal Copula
Ψ

1,2
 = 0.5

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

z
1

z
2

t  Copula
Ψ

1,2
 = 0.5, ν = 10

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

z
1

z
2

Skewed t Copula
Ψ

1,2
 = 0.5, ν = 10, λ = -0.5

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

z
1

z
2

Skewed t Copula
Ψ

1,2
 = 0.5, ν = 10, λ = +0.5

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Notes to Figure: We plot the probability contours of four bivariate copula models assuming standard

normal marginal distributions. The top left panel shows the normal copula with a copula correlation,

Ψ12 = 0.5. The top right panel shows the symmetric t copula with Ψ12 = 0.5 and degree of freedom,

ν = 10. The bottom two panels show the new skewed t copula where we keep Ψ12 = 0.5 and ν =

10. The bottom left panel has an asymmetry parameter, λ = −0.5 and the bottom right panel has

an asymmetry parameter, λ = +0.5. The probability levels for each contour are the kept the same

across all four copula models.
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Annual 

Mean (%)

Annual 

Standard 

Deviation 

(%) Skewness

Excess 

Kurtosis

1st Order 

Auto-

correlation

LB(20) P-

Value on 

Returns

LB(20) P-

value on 

Absolute 

Returns

Developed 

Markets

Australia 13.21 17.13 -0.301 1.94 -0.010 0.2044 0.0000

Austria 14.50 19.63 -0.009 3.69 0.058 0.1364 0.0000

Belgium 10.93 16.55 -0.215 2.00 0.011 0.8316 0.0000

Canada 13.24 16.30 -0.489 2.35 -0.001 0.1611 0.0000

Denmark 14.55 17.83 -0.308 2.11 -0.045 0.2535 0.0000

France 12.75 17.54 -0.120 1.04 0.019 0.0632 0.0000

Germany 11.88 18.66 -0.231 1.65 0.018 0.7596 0.0000

Hong Kong 16.71 24.41 -0.355 3.11 0.030 0.0046 0.0000

Ireland 13.30 18.89 -0.286 1.74 0.011 0.2749 0.0000

Italy 9.18 20.99 0.189 3.32 0.037 0.1494 0.0000

Japan 1.45 22.28 0.339 1.56 -0.068 0.0307 0.0000

Netherlands 13.26 16.62 -0.300 3.00 0.006 0.3920 0.0000

Singapore 11.16 20.66 -0.255 5.15 -0.009 0.0010 0.0000

Switzerland 13.70 16.42 0.002 2.05 -0.012 0.5579 0.0001

United Kingdom 11.37 15.54 0.060 1.80 -0.027 0.6799 0.0019

United States 11.71 15.15 -0.434 3.46 -0.102 0.0005 0.0000

Average 12.06 18.41 -0.170 2.50 -0.005 0.2813 0.0001

Emerging 

Markets

Argentina 29.44 51.18 0.804 12.22 -0.009 0.0001 0.0000

Brazil 29.85 46.23 -0.246 2.22 0.045 0.3060 0.0000

Chile 19.43 21.18 0.008 1.30 0.167 0.0000 0.0000

Colombia 22.66 26.51 0.339 6.29 0.132 0.0000 0.0000

India 15.24 27.89 -0.027 2.05 0.078 0.0494 0.0000

Jordan 15.86 18.21 0.195 5.42 0.083 0.0071 0.0000

Korea 10.18 36.43 0.045 8.54 -0.089 0.0001 0.0000

Malaysia 10.16 28.64 1.394 24.02 0.013 0.0000 0.0000

Mexico 20.99 28.02 -0.387 3.72 0.108 0.0018 0.0000

Philippines 7.21 28.57 -0.393 4.97 0.085 0.0002 0.0000

Taiwan 7.15 32.82 0.318 3.96 -0.007 0.0232 0.0000

Thailand 10.65 35.90 0.250 3.98 0.019 0.0000 0.0000

Turkey 31.02 55.59 0.178 5.27 -0.018 0.1912 0.0000

Average 17.68 33.63 0.191 6.46 0.047 0.0445 0.0000

Table 1: Descriptive Statistics for Weekly Returns on 16 DM and 13 EM (IFCG).

January 1989 to July 2008.

Notes to Table: We report the first four sample moments and the first order autocorrelation of the 16 DM and 13 EM 

(IFCG) returns. We also report the p-value from a Ljung-Box test that the first 20 autocorrelations are zero for returns 

and absolute returns. The sample period is from January 20, 1989 to July 25, 2008.



  
Variance 

Persistence ϱ 

LB(20) P-

Value on 

Residuals

LB(20) P-

Value on 

Absolute 

Residuals

Developed Markets

Australia 0.053 0.832 0.697 0.912 11.354 -0.146 0.653 0.784

Austria 0.087 0.888 -0.134 0.977 9.635 -0.038 0.434 0.327

Belgium 0.139 0.608 0.695 0.814 10.220 -0.097 0.827 0.262

Canada 0.092 0.854 0.339 0.957 10.026 -0.174 0.611 0.782

Denmark 0.052 0.935 -0.108 0.988 7.203 -0.042 0.322 0.551

France 0.067 0.717 1.190 0.878 22.179 -0.098 0.122 0.396

Germany 0.112 0.787 0.499 0.926 10.600 -0.107 0.810 0.186

Hong Kong 0.092 0.856 0.445 0.966 8.158 -0.076 0.228 0.762

Ireland 0.048 0.864 1.008 0.961 8.885 -0.110 0.471 0.597

Italy 0.098 0.828 0.345 0.937 8.624 -0.067 0.442 0.083

Japan 0.080 0.824 0.708 0.944 7.492 0.079 0.395 0.399

Netherlands 0.123 0.726 0.655 0.903 12.938 -0.223 0.793 0.683

Singapore 0.082 0.880 0.457 0.979 5.813 -0.027 0.465 0.888

Switzerland 0.089 0.657 0.862 0.812 9.359 -0.059 0.390 0.791

United Kingdom 0.040 0.666 2.099 0.884 12.804 -0.078 0.839 0.413

United States 0.095 0.820 0.738 0.966 13.316 -0.186 0.387 0.414

Average 0.084 0.796 0.656 0.925 10.538 -0.091 0.512 0.520

Emerging Markets

Argentina 0.192 0.772 0.202 0.971 7.969 -0.001 0.766 0.412

Brazil 0.083 0.898 0.281 0.987 9.492 -0.116 0.882 0.247

Chile 0.084 0.872 0.084 0.957 10.054 0.060 0.553 0.915

Colombia 0.191 0.682 -0.080 0.875 4.381 0.053 0.488 0.575

India 0.118 0.811 0.184 0.933 9.206 -0.036 0.186 0.136

Jordan 0.033 0.933 -0.838 0.989 3.971 0.214 0.461 0.091

Korea 0.091 0.885 0.334 0.986 9.351 0.053 0.688 0.500

Malaysia 0.089 0.902 0.153 0.993 5.561 0.011 0.984 0.623

Mexico 0.108 0.749 0.803 0.927 11.294 -0.103 0.926 0.588

Philippines 0.065 0.899 0.414 0.975 5.667 -0.003 0.848 0.437

Taiwan 0.112 0.837 0.459 0.972 7.570 -0.007 0.587 0.733

Thailand 0.100 0.860 0.401 0.976 7.507 0.074 0.985 0.186

Turkey 0.072 0.884 -0.060 0.956 5.439 0.076 0.380 0.218

Average 0.103 0.845 0.180 0.961 7.497 0.021 0.672 0.435

Table 2: Parameter Estimates from NGARCH(1,1) on 16 DM and 13 EM (IFCG).

January 1989 to July 2008.

Notes to Table: We report parameter estimates and residual diagnostics for the NGARCH(1,1) models. The sample period for 16 

DM and 13 EM (IFCG) weekly returns is from January 20, 1989 to July 25, 2008. The conditional mean is modeled by an 

AR(2) model. The coefficients from the AR models are not shown. The constant term in the GARCH model is fixed by variance 

targeting.



 

Dependence 

Persistence DM,T M,T
 

Composite 

Likelihood

16 Developed Markets 0.026 0.963 0.988 0.3877 - 15.19 -0.38 31,349

(0.004) (0.008) (0.1950) ( 2.44) ( 0.12)

No Dynamics - - - 0.3026 - 8.44 -0.33 28,631

(0.0392) (0.00) (0.11)

16 Developed Markets 0.030 0.954 0.984 0.3018 - 17.65 -0.48 22,131

(0.008) (0.026) (0.1245) ( 0.09) ( 0.10)

No Dynamics - - - 0.2522 - 10.79 -0.26 20,872

(0.0526) ( 0.01) ( 0.15)

13 Emerging Markets 0.019 0.935 0.953 - 0.3743 22.36 -0.49 3,192

(0.005) (0.030) (0.0553) ( 0.02) ( 0.22)

No Dynamics - - - - 0.3765 19.55 -0.30 3,061

(0.0334) ( 1.51) ( 0.09)

All 29 Markets 0.026 0.937 0.963 0.2862 0.3009 21.83 -0.41 36,390

(0.007) (0.041) (0.0557) (0.0708) ( 0.02) ( 0.14)

No Dynamics - - - 0.2620 0.2628 18.83 -0.50 34,248

(0.0184) (0.0260) ( 0.14) ( 0.00)

16 Developed Markets 0.040 0.925 0.965 0.2679 - 18.61 -0.56 21,213

(0.009) (0.018) (0.1206) ( 0.01) ( 0.40)

No Dynamics - - - 0.2829 - 16.23 -0.73 20,535

(0.0895) ( 3.11) ( 0.05)

17 Emerging Markets 0.025 0.920 0.945 - 0.2891 12.80 -0.45 9,181

(0.006) (0.025) (0.0537) ( 0.01) ( 0.10)

No Dynamics - - - - 0.3170 19.20 -0.45 8,844

(0.0458) ( 0.14) ( 0.27)

All 33 Markets 0.026 0.924 0.950 0.3200 0.2985 12.16 -0.40 52,143

(0.011) (0.101) (0.0551) (0.1571) ( 0.05) ( 0.11)

No Dynamics - - - 0.3814 0.2890 13.77 -0.61 50,593

(0.0814) (0.0944) ( 2.60) ( 0.09)

Table 3: Parameter Estimates for Dynamic Asymmetric t Copula (DAC) Models. Developed, Emerging and All Markets.

Notes to Table: We report parameter estimates for the DAC models for the 16 developed markets, 13 emerging markets (IFCG), 17 

emerging markets (IFCI) and all markets for different sample periods. We also report the special case of constant copula correlation 

(=0 and =0). The standard errors in parentheses are computed using the method in Engle, Shephard and Sheppard (2008).

A: Weekly Returns, January 26, 1973 to June 12, 2009

B: Weekly IFCG Returns, January 20, 1989 to July 25, 2008

C: Weekly IFCI Returns, July 21, 1995 to June 12, 2009



 

Dependence 

Persistence DM,T M,T


Composite 

Likelihood

16 Developed Markets 0.025 0.965 0.990 0.4078 - 13.51 31,076

(0.006) (0.018) (0.1436) ( 1.80)

No Dynamics - - - 0.3044 - 9.59 28,448

(0.0375) ( 0.60)

16 Developed Markets 0.028 0.952 0.980 0.2895 - 14.63 21,984

(0.010) (0.041) (0.1223) ( 2.02)

No Dynamics - - - 0.2898 - 11.05 20,687

(0.0729) ( 2.08)

13 Emerging Markets 0.018 0.937 0.955 - 0.3971 21.85 3,148

(0.004) (0.021) (0.0513) ( 3.60)

No Dynamics - - - - 0.3819 22.03 3,021

(0.0415) ( 3.61)

All 29 Markets 0.026 0.951 0.977 0.3349 0.2986 21.45 36,151

(0.004) (0.020) (0.0745) (0.1241) ( 4.05)

No Dynamics - - - 0.3069 0.2758 25.02 33,907

(0.0464) (0.0921) (22.65)

16 Developed Markets 0.037 0.922 0.958 0.2631 - 11.40 21,057

(0.008) (0.027) (0.1119) ( 1.81)

No Dynamics - - - 0.3217 - 8.63 20,355

(0.0713) ( 0.98)

17 Emerging Markets 0.025 0.917 0.942 - 0.3134 13.22 8,920

(0.006) (0.023) (0.0556) ( 1.75)

No Dynamics - - - - 0.3152 36.71 8,565

(0.0466) ( 5.69)

All 33 Markets 0.027 0.932 0.959 0.3320 0.2772 15.30 51,316

(0.006) (0.023) (0.0330) (0.0063) ( 4.84)

No Dynamics - - - 0.1753 0.1478 25.32 48,040

(0.0516) (0.0490) ( 5.67)

A: Weekly Returns, January 26, 1973 to June 12, 2009

B: Weekly IFCG Returns, January 20, 1989 to July 25, 2008

C: Weekly IFCI Returns, July 21, 1995 to June 12, 2009

Notes to Table: We report parameter estimates for the DSC models for the 16 developed markets, 13 emerging markets (IFCG), 17 

emerging markets (IFCI) and all markets for different sample periods. We also report the special case of constant copula correlations 

(=0 and =0). The standard errors in parentheses are computed using the method in Engle, Shephard and Sheppard (2008).

Table 4: Parameter Estimates for Dynamic Symmetric t Copula (DSC) Models. Developed, Emerging and All Markets.



 

Dependence 

Persistence DM,T M,T

Composite 

Likelihood

16 Developed Markets 0.023 0.967 0.990 0.5085 - 30,248

(0.005) (0.010) (0.0669)

No Dynamics - - - 0.3281 - 27,549

(0.0365)

16 Developed Markets 0.030 0.960 0.990 0.3099 - 21,651

(0.012) (0.024) (0.1313)

No Dynamics - - - 0.2795 - 20,241

(0.0367)

13 Emerging Markets 0.017 0.938 0.955 - 0.3973 3,064

(0.004) (0.022) (0.0506)

No Dynamics - - - - 0.3815 2,938

(0.0386)

All 29 Markets 0.021 0.962 0.983 0.2764 0.2797 35,574

(0.004) (0.017) (0.1024) (0.1193)

No Dynamics - - - 0.2797 0.2834 33,213

(0.0423) (0.0648)

16 Developed Markets 0.034 0.929 0.963 0.3032 - 20,741

(0.007) (0.023) (0.1163)

No Dynamics - - - 0.3097 - 19,977

(0.0774)

17 Emerging Markets 0.024 0.911 0.935 - 0.3093 8,643

(0.006) (0.025) (0.0542)

No Dynamics - - - - 0.3019 8,386

(0.0456)

All 33 Markets 0.023 0.940 0.962 0.4502 0.3771 50,291

(0.005) (0.018) (0.0423) (0.0356)

No Dynamics - - - 0.4142 0.4351 47,218

(0.1688) (0.1326)

A: Weekly Returns, January 26, 1973 to June 12, 2009

B: Weekly IFCG Returns, January 20, 1989 to July 25, 2008

C: Weekly IFCI Returns, July 21, 1995 to June 12, 2009

Notes to Table: We report parameter estimates for the DNC models for the 16 developed markets, 13 emerging markets 

(IFCG), 17 emerging markets (IFCI) and all markets for different sample periods. We also report the special case of constant 

copula  dynamic correlation (=0 and =0). The standard errors in parentheses are computed using the method in Engle, 

Shephard and Sheppard (2008).

Table 5: Parameter Estimates for Dynamic Normal Copula (DNC) Models. Developed, Emerging and All Markets.



(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (iv) (i) (ii) (ii) (iv)

Constant -1.2564 ** -0.7339 ** -0.9736 ** -1.9773 ** -0.8220 ** -1.0921 ** -1.9841 ** -0.8776 ** -2.2015 ** -0.5885 -1.9708 ** -0.5079 ** -2.1378 ** -0.1277

(0.0638) (0.0959) (0.1674) (0.0872) (0.2063) (0.2740) (0.1093) (0.2697) (0.0855) (0.4118) (0.0829) (0.1732) (0.0791) (0.1949)

Time Trend 0.1269 ** 0.1189 ** 0.1160 ** 0.1843 ** 0.1775 ** 0.1742 ** 0.1847 ** 0.1678 ** 0.1728 ** 0.1760 ** 0.1633 ** 0.1546 ** 0.1541 ** 0.1586 **

(0.0016) (0.0013) (0.0025) (0.0036) (0.0034) (0.0036) (0.0041) (0.0038) (0.0050) (0.0067) (0.0037) (0.0034) (0.0038) (0.0043)

Time Trend Squared -0.0012 ** -0.0010 ** -0.0012 ** -0.0016 ** -0.0013 ** -0.0017 ** -0.0016 ** -0.0013 ** -0.0015 ** -0.0016 ** -0.0013 ** -0.0010 ** -0.0012 ** -0.0013 **

(0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Average Log Vol DM 0.1367 ** 0.0783 ** 0.2894 ** 0.2752 **

(0.0206) (0.0206) (0.0714) (0.0726)

Average Log Vol EM 0.3674 ** 0.2268 ** 0.4652 ** 0.4104 **

(0.0626) (0.0697) (0.0463) (0.0308)

MCR 0.3284 * 0.2168 0.2522 * 0.0187

(0.1624) (0.2196) (0.1075) (0.1516)

Vol Risk Premium 0.0108 ** 0.0093 ** 0.0139 ** 0.0041 **

(0.0014) (0.0029) (0.0033) (0.0015)

3-Month T-bill -0.0336 ** -0.0816 ** -0.0907 ** -0.0809 **

(0.0104) (0.0262) (0.0280) (0.0156)

Term Spread -0.0252 -0.1042 ** -0.1317 ** -0.1106 **

(0.0129) (0.0321) (0.0363) (0.0215)

Credit Spread 0.0163 0.0219 -0.0240 -0.1034 **

(0.0244) (0.0565) (0.0768) (0.0353)

G7 Real Rate 1.5373 ** 2.4068 1.7894 1.5423 *

(0.4123) (1.6253) (1.5451) (0.5994)

MCAP -0.0129 0.0221 0.1276 0.0652

(0.0355) (0.0319) (0.1631) (0.0847)

Turnover 0.4485 * 0.4394 ** -0.1953 -0.1318

(0.1860) (0.1490) (0.1606) (0.1223)

World GDP Growth 0.0095 ** 0.0130 * 0.0121 0.0079 *

(0.0029) (0.0059) (0.0096) (0.0037)

Trade 0.0194 0.0482 -0.1569 -0.0973

(0.0799) (0.0582) (0.0939) (0.0550)

Adjusted R2 0.6385 0.6436 0.6737 0.7504 0.7719 0.7994 0.6304 0.6400 0.6554 0.6829 0.7123 0.7498 0.7316 0.8036

Notes to Table: We regress the average DAC copula correlation for each country from Figure 3 on a quadratic time trend, average log NGARCH volatility, market capitalizaton ratio (MCR), the difference between VIX 

and realized volatility (Vol Risk Premium), the U.S. credit spread, the 3-month U.S. T-bill rate, the U.S. term spread, the average of the real interest rate in the G7 economies, the market value divided by the preceding 

year's GDP (MCAP), traded value divided by market capitalization (Turnover), the world real GDP growth rate, and the ratio of the sum of exports and imports of goods and services to the gross domestic product 

(Trade). Following Petersen (2009), we compute White standard errors adjusted for within clusters (country and quarter) correlation. Panels A-D use as regressand log average copula correlations for each DM with other 

DMs, each DM with EMs, each EM with DMs, and each DM with DMs, respectively. Significance at the 5% and 1% levels is denoted by * and **. 

Table 6: Correlation Regressions. Developed Markets (DMs) and Emerging Markets (EMs). 1995-2008

Panel A: Log of Average Quarterly 

DM Correlation With Other DMs

Panel B: Log of Average Quarterly 

DM Correlation With EMs

Panel C: Log of Average Quarterly EM 

Correlation With DMs

Panel D: Log of Average Quarterly EM 

Correlation With Other EMs
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