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ABSTRACT
In this paper we examine the properties of the radial distance which has been used as
a tool to compare the shape of simple surfacic objects. We give a rigorous definition
of the radial distance and derive its theoretical properties, and in particular under
which conditions it satifies the distance properties. We show how the computation of
the radial distance can be implemented in practice, and made faster by the use of an
analytical formula and a Fast Fourier Transform. Finally, we conduct experiments
to measure how the radial distance is impacted by perturbation and generalization
and we give abacuses and thresholds to deduce when buildings are likely to be
homologous or non-homologous given their radial distance.

KEYWORDS
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1. Introduction

Geographic information (GI) production practices have changed considerably in
recent decades. Open data policies as well as technological advances have had a
significant impact on the way GI is collected, stored, analyzed and disseminated.
Whether at European, national or regional level, different public actors produce
and share GI. In addition, the development of low-cost location-based devices and
the rise of Web 2.0 paradigm initiatives have led to a considerable mass of GI and
changed citizens’ perceptions of its acquisition and use. This alternative GI produced
by citizens is communally known as volunteered geographic information (Goodchild
2007). Among all VGI initiatives (See et al. 2016), one of the them is the well known
OpenStreetMap (OSM) which started from a strong desire to open up GI and offer
a data model with high flexibility. In this context, many sources of GI describing
the territory exist and are characterized by spatial, temporal, thematic and semantic
heterogeneity.

There is much literature studying the use of traditional and alternative GI sources
for various purposes such as validation (See et al. 2016, Olteanu-Raimond et al.
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2020), update (Ivanovic et al. 2019b, Liu et al. 2021, van Winden et al. 2016) and
enrichment of authoritative GI (Zielstra and Hochmair 2011, Al-Bakri and Fairbairn
2012), production of a new spatial repository for rescue applications (Van Damme
et al. 2019), land use and land cover monitoring (Fonte et al. 2017, Schultz et al.
2017). Studying the quality of alternative GI by comparing it with a reference data
source is a standalone research topic or just the first step of the combination of
traditional and alternative GI (Fonte et al. 2015, Senaratne et al. 2017, Ivanovic et al.
2019a, Yan et al. 2020).

One of the main challenges in using both traditional and alternative GI is to identify
the redundant GI (e.g. the same entity from the real world — a building — is
represented in two data sources) and the complementary GI (i.e. a source of GI
has a higher exhaustivity than another for the same type of feature). To cope with
this issue, data matching is a powerful and very used approach (Walter and Fritsch
1999, Mustière and Devogele 2008, Fan et al. 2014, Olteanu-Raimond et al. 2015, Liu
et al. 2015, Costes and Perret 2019, Ivanovic et al. 2019b). Data matching consists in
defining homologous features from different sources of GI representing the same entity
from the real world (e.g. a feature A1 from a source S1 is homologous with a feature
A2 from a source S2). Many data matching algorithms exist in the research literature
and they rely on the definition of similarity measures based on different feature char-
acteristics such as: geometric positions, shapes, thematic and semantic information
as well as spatial relationships, or a combination of all those measures. Generally, the
data matching process is composed of three main steps. First, for each feature from
a dataset, the algorithm is looking for candidates to match. Second, for each couple
(selected feature, candidate) criteria based on similarity measures or topology are
computed. Finally, a decision is made based on the combination of the used criteria.
Note that, similarity measures and the combinations approaches depend on the type
of the date (e.g. point, lines, polygons) or scale of the datasets to match (e.g. same or
different scales). A detailed state of the art of the data matching algorithms and simi-
larity measures is described in Olteanu-Raimond et al. (2015) and Xavier et al. (2016).

When dealing with heterogeneous GI coming from multisources such as different
data models, mapping specifications, spatial and temporal scales, as well as non
exhaustive or incomplete semantic and thematic information in data sources to be
matched, such as for building data, deriving similarity measures that are robust
to complex polygons and geometric errors becomes a challenge. Shape measures
proved to be efficient for matching polygons datasets since they better distin-
guish the features between them (Meng and Lu 2014, Fan et al. 2014, Xavier
et al. 2016, Maidaneh Abdi et al. 2020). Thus, in the context of heterogeneous GI
data matching, there is a need to describe the similarity of polygons in a very fine way.

One of the shape measures is the radial distance which was initially proposed by Co-
hen and Guibas (1997) and successfully used for matching polygon features (Vauglin
and Bel Hadj Ali 1998, Maidaneh Abdi et al. 2020) or for building footprint squaring
operations (Lokhat and Touya 2016). It describes the shape of a polygon feature by
measuring the distances from the centroid of the polygon to the points composing its
boundary. Despite the success of its use and its properties to measure the similarity
between two polygons, as mentioned by Hangouët (2006), the mathematical definition
of the radial distance still needs to be formalized. Moreover, in the research proposed
by Basaraner and Cetinkaya (2017), among 20 studied indices, 2 of them are based
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on radial signature (i.e. shape membership index and roughness index). Thus, it
is relevant to study radial distance also based on radial signature. To the authors’
knowledge, there is still no mathematical proof that the radial distance is a distance.

The aim of this paper is to propose mathematical definitions for both the radial
signature and the radial distance, to demonstrate under which conditions the radial
distance is a distance and to study its robustness from different perspectives in the
context of heterogeneous polygon data matching.

The paper is organized as follows. Section 2 describes the state of the art regarding
shape similarity measures and the limitations of the radial distance. Section 3
introduces the formal definitions and properties associated to the radial distance.
Section 4 details some proposals to fasten the computation of the radial distance. The
robustness of the radial distance is studied in Section 5 followed, in Section 6, by an
experimentation on real data stemming from two buildings datasets: authoritative
open data produced by IGN France and OpenStreetMap. Finally, conclusions and
future work are outlined in Section 7.

2. State of the art

Depending on whether the boundary or the core of the polygon is considered, the
shape measures are categorized by Zhang and Lu (2004) into two groups: boundary
based and core based. Basaraner and Cetinkaya (2017) also described an exhaustive
study analyzing the performance of 20 shape measures with respect to the complexity
of building footprints. Some are commonly used such as circularity, convexity,
fractality, and some are less frequent measures such as squareness, shape memberships
or measures implemented in the Shape Metrics Toolbox (Angel et al. 2010). Hereafter,
we briefly describe the shape similarity measures used in data matching.

For complex polygons with holes or multi-polygons, core based methods are used.
One of the most used approaches are those stemming from image matching or feature
recognition fields (Adoram and Lew 1999, Kim and Kim 2000, Premaratne and
Premaratne 2014). In the field of GIS, Fu et al. (2010) recently proposed a new
shape similarity measure mixing Fourier transform to derive the boundary and local
moments to extract the core of the polygons. The shape measure is invariant to
translation, scale and rotation.

For simple polygons, boundary based approaches are used. The turning function de-
scribes a polygon feature by measuring the angles formed by the segments composing
its boundary and a horizontal half-line oriented along the abscissa axis (Arkin et al.
1991, Fu et al. 2010). A turning signature is then computed and normalized by the
perimeter of the polygon feature. The shape measure based on angles is invariant
to translation, scale and rotation. When a rotation α is applied to the polygon, its
corresponding turning function is translated along the y-axis. To compare two turning
functions, finding an optimal shift is required.

Finally, another category of boundary based approaches consider the centroid of
polygon, which ensure the translation invariance. For example, Chang et al. (1991)

3



defines a distance function by computing the distances between the polygon centroid
and vertices. The computed distances are ordered and normalized by the minimal
distance to achieve both rotation and scale invariance. The radial distance is part of
this category. In order to be considered as a similarity measure for data matching,
in addition to be a metrics, the radial distance must be invariant to translation,
rotation and scaling, easy to compute and interpret (Arkin et al. 1991). We can add
to these characteristics the robustness which is absolutely necessary when dealing
with heterogeneous GI.

In this context, the contributions of our paper are:

• a mathematical definition of the radial distance,
• a theoretical demonstration of its properties, and the theoretical and empirical

conditions under which they are valid,
• a theoretical analysis of the impact of a one-off disturbance,
• a formalization of the algorithm allowing to compute the radial distance and two

optimizations to reduce the computation time for complex polygons,
• a set of experiments on real data, characterizing the impact on the radial distance

of two types of the most common noise in geographic databases, as well as
recommendations and criteria for deciding whether two buildings are potentially
homologous given their respective shapes. The variety of the proposed criteria
allows to adapt to different contexts, with different prior knowledge.

3. Definition and properties of the radial distance

Defining distances between subsets of R2 such as polygons or curves is not always
natural, and one can conceive different distances when emphasizing different aspects
such as position, orientation or shape. The radial distance focuses on shape.

Definition 3.1. Closed curve

A non-self-intersecting closed curve γ̃ of length L is the image in R2 of any injective
function γ:

γ : [0, L] → R2

s 7→ γ(s),

with γ(0) = γ(L). We note I(γ) ⊂ R2 the compact delimited by γ, and C(γ) the
centroid of I(γ). We suppose that γ turns anticlockwise (if we define an orientation of
γ by ascending curvilinear abscissa, I(γ) is at the left of γ).

In general, when it is clear from the context, we will identify the function γ and its
image γ̃ = Im(γ). We note Γ the set of all curves defined by Definition 3.1.

Definition 3.2. Radial signature
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The radial signature of a curve γ ∈ Γ is the function defined by:

rγ : [0, 1] → R
t 7→ 1

R
‖γ(tL)− C(γ)‖

with R = ‖γ(·L)−C(γ)‖L2 so that ∀ γ ∈ Γ : ‖rγ‖L2 = 1, where ‖·‖L2 is the canonical
norm of the L2([0, 1]) space.

We note that rγ satisfies rγ(0) = rγ(1). In the following, we will also use the nota-
tion rγ for the function defined on R which is 1-periodic and coincides with rγ on [0, 1].

Definition 3.3. Radial distance

The radial distance between two closed, non self-intersecting, anticlockwise curves γ
and γ′ is defined by

d2
r(γ, γ

′) = min
τ∈[0,1]

∫ 1

0

(
rγ(t)− rγ′(t+ τ)

)2
dt

Figure 1 illustrates an example of radial signatures and radial distance computation
on two simple building polygons. Figure 1 a. depicts two similar polygons, defined
by closed curves γA (red) and γB (blue). First, radial signatures rA and rB are
evaluated (see figure 1 b.) as functions of the radial distances of polygon boundary
points to the centroid (in m), versus curvilinear abscissa (renormalized between 0
and 1). These signatures are similar and need to be registered against each other in
order to compute the radial distance. Figure 1 c. depicts the L2-norm of the function
t 7→ rA(t) − rB(t + τ), for all possible abscissa shifts τ . This step is essential since
it makes the radial distance invariant to the starting points of polygons. The shift
resulting in a minimal L2-norm is located at the point τ = 17%. This amounts
to apply a 0.17 circular shift to the left on the blue radial signature, to make it
correspond to the red signature, as depicted on figure 1 d.

Figure 1. Example of radial signatures and radial distance for two polygons: a. two polygons γA (red) and

γB (blue); b. their respective (non-normalized) radial signatures; c. the distance between radial signatures with

respect to shift; d. the radial signature with optimal shift (17 %).

Despite being often called radial distance, we will show hereafter that it is technically
not a distance, since it is not guaranteed that two different polygons are separated
by a strictly positive distance (Proposition 3.6). However, we demonstrate that it is
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a pseudometrics (Proposition 3.5), meaning that all other properties of a distance
are guaranteed, and in particular the triangular inequality. Furthermore, we will
demonstrate that it is at least a distance on a subset of polygons which are naturally
encountered in building shapes (Proposition 3.7). First, let us start by recalling the
definition of a distance.

Definition 3.4. Distance

A function d : Γ× Γ→ R+ is a distance, if and only if, given any three elements α,
β, γ ∈ Γ, d satisfies the three following properties :

• (i) dr(α, β) = 0 ⇔ α = β
• (ii) dr(α, β) = dr(β, α)
• (iii) dr(α, γ) 6 dr(α, β) + dr(β, γ)

The radial distance being a shape measure, in the subsequent theoretical develop-
ments, we consider two polygons as being equal, if it is possible to find a direct affine
conformal transformation of R2 between them. Hence, we implicitly work in the
quotient set Γ/ ∼, where ∼ is the equivalence relation denoting the existence of such
a transformation between the two polygons.

Proposition 3.5. Symmetry and triangular inequality

The function dr : Γ× Γ→ R+ is a pseudometrics, i.e. given any three closed curves
α, β, γ ∈ Γ, dr satisfies the three following properties :

• (i’) dr(γ, γ) = 0
• (ii) dr(α, β) = dr(β, α)
• (iii) dr(α, γ) 6 dr(α, β) + dr(β, γ)

Note that (i′) is only the direct and weak version of the separation property (i)
required for a full metrics.

Demonstration

(i’) It is clear that, being the minimum of a positive function, dr(γ, γ) is also positive.

Besides, choosing τ = 0 results in
∫ 1

0

(
rγ(t)− rγ(t+ τ)

)2
dt =

∫ 1
0

(
rγ(t)− rγ(t)

)2
dt = 0.

As a consequence : dr(γ, γ) > 0 and dr(γ, γ) 6 0 ⇒ dr(γ, γ) = 0

(ii) Successively by integral variable substitution t 7→ t − τ , symmetry of the square
function and then 1-periodicity of the radial signatures:

∫ 1

0

(
rβ(t)− rγ(t+ τ)

)2
dt =

∫ 1+τ

τ

(
rβ(t− τ)− rγ(t)

)2
dt =

∫ 1+τ

τ

(
rγ(t)− rβ(t− τ)

)2
dt

=

∫ 1

0

(
rγ(t)− rβ(t− τ)

)2
dt
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As a consequence, we have the following equality:

∀ τ ∈ [0, 1]

∫ 1

0

(
rβ(t)− rγ(t+ τ)

)2
dt =

∫ 1

0

(
rγ(t)− rβ(t− τ)

)2
dt

⇒ dr(β, γ) = min
τ∈[0,1]

∫ 1

0

(
rβ(t)− rγ(t+ τ)

)2
dt = min

τ∈[0,1]

∫ 1

0

(
rγ(t)− rβ(t− τ)

)2
dt

= min
τ∈[0,1]

∫ 1

0

(
rγ(t)− rβ(t+ 1− τ)

)2
dt

(1− τ 7→ τ ′) = min
τ ′∈[0,1]

∫ 1

0

(
rγ(t)− rβ(t+ τ ′)

)2
dt

= dr(γ, β)

(iii) We note rα, rβ and rγ the radial signatures associated to closed curves α, β and
γ respectively, and d(r, s) = ‖r − s‖L2 .

Let G be a group and ϕ a group action of G on X = L2([0, 1]) defined by
ϕ : G × X → X such that ϕ(e, g) = g for any g ∈ X if e is the identity element of
G and ϕ(e1, ϕ(e2, f)) = ϕ(e1 ∗ e2, f) where ∗ is the binary operator on G. We show
that, if d(f, g) = d(ϕ(x, f), ϕ(x, g)) for any element x ∈ G, then the application:

dr : X ×X → R+

f, g → min
x,y∈G

d
(
ϕ(x, f), ϕ(y, g)

)

is a distance on X.

First, we note that since G is a group, for every element x ∈ G there exists x−1 (∈ G)
such that x−1 ∗ x = x ∗ x−1 = e, and the definition of dr may be rewritten as:

dr(f, g) = min
x,y∈G

d
(
ϕ(x, f), ϕ(y, g)

)
= min

x,y∈G
d
(
ϕ(x−1, ϕ(x, f)), ϕ(x−1, ϕ(y, g))

)
= min

x,y∈G
d
(
ϕ(x−1 ∗ x, f), ϕ(x−1 ∗ y, g)

)
= min

z∈G
d
(
ϕ(e, f), ϕ(z, g)

)
= min

z∈G
d
(
f, ϕ(z, g)

)

with z = x−1 ∗ y. This alternative formulation may be identified with the definition
of dr in Definition 3.3, with ϕ the parameterization shift operation, z = +τ the shift,
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and g = rγ′ , one of the two radial signatures to compare.

The separation and symmetry of dr clearly result from the fact that d itself is a
distance. Let us consider the orbits Oα, Oβ, and Oγ of α, β, and γ respectively, where
Ox = {y ∈ X | ∃ g ∈ G : y = ϕ(g, x)}.

Figure 2. Triangular inequality of the quotient distance dr between the orbits of three radial signatures.

As depicted on Figure 2, we note β and γ the optimal elements pertaining to Oβ and
Oγ respectively, and minimizing d(β, γ). Similarly, we note α′ and β′ the elements of
Oα and Oβ minimizing d(α, β). Eventually, α′′ and γ′′ are the elements of Oα and Oγ
minimizing d(α, γ).

Since, β, β′ ∈ Oβ, there exists a group action element ϕ transforming β into β′ and
such that d(β, γ) = d(β′, γ′′′) where γ′′′ is an arbitrary element of the orbit Oγ .
Similarly, there is a group action element ϕ′ transforming γ′′ into γ′′′ and such that
d(α′′, γ′′) = d(α′′′, γ′′′) where α′′′ is an arbitrary element of the orbit Oα. Let us
consider the triangle α′β′γ′′′. Since d is a distance on X the triangular inequality
states that : d(α′, γ′′′) 6 d(α′, β′) + d(β′, γ′′′). Since (α′′, γ′′), and then by isometric
transformation ϕ′ (α′′′, γ′′′), are supposed to minimize the distance d between the
elements of Oα and Oγ we have d(α′′′, γ′′′) 6 d(α′, γ′′′). It follows that:

d(α′′′, γ′′′) 6 d(α′, β′) + d(β′, γ′′′) ⇔ d(α′′, γ′′) 6 d(α′, β′) + d(β, γ)

⇔ min
Oα,Oγ

d(α, γ) 6 min
Oα,Oβ

d(α, β) + min
Oβ ,Oγ

d(β, γ)

⇔ dr(α, γ) 6 d(α, β) + d(β, γ)

It is immediate to show that the translation τ of the origin point of a closed curve is
an isometric action group. As a consequence, dr satisfies the triangular inequality on
the set Γ of closed curves. �

8



Then dr is a pseudometrics on Γ. It would be a full metrics if the separation was
also guaranteed which is not the case (see following proposition). However, in the
special case of polygon comparison for geographic data matching, we may argue
that triangular inequality is the most important property that must be satisfied.
As illustrated on Figure 3, let us consider two databases of polygons, containing γ
and γ′ respectively, that may (or may not) represent the same feature in the real
world. Further, let us imagine that in the second database γ′ is perturbated by a
noise process or has been generalized, resulting in a slightly modified version γ′′ of γ′.
Suppose also that there is some upper bound guarantee on this perturbation process,
for example that it exists a fixed (known) quantity ε ∈ R+ such that dr(γ

′, γ′′) 6 ε.
According to the triangular inequality property of dr, dr(γ, γ

′) 6 dr(γ, γ′′) +dr(γ
′′, γ′)

and then, the reverse triangular inequality guarantees that :

∆ ≡
∣∣dr(γ, γ′)− dr(γ, γ′′)∣∣ 6 dr(γ′′, γ′) 6 ε

In other words, the impact of the noise or of the generalization process on the features
comparison with dr is no larger than the amplitude of the perturbation itself.

Figure 3. Two polygons being compared with the pseudometrics dr : on one hand γ contained in one database
and on the other hand γ′ or its noised or generalized version γ′′ in another database. Any upper bound on the

perturbation effect will automatically bound the error ∆ on dr comparison between the two polygons.

Similarly, as illustrated on Figure 4, for a more general data collection pipeline, we
may consider three distinct components: the topographic database specifications
ε (which leads to different nominal terrains, implying that a same object in the
real world may be represented by two different shapes in the databases, even with
perfect measurement and no further data post-processing), the measurement noise
ε′ which is inherent to any survey operation and eventually any perturbation ε′′

added in post-processing steps, such as cartographic generalization. Since, dr enforces
triangular inequality, it is known that the distance between the real world feature and
its polygonal representation in a topographic database, is at most equal to the sum
of individual error terms: ε+ ε′ + ε′′.
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Figure 4. Two polygons being compared with the pseudometrics dr within two different data collection

pipeline. Each pipeline (i = 1, 2) is perturbated by potentially different specifications (εi), different measure-
ment noise (ε′i) and different generalization process (ε′′i ).

When comparing two different topographic databases (indexed by i = 1, 2), the
perturbation process may be different for each database, hence we note : εi, ε

′
i and ε′′i .

However, triangular inequality still ensures that the error in distance evaluation (be-
fore and after data collection process) is bounded by the sum of individual components:

∆ ≡
∣∣dr(γ1, γ2)− dr(γ′′′1 , γ

′′′
2 )
∣∣ 6 ε1 + ε2 + ε′1 + ε′2 + ε′′1 + ε′′2

Consequently, if there is a control on each of the individual perturbation processes ε,
the distance evaluation error ∆ may be bounded. In the particular case where the two
polygons represent the same entity in the real world, dr(γ1, γ2) = 0, and its evaluation
dr(γ

′′′
1 , γ

′′′
2 ) based on the surveyed data is bounded.

Proposition 3.6. dr is not separated. It is possible to find two distinct polygons
γ, γ′ ∈ Γ, with dr(γ, γ

′) = 0.

In the general case, dr does not satisfy separation, i.e. dr(γ, γ
′) = 0, does not

necessarily implies that γ = γ′. A counter-example is provided in Figure 5.

Given an arbitrary centroid O ∈ R2, A(1, 0), B(1, 1), D(0.3, 0.3), E(0.3, 1), and
A′(0, 1) are set. Note that O, B and D are aligned. Then, C is sampled at an arbitrary
position within the triangle BDE and C ′ defined as its symmetric with respect to
the y = x axis. Then, a (non-closed) curve α is defined by the sequence of vertices
ABCDEA′ (note that C ′ is not included in this curve). The closed curve γ is defined
by symmetry as illustrated on Figure 5. It is not difficult to show that γ is indeed a
non-intersecting curve enclosing an area whose centroid C(γ) is O by construction.

10



Figure 5. A counter-example for the separation illustrating that dr is not a distance: a curve γ, and its

alternative form γ′ such that γ 6= γ′, and yet dr(γ, γ′) = 0

Similarly, we define a second curve γ′ following the same steps as above, except that
the vertex C ′ is substituted to C. We also have C(γ′) = C(γ) = O.

Clearly γ 6= γ′. However, arbitrarily parameterizing γ and γ′ with s = 0 at vertex
A, both curves are perfectly symmetric with respect to their common centroid O,
regarding radial coordinate: ∀ s ∈ [0, L] ||C(γ) − γ(s)|| = ||C(γ′) − γ′(s)|| at every
point s, which in turns implies that rγ = rγ′ and then dr(γ, γ

′) = 0. �

Proposition 3.7. Separation for star-shaped polygons We consider Γ∗ the set
of polygons γ for which I(γ) is star-shaped around its centroid C(γ) (satisfying, for
all s ∈ [O,L], t ∈ [0, 1[, (1− t)C(γ) + tγ(s) ∈ I(γ)). Then the radial distance satisfies
the following property:

∀ γ, γ′ ∈ Γ∗, dr(γ, γ
′) = 0⇒ γ = γ′ (1)

where the equality is to be understood up to any direct similarity map of R2.

To describe the principle of the proof, we can associate with each point its linear
abscissa s (which is such that s = tL), and its polar coordinates (ρ, ϕ) when the
centroid of the polygon is taken as the origin. If one considers only polygons that are
star-shaped around their center of mass, the angle ϕ is a non-decreasing function of
t, and counter-examples like the one exhibited in Proposition 3.6 do not exist. Now if
the length of the curve L is known, the function s 7→ ρ(s) defines a unique polygon
(star-shaped around its center of mass) up to an isometry. Indeed, the polygon can
be reconstructed iteratively, edge after edge, and for each edge the position of the
next vertex is uniquely determined by the function ρ(s). Because the radial signature
is obtained after two re-normalizations, and we do not know a priori whether and
how these two re-normalizations are related, the demonstration is less straightforward.

The key of the proof is the observation that ϕ(t = 1) must be equal to ϕ(t = 0) + 2π
(because we consider non-self-intersecting polygons that are oriented anti-clockwise).
This equality actually sets the value of the ratio between the two re-normalization

factors L and R =
ρ(
·
L )

r , from which we can infer that the radial signature corresponds
to a unique star-shaped polygon (up to an homotopy). To illustrate that, we consider
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an arbitrary value of R and see how it determines L. For a given L, the radial
signature allows the reconstruction of a unique polyline, but these polylines have
all different values for ϕ(L) − ϕ(0), and there is only one value L0 > 0 such that
ϕ(L0) − ϕ(0) = 2π. For L < L0, the polyline makes less than one turn and does
not close itself ; for L > L0 the polyline does more than one turn and cannot close
itself without being self-intersecting. Once it is proven that the signature fixes the
ratio between R and L, it is straightforward to show that two centroid-star-shaped
polygons sharing the same radial signature are equal up to an homotopy.

Figure 6. Examples of building polygons extracted from Aubervilliers (France) dataset: a. A convex polygon.

b. A non-convex but yet star-shaped polygon, for which separation is still guaranteed (segments from center of

mass to any point are fully contained in the polygon). c. A non-star-shaped polygon. d. A nearly star-shaped
polygon (about 94% of its boundary, and 99.7 % of its surface is visible from the center of mass).

We showed that dr is strictly speaking not a distance on Γ, however, Proposition 3.7
guarantees that it can be used as such, at least for the subset Γ∗ ⊂ Γ of star-shaped
polygons. This is an important result, since in practical applications, most geographic
features (in particular building polygons) have nearly convex, and often star-shaped
geometries. Some tests conducted on Aubervilliers city (France) building database
showed that about 67 % of polygons are star-shaped. Moreover, for the remaining
polygons, we evaluated the proportion of angles being not star-shaped (i.e. for
which the semi-infinite line of sight do not contain exactly one intersection with the
building perimeter), and found an average value of 68◦ (meaning that the polygons
are on average 81 % star-shaped). Overall, 9 buildings out of 10 are more than 90 %
star-shaped regarding perimeter proportion.

Proposition 3.8. Radial distance is bounded Im(dr) = dr(Γ× Γ) =
[
0,
√

2
[
.

The supremum value of dr on Γ × Γ is finite and equal to
√

2. This is an interesting
property, since it shows that radial distance can be converted to a similarity metrics
s : Γ× Γ→ ]0, 1] through the transformation : s(γ1, γ2) = 1− dr(γ1, γ2)/

√
2.

Trivially, Im(dr) ⊆ R+. It remains to demonstrate that: (i) dr is (strictly) bounded
by
√

2 and (ii) that this upper bound is sharp. We provide here a short sketch of the
proof, for more theoretical considerations, refer to appendix B, where the involved
constructive proof is interesting as well, insofar as it suggests that star-shape property
might also nearly be a necessary condition for dr to be a distance.

(i) With two signatures f and g being in the space of non-negative unit L2-norm
functions, we have ‖f − g‖2L2 = ‖f‖2L2 + ‖g‖2L2 − 2〈f |g〉 = 2(1 − 〈f |g〉). Since the
inner product of two non-negative functions is also non-negative, it follows that:
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‖f − g‖L2 6
√

2, which provides an upper bound on the values taken by the
radial distance. Besides, reaching this upper bound would require that f and g are
orthonormal, which is possible only if they are both simultaneously non-zero on
at most a countable subset of [0, 1]. Such a requirement cannot be met with con-
tinuous functions, hence there is no pair of buildings whose radial distance reaches

√
2.

(ii) To show that the upper bound is sharp, we need to find pairs of closed curves
whose radial distance is arbitrarily close to it. To do so, we first notice that any unit-
norm non-negative piecewise constant 1

2 -periodic function of [0, 1] can be considered
as the simple limit of a sequence of radial signatures (a constructive proof, illustrated
on Figure 7, is provided in appendix B). Hence, the double gate function Πn with
gates of width 1/2n2 and height n is the limit of a sequence of radial signatures
of closed curves (γnm)m∈N, whose radial distance to the unit-circle converges to

√
2,

which is then the supremum value of Im(Γ). �

n = 1 n = 2 n = 4 n = 8 n = 16

Figure 7. A sequence (γn)n∈N of closed curves (top) and their respective radial signatures (bottom in blue).

The radial distance between γn and any circle (in red) tends to the supremum value sup(dr(Γ× Γ)) =
√

2

.

However, this upper bound is a theoretical value, typical radial distance values
encountered in practice are much lower than

√
2, as indicated by the experimentation

results in Section 6. Further investigations are provided in Appendix B to explain this.

4. Methods for the computation of the radial distance

In this section, we provide the pseudo-code algorithm to compute the radial signatures
and the radial distance of two polygons, given in input as a list of 2D vertices. Then
we propose two possible improvements to accelerate the computation, especially when
polygons are defined with a large number of vertices and/or a small discretization
step in the signatures is required. The first contribution enables a fast computation
of the radial signatures with infinite resolution through an interpolation based on
a piecewise analytical form of the signatures (section 3.2). The second contribution
offers a fast search of the optimal shift to register two radial signatures (section 3.3).
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4.1. Direct computation

The first module hereafter takes as input two arrays X and Y, each containing N
floating point numbers, where N − 1 stands for the number of distinct vertices in
the polygon. Note that for the sake of simplicity, we require that X[0] = X[N ] and
Y[0] = Y[N ]. We assume that the programming language chosen for the implemen-
tation has vectorial operation capabilities (e.g. Matlab, R, Python with Numpy...), so
that every operator � between two arrays (typed in bold font) must be interpreted as a
pointwise operator: Z = X�Y is a N -dimensional array defined by Z[i] = X[i]�Y[i].
Similarly, any scalar operation Z = λ �X (with λ ∈ R) maps X to a N -dimensional
array defined by Z[i] = λ�X[i]. Furthermore, for any pair of integers i 6 j, X[i : j] is
the sub-array of X from the i-th to the j-th elements, and i : j is a shortcut notation
denoting a vector of consecutive integers ranging from i to j. Eventually, & is the
vector concatenation operator. If the algorithm is implemented with any other lan-
guage, it is straightforward to implement these operations with basic loop instructions.

Algorithm 1 Computation of the radial signature of a polygon

Require: Polygon vertex coordinates X, Y, an integer n and an optional parameter
f (default value 10)

Ensure: A n-dimensional arrays R

N ← LENGTH(X)
X← X−MEAN(X) # To avoid numerical errors

Y ← Y −MEAN(Y) # To avoid numerical errors

5:

# Preparation

X1 ← X[1 : (N − 1)]; X2 ← X[2 : N ]; Y1 ← Y[1 : (N − 1)]; Y2 ← Y[2 : N ]

# Centroid computation

10: A← 3 ∗ SUM
(
X1 ∗Y2 −Y1 ∗X2

)
xc← SUM

(
(X1 + X2) ∗ (X1 ∗Y2 −Y1 ∗X2)

)
/A

yc← SUM
(
(Y1 + Y2) ∗ (X1 ∗Y2 −Y1 ∗X2)

)
/A

# Curvilinear abscissa preparation

15: Xs ← ∅; Ys ← ∅; T = (0 : f)/f
for i = 0 to N − 1 do

Xs ← Xs & (1−T) ∗X[i] + T ∗X[i+ 1]
Ys ← Ys & (1−T) ∗Y[i] + T ∗Y[i+ 1]

end for
20:

# Radial distances computation

S← CUMSUM
(
SQRT

(
(Xs[2 : n]−Xs[1 : (n−1)])2+(Ys[2 : n]−Ys[1 : (n−1)])2

))
R← SQRT

(
(xc−Xs)

2 + (yc−Ys)
2
)

R← INTERP(S,R,T)
25: return n ∗R/SUM(R ∗R)

CUMSUM is a module taking as input a vector X and computing the cumulative sum
of X. For example, if X = [1, 2, 3, 4], then CUMSUM(X) = [1, 3, 6, 10]. For 3 vectors
X, Y and X′, the instruction INTERP(X,Y,X′) performs linear interpolation of the
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Algorithm 2 Computation of the radial distance between two signatures

Require: A pair of n-dimensional floating point arrays R1 and R2

Ensure: A scalar positive float number representing the radial distance
1: n← LENGTH(R1); dmin← 1e300

2: for k = 0 to n do
3: d← SUM

(
(R1 − SHIFT(R2, k))2

)
4: if d < dmin then
5: dmin← d
6: end if
7: end for
8: return SQRT(dmin/n)

function Y = f(X) to evaluate it along a new vector of sample points X′.

The output of the algorithm 1 is an n-dimensional array R (where n is the required
size) with R[i] containing the value of the radial signature at the (normalized)
curvilinear abscissa i/n.

Having the radial signatures of two polygons computed, the radial distance is
evaluated with the following algorithm (2). We assume that SHIFT is a pre-existing
module performing the circular shift of a vector. For example, if X = [1, 2, 3, 4, 5], then
SHIFT(X, 2) = [4, 5, 1, 2, 3]. The minimal distance is initialized on line 1 with an arbi-
trary large value (1e300), and then subsequently updated when better shifts are found.

4.2. Acceleration of the computation using the analytical formula

We consider two consecutive vertices of the polygon γ, A and B. For vertex A, s = sA
and ρ = ρA, and for vertex B, s = sB > sA and ρ = ρB. We note ∆s = sB − sA. C(γ)
is the center of mass of the polygon γ.

First, we suppose ρB > ρA. We note H the projection of C(γ) on (AB), h = C(γ)H
and l = AH. Then, two cases can be identified:

First case : ρ2
B > ρ2

A + ∆s2.

In this case, the angle ̂C(γ)AB is greater than π
2 and H is on the half-line (AB]\ [AB].

Then

ρ2
A = h2 + l2 and ρ2

B = h2 + (l + ∆s)2,

which leads to

l =
ρ2
B − ρ2

A −∆s2

2∆s
and h2 = ρ2

A −
(
ρ2
B − ρ2

A −∆s2

2∆s

)2

.
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Finally, the analytical formula, for u ∈ [0,∆s] is:,

ρ(sA + u) = h2 + (l + u)2 = ρ2
A −

(
ρ2
B − ρ2

A −∆s2

2∆s

)2

+

(
ρ2
B − ρ2

A −∆s2

2∆s
+ u

)2

.

Second case : ρ2
B 6 ρ

2
A + ∆s2.

In this case, the angle ̂C(γ)AB is smaller than (or equal to) π
2 and H is on [AB]. Then

ρ2
A = h2 + l2 and ρ2

B = h2 + (∆s− l)2,

which leads to

l =
ρ2
A + ∆s2 − ρ2

B

2∆s
and h2 = ρ2

A −
(
ρ2
A + ∆s2 − ρ2

B

2∆s

)2

.

Finally, the analytical formula for u ∈ [0,∆s] is:

ρ(sA + u) = h2 + (l − u)2 = ρ2
A −

(
ρ2
A + ∆s2 − ρ2

B

2∆s

)2

+

(
ρ2
A + ∆s2 − ρ2

B

2∆s
− u
)2

.

To be complete, when ρA > ρB, then if ρ2
A > ρ2

B + ∆s2, then:

ρ(sA + u) = ρ2
B −

(
ρ2
A − ρ2

B −∆s2

2∆s

)2

+

(
ρ2
A − ρ2

B −∆s2

2∆s
+ (∆s− u)

)2

,

and if ρ2
A 6 ρ

2
B + ∆s2, then:

ρ(sA + u) = ρ2
B −

(
ρ2
B + ∆s2 − ρ2

A

2∆s

)2

+

(
ρ2
B + ∆s2 − ρ2

A

2∆s
− (∆s− u)

)2

.

The analytical interpolation formula above may be implemented in the algorithm 1,
line 23, instead of pointwise distance computations.

Computation of the analytical radial signature provides three significant assets.
First, it enables to compute the radial signature virtually with an infinite resolution.
Second, it provides a nearly closed-form expression for the radial signature, which
may ease subsequent theoretical development, in particular regarding the modeling
of data positional uncertainty propagation on the radial distance. And third, it has
been shown with experimentation that computing radial signature based on a regular
sampling of its analytical form is faster than oversampling the original polygon before
computing the radial signature, as illustrated on Figure 8. The rationale behind this
observation, is that oversampling is a systematic and straightforward process which
does not take too much computational burden, while radial signature evaluation
requires to evaluate expensive distances. Therefore, it seems profitable to start with
the latter on a sparse polygon, and then to interpolate the result with the analytical
form, while on the contrary, starting with polygon oversampling compels to estimate
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the radial signature on a large number of points. The experimentation revealed that,
for a reasonable amount of oversampling (about 1 point every meter on the original
polygon) the process is sped up by a factor of 2.5 with the analytical form. Other
tests on our dataset of buildings have shown that to obtain a precision of 1% on the
radial signature, one needs to take an oversampling factor of 11 or higher, which
corresponds to a point every few meters, for typical building edge lengths.
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Interpolations

Figure 8. Two possible computation paths to estimate an accurate radial signature (bottom right) from a

polygon (top left): 1. with an interpolation Ig in the geographical space, followed by radial signature com-

putation r, or 2. more efficiently, first radial signature computation r on the raw polygon, followed by an
interpolation Ir in the radial signature space, using the analytical form.

4.3. Computation with Fast Fourier Transform

For numerical purpose, both γ and γ′ have to be discretized into n points. In general,
n corresponds to the number of vertices of the original polygons, but they may
as well have been oversampled during the radial signature computation step. In
the subsequent time complexity analysis, for the general case where γ and γ′ have
different size m 6= m′, we denote n = max(m,m′).

The straightforward algorithm for computing the radial distance (3.3) implies to
test a set of n possible translations τ1, τ2,... τn in [0, 1], and for each τi, to evaluate
a discrete integral of n terms, therefore, the straightforward computation of the
expression in Definition 3.3 requires Θ(n2) time complexity. Hereafter, we propose a
fast algorithm, based on the Fast Fourier Transforms (FFT). The term to minimize
over τ in Definition 3.3 can be written in the following way :

∫ 1

0

(
rγ(t)− rγ′(t+ τ)

)2
dt =

∫ 1

0
rγ(t)2dt+

∫ 1

0
rγ′(t+ τ)2dt− 2

∫ 1

0
rγ(t)rγ′(t+ τ)2

= ‖rγ‖2L2 + ‖rγ′‖2L2 − 2

∫ 1

0
rγ(t)rγ′(t+ τ)

with the variable substitution t 7→ t+τ giving:
∫ 1

0 rγ′(t+τ)2dt =
∫ 1

0 rγ′(t)2dt = ‖rγ′‖2L2 .
The first two terms of the above quantity do not depend on τ , and the optimal shift
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may be computed by evaluating :

d̄r(γ, γ
′) = max

τ∈[0,1]

∫ 1

0
rγ(t)rγ′(t+τ)dt = max

τ∈[0,1]

∫ 1

0
rγ(t)rγ′(t−τ)dt = max

τ∈[0,1]

(
rγ ∗rγ′

)
(τ)

where ∗ denotes the convolution operator on L2([0, 1]).

However, Fourier Transform operator F maps convolution to pointwise multiplication
in temporal and spectral spaces, respectively. Then, denoting F−1 the inverse Fourier
Transform, the formula above can be rewritten as:

d̄r(γ, γ
′) = max

τ∈[0,1]

(
F−1

[
F [rγ ]

]
∗ F−1

[
F [rγ′ ]

])
(τ) = max

τ∈[0,1]

(
F−1

[
F [rγ ]F [rγ′ ]

])
(τ)

The computations of rγ and rγ′ requires Θ(n) operations (computing the centroid
and then the distance to the centroid for each of the n discretized points). Using
FFT algorithm, Rγ = F [rγ ] and Rγ′ = F [rγ′ ] can be computed in Θ(n log n), and the
pointwise multiplication RγRγ′ requires Θ(n) floating point operations. Eventually,
the inverse FFT takes Θ(n log n) operations, and an additional Θ(n) operations
are required to find the optimal shift τ . Considering all the operations results in
a Θ(n log n) algorithm for computing the radial distance. All the implementations
would take place in Algorithm 2, between lines 2 and 6.

The FFT approach has been implemented and tested on a set of polygons. Exper-
imental results revealed that it clearly outperforms the straightforward approach.
With the standard algorithm, and for simple polygons (up to 20 vertices), about
100 radial distances may be computed every second. However, in the context of
geographic data matching, the number of comparisons to perform is generally one
order of magnitude greater than the number of polygons in the databases, since it is
often required to compare each polygon in a database, with a certain number (often
up to 10) candidates in the second database. Hence, with this algorithm, matching
two datasets of 36 000 buildings requires about 60 minutes. This estimation is
pessimistic, since experimentation revealed that taking advantage of the vectorization
capabilities of some of the programming languages (in particular R or Matlab), it
is easy to achieve up to 300 distance computations per second, but this is still a
fairly long amount of time for the evaluation of a single criteria in the matching process.

However, the proposed FFT-based approach enables to reach a computation speed of
500 polygons per second, even for moderately complex shapes (up to 500 vertices).
Even with polygons containing a million of vertices, the radial distance computation
may be performed in less than one second, while its evaluation would be impossible
in a reasonable amount of time with the standard algorithm.
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Figure 9. Comparison of computational performances of 3 algorithms: FFT-based approach (plain line) and

straightforward approach with (dashed line) and without (dotted line) vectorial computation capabilities versus
number of points in the radial signatures. Left: number of polygon computed (in log scales). Right: computation

time in seconds (in log scale). The horizontal line Operational threshold depictcs the minimum requirements

to be able to match two datasets of 36 000 buildings in less than 1 hour, with an average of 10 homologous
candidates per polygon.

It is interesting to note that on Figure 9 (left), the straightforward approach shows
a linear pattern, which was expected since its quadratic complexity turns out to be
linear in log-log scale. Besides, the discontinuity of the FFT-based approach is due to
the zero-padding process: when the number n of points in the signature is not a power
of two, the corresponding building is linearly interpolated to reach 2dlog2 ne points.

5. Robustness of the radial distance

In this section, we evaluate how the radial distance fluctuates when one point of the
polygon is moved, by computing an analytical majoration of the variation of the
radial distance at the first order.

We consider a polygon P = P1 . . . PN , and compute the variation of the radial distance
when one point Pi is modified into P̂i = Pi + δPi. In this section, the ·̂ symbol
will designate quantities associated with the modified polygon, and δ· the difference
between the modified quantity and the initial quantity (for example δL = L̂ − L, L
being the perimeter of the polygon).

We note P− and P+ the neighbouring points of P = Pi in P and T the triangle
P−PP+. For simplicity, we suppose that T ⊂ P (when P and T are considered as
surfaces). We note l1 = P−P , l2 = PP+, l3 = P−P+, α the angle (PP−, PP+), A
the area of P, AT the area of T, and finally G, GP\T and GT the centers of mass of
P, P\T and T, respectively.

Several factors contribute to the variation of the radial distance: the displacement of
P changes the distance between G and P , but also modifies G (changing the radial
signature at all points), L (which changes the perimeter normalization factor for the
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linear abscissa), and ultimately the L2 normalization factor.

To quantify these variations, we note δ = ‖δP‖, ε1 = |δP · ν1|, ε2 = |δP · ν2|, where
ν1 is a unitary vector normal to (P−P+), ν2 is a unitary vector normal to the ellipse
E(P−, P+;P ) at point P (E(P−, P+;P ) notes the ellipse of focal points P− and P+

through P ). Note that the vectors ν1 and ν2 are not related in general. Then we have
the following majoration for the radial distance:

dr(P, P̂)2 6
1

R(P)2

(
C1δ

2

(
l1 + l2
L

)2

+ C2ε
2
2 sin2

(
π − α

2

)

+ C3

(
AT

A

)2

δ2 + C4

(
l3
A

)2

ε2
1 (GGT)2

)

with C1, C2, C3 and C4 constants independent of P.

The displacement of a point modifies the radial signature through different effects,
and in a first order approach, these effects generate distinct terms in the majoring
quantity. The first term accounts for the displacement of the points of the segments
[P−P ] and [PP+]. The second terms accounts for the change of the normalized
curvilinear abscissa of all points of P when the perimeter changes. The last two terms
come from the displacement of the mass center of the polygon, the third quantifying
how the displacement of the mass center of T affects the position of the mass center of
P, the fourth how the variation of the area of T affects the center of mass of P (only
the component η of δP intervenes in this last term because perturbations collinear to
P−P+ do not change the area of T).

L2 normalization generates a multiplicative factor (of at most 2) for the majoration.
The radial signatures of the original polygon and of the modified polygon may be
shifted for the computation of the radial distance, but this process can only lead to a
smaller difference and does not affect the majoration. The interactions between these
different effects may only generate terms of order 2 or more in δP , so we do not take
them into account in the majoration at the first order.

We note that the modifications of the perimeter and of the center of mass of the
polygon generate changes that are not restricted to the immediate neighborhood of
P . For the perturbation of a single point P , the radial signature of a polygon is more
sensitive to these global changes if:

• α is small, that is, the angle at P is very acute (variation of the perimeter),
• the area of T is big (displacement of the center of mass of T),
• the distance between the centers of mass of T and P is big, which is often the

case when P is distant from G (modification of the area of T).

Some of these effects (variations of L or AT) are only triggered by one of the
components of δP . The perturbation of P also creates a localized effect on segments
[P−P ] and [PP+], and this effect is more important when l1 + l2 is big, that
is, when P is far from its neighbors. These sensibility factors are not indepen-
dent, for example, a small value of α can be associated with a point P far from G,
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but with a small area for T. Big values of l1+l2 can generate big values of the area of T.

In general, we conclude that the radial signature is particularly sensitive to pertur-
bations for polygons with eccentric points, very acute angles, and segments that are
long (relative to the perimeter).

6. Experiments on real data

The aim of this section is to report and discuss the results of a set of experiments
conducted to grasp the behavior of the radial distance on real polygon shapes
representing buildings. To do so, 29 000 buildings on Val-de-Marne area (France)
are extracted from both OpenStreetMaps (OSM) and the authoritative topographic
database (BD TOPO) produced by the French National Mapping Agency. The two
datasets have been matched by using the data matching algorithm based on belief
function theory described in Maidaneh Abdi et al. (2020). Among the matched
polygons, 391 of them, located on three different representative districts, are sampled
based on the recommendations proposed by Foody (2009) and manually validated
(incorrect matching links have been discarded, so that subsequent experiments are
conducted on a reliable dataset of homologous polygons).

6.1. Experimentations

We defined four experiments, each with a specific goal. Experiment 1 aims at finding
a rough separation criterion between homologous and non-homologous pairs of
buildings based on the respective distributions of radial distance values. Experiment
2 aims at measuring the sensibility of radial distance output on different types and
amplitudes of noise on data. It is a simulation based experiment that addresses only
perturbations due to survey noise and cartographic generalization. As it would require
a very specific and ad hoc statistical modeling, the additional perturbations caused
by the respective databases nominal terrain descriptions are not handled in this
experimentation (see pipeline depicted on Figure 4). The results of this experiment
contain multiple practical abacuses to decide whether a pair of candidate buildings
are likely to be homologous, given their mutual radial distance and the level of noises
contaminating their respective datasets. Experiment 3 seeks to describe how the
respective noises perturbing two datasets are adding up together on radial distances.
Eventually, we conclude this section by demonstrating that simulations can also be
used online to determine whether two polygons are homologous.

In this section, we denote H0 the null hypothesis, stating that two polygons are
actually homologous. From a statistical perspective, the goal is to reject H0. If
we compute a given radial distance between two polygons, and the probability
that two homologous polygons (with stochastic noise) are separated by a given
radial distance is lower than a p-value threshold (5%), H0 is rejected (or equiva-
lently, H1 is selected) and we conclude that the two polygons are not homologous.
Conversely, if the obtained p-value is greater than the threshold, H0 cannot be re-
jected (we may abusively say that the two polygons are homologous; more rigorously,
we should conclude that there is no statistical evidence that they are not homologous).
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E1. Distributions of radial distance values

We evaluated the radial distances of the 391 homologous building pairs and the
estimated distributions of computed values are provided in Figure 10. The same
process is applied to 391 randomly sampled pairs of non-homologous buildings.
However, it may be argued that for practical use, polygon data matching if usually
performed with neighbor candidates, which may statistically be more similar than
merely random samples of building pairs on the full dataset. Therefore, we computed
a third distribution, of radial distance values of non-homologous buildings - yet still
neighbor (i.e. closer than 50 m) - buildings. It turned out that, surprisingly, there is
no statistically significant difference between the distributions of randomly sampled
pairs and pairs of neighbor buildings. This may be explained by the fact that there is
no local shape homogeneity.

Homologous

Non-homologous

Neighbor non-homologous

Homologous radial distances

Non-homologous radial distances

Non-homologous radial distances between neighbor buildings

Figure 10. Distributions of radial distance values for (a) homologous buildings (green plain line - bottom

boxplot), (b) non-homologous and random pairs of buildings (red dashed line - middle boxplot) and (c) non-
homologous and random pairs among neighbors (closer than 50 m) buildings (blue dotted line - top boxplot).

From the results depicted on Figure 10, it seems clear that when the radial dis-
tance value is above around 0.07, the likelihood turns in favor of non-homologous
buildings hypothesis. It also reveals that, despite its theoretical supremum value
of
√

2 (as demonstrated in Proposition 3.8), in facts, the radial distance hardly
gets above 0.4 at the maximum for very dissimilar buildings. The example ex-
hibited in Proposition 3.8 is not realistic in practice, and it is important to keep
this in mind when setting a radial distance threshold in any practical implementations.

Besides, these simple results offer an opportunity for solving the problem of deciding
whether two buildings are homologous, with Bayesian theory:

P(H0|R = r) =
π(R = r|H0)P(H0)∑

i∈{0,1} π(R = r|Hi)P(Hi)
=

π(R = r|H0)P(H0)

π(R = r|H0)P(H0) + π(R = r|H1)P(H1)
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where π(R|Hi) stands for the conditional density of the continuous variable R given
that hypothesis Hi (i = 0, 1) is true.

For example, applying this formula for a measured radial distance of r = 0.05,
on two datasets with 90% completion and with a search of 10 candidates for each
feature to match, there is a prior P(H0) = 0.9 × (1/10) = 0.09 and it is found that
P(H0|R = r) = 0.149, hence 14.9% probability that the two buildings are homologous.
Increasing the number of tested candidates or matching the building with a more
incomplete dataset would decrease this probability value.

E2. Robustness of radial distance on survey and generalization noises

The results of experiment 1 are convenient to give a matching criteria threshold on
any radial distance computed between polygons extracted respectively from OSM and
BD TOPO (or any other two databases having similar noise properties). However,
this result cannot be used as such for all databases.

In this second experiment, we use noise simulation to assess the sensibility of radial
distance evaluations on dataset noises. The motivation behind this, is to be able to
determine, for a given type and level of noise, the practical1 maximal value of radial
distance separating two homologous buildings.

To generate realistic noise, we used an approach described in Ripley (2009): with a
random generator, we sampled n i.i.d. unit-variance and zero-mean gaussian values,
compiled in a vector x. It can easily be shown that, for any positive-definite matrix
Σ ∈ Rn×n, the random vector y = Ax where A is a Cholesky factor of Σ, is a
realization of a correlated random vector Y having covariance matrix Σ. We used this
process separately on both axes of the euclidian plane, to add a correlated noise to
any building polygon shapes. The covariance matrix Σ is formed with a (stationary)
covariance kernel with three parameters:

• The type of kernel: exponential, gaussian, and triangular models are used.

• The amplitude of noise: between 0 and 5 meters, as it is quite uncommon to
find building databases with more than 5 m error amplitude. If necessary, the
output tables could be extended to handle large errors.

• The correlation scope of the noise which roughly speaking, describes how far
apart two errors would remain correlated (in both amplitude and direction):
between 1 m (white noise) and 1000 m (global translation).

On the graphics below, correlation scope is expressed relatively to the average
diameter of buildings in the database (∼ 10 m), meaning that, in logarithmic scale a
value of -1 corresponds to 1 m (10−1× diameter) while a value of 2 corresponds to

1Here, by maximal practical value, we may refer to the 95th percentile value, which would directly correspond

to the 5% risk rejection threshold for H0.
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1000 m (102× diameter).

Figure 11. Illustration of the noise model on a 30-meter-radius continuous circle (top) and on a piecewise
linear building (bottom). Covariance scope is increasing from 0.1 (white noise process; left) to 500 m (global

translation; right), for a same amplitude level of 5 meters. Original shapes are depicted with dashed lines.

The noise amplitude levels were sampled continuously between 0 and 5 m, and
then divided into 19 groups for the matrix representation below. On the other hand
correlation scopes were discretized regularly on 13 levels between 1 and 1000 m
along a logarithmic scale. In total, 100 000 simulations have been performed for each
covariance model, resulting in at least 300 samplings in each of the 19× 13 cells of the
experiment design, ensuring statistical robustness of the computed values (figure 13).
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Figure 12. Quantile regression of 95th percentile of radial distance evaluation error versus noise amplitude
level for different correlation scopes (indicated on the right of plots) and different covariance models (from left

to right: triangular, exponential and gaussian).

Triangular and exponential kernels give very similar results while gaussian kernel
outputs are slightly different. It is interesting to note on Figure 12 that for all
correlation scopes/models, the impact of the noise amplitude on the radial distance
error seems to be approximately linear, as long as the noise level is sufficiently small,
then a plateau is reached at a value depending essentially on the covariance scope,
but also on the covariance model: for a same scope, the plateaus of the Gaussian
model are clearly lower than those of the exponential and triangular kernels.

Figure 13 can be readily used as a decision table as follows: suppose that two poten-
tially homologous buildings are compared, separated by a radial distance r = 0.15.
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Figure 13. From top to bottom: (1) number of simulations, (2) mean radial distance error, (3) 95th percentile
of radial distance error and (4) maximal value of radial distance error. Each cell value is referring to a noise
amplitude (in x-axis) and a noise covariance scope (in y-axis). The experimentation has been performed for 3
different noise covariance models (from left to right: triangular, exponential and gaussian).
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Further, let us suppose that the homologous candidate stems from a database known
to be contaminated by 2-meter amplitude with 100 meter-correlation noise (we
assume triangular or exponential covariance model). Then, in the 95th percentile
table (x = 2 m and y = 1), a value around 0.12 can be read. Thus, null hypothesis
H0 can be rejected and state that these two buildings are unlikely to be homologous
(i.e. given the noise specification, an evaluated radial distance of 0.15 is too far from
0 to be explainable by noise only).

We conducted a similar experimentation to evaluate the impact of cartographic
generalization on radial distance. Generalization is the process of modifying geometric
features to make them more easily readable from the map user’s perspective (Butten-
field 1991). It relies on a trade off between geometric accuracy and simplicity. In this
experiment, we assess the impact of two representative algorithms:

• A polyline simplification algorithm, which seeks to reduce the number of
points while preserving most of the original shape of the building. We used
the popular algorithm of Douglas and Peucker (1973). Note that, for the sake
of completeness, we also experimented with Visvalingam and Whyatt (1993)
algorithm, but found no significant difference, hence only Douglas-Peucker
results are reported below.

• A footprint squaring algorithm (illustrated on Figure 14), ensuring that nearly
flat and right-angles are rounded exactly to 0 and 90 degrees, respectively. We
used a least squares approach based on the one described by Lokhat and Touya
(2016), except that constraints on 45 degrees angles and parallel walls are not
enforced in our experiments.

Figure 14. Illustration of building squaring for cartographic generalization, with a threshold tolerance angle

(from left to right): 1◦, 5◦, 10◦ and 30◦. On each picture, the original building is depicted with dashed lines

(note that no modification has been undergone by the building with 1◦ threshold).

The generalization level is parametrized with a distance tolerance threshold (for
Douglas-Peuker) and an angular tolerance threshold (for squaring). For each algorithm
10 000 simulations have been performed.

First, the results (Figure 15) show that Douglas-Peucker generalization process may
potentially be significantly more destructive on the radial distance than survey
acquisition noise, with a plateau value of its 95th percentile at 0.45 (which is even
more than for white noise perturbation). For a typical and realistic value of 2 m
generalization level, the average radial error is 0.05, with a 95th percentile error at 0.2.
The same value (2 m) taken as a standard deviation of a moderately correlated noise,
results in a 95th percentile error equal to 0.1 on radial distance, hence suggesting
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Figure 15. Median (plain line), 5th and 95th percentiles (dashed line) estimations of radial distance prop-

agated error versus generalization noise (in meters/degrees) for 2 different generalization algorithms (left:
Douglas-Peucker, and right: squaring).

that random perturbation of vertices is more conservative from the radial distance
point of view, than the deterministic Douglas-Peucker algorithm. This may be easily
explained by the fact that Douglas-Peucker (or any other simplification algorithm)
may be likely to modify a building in a located and dissymetrical manner, which
may right away displace significantly the polygon center of mass. Such a coordinated
modification is unlikely to happen with a random perturbation.

However, things are surprisingly different with squaring algorithm, which seems
to have very little impact on average. Even taking the 95th percentile results in
very moderate changes in radial distance (0.05 at the maximum for a nearly 45
degrees angular tolerance threshold). This should be viewed in the light of Figure
10, where the distribution intersection between homologous and non-homologous
pairs of buildings was occurring at 0.07. As a conclusion, it may be considered that
squaring-type generalization operations can be neglected regarding their impact on
radial distance evaluation, i.e. squaring modifications alone can hardly explain a
significant value measured between two homologous buildings.

E3. Additive properties of noise on radial distances

It is well known that when two independent noise contributions σ1 and σ2 add up,
the amplitude of their resultant is a quadratic sum of the individual amplitudes:
σ2 = σ2

1 + σ2
2. In this experiment, we investigate whether this is true also for the

impact of noise of radial distances.

Figure 16 depicts the result of 350 000 simulations, using a similar approach as
described in the first part of experiment 2. For each simulation, a moderately
correlated (50 m scope) noise is introduced independently on two versions of a same
building. The radial distance between the two resulting polygons is evaluated, and
results are aggregated in a matrix. It can be observed that the isolines of left matrix
exhibit circular patterns, which confirms that noise on radial distance is adding
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quadratically. This is even more visible on the right graphic, depicted in terms of
Mean Square Error (MSE), where isolines are a sequence of −45◦ slope straight lines,
as it could be expected.

This result is important, since it enables to disregard the uncertainty on one of the
two databases involved in the matching process when its noise is significantly small
in front of the noise level contaminating the other database. For example, let us
consider two moderately correlated noise perturbating two databases D1 and D2,
with respective amplitudes σ1 = 50 cm and σ2 = 1 m. Then the effects on the
radial distance will be approximately the same than considering those of a perfect
ideal database matched with another database of noise level :

√
0.52 + 12 = 1.12 m,

meaning that the noise on the database D1 is almost negligible.

E4. Simulations for online polygon matching testing

In the first experiment, we extracted a criterion to decide whether two polygons are
homologous, for the restricted case of OSM and BD TOPO databases. Experiment
2 was designed to address the case where databases have different kinds of noise
perturbations. However, all the decision criteria compiled in output tables so far do
not take into account the specific shapes of buildings, despite the fact that some
polygon shapes may be particularly more sensitive, and then more likely to undergo
large deviations on their radial distance evaluation. In particular, we showed in
section 5 that angle values of the polygon may be an important factor explaining
whether a polygon is sensitive or not.

In this last sub-section, we provide an experiment suggesting that online simulations
may enable to accept or reject the null hypothesis with a higher confidence level.

We consider a particular pair of buildings A and B, for which the radial distance
has been evaluated, and we want to know if they are homologous. The idea involved
here consists in simulating a number n of perturbations of A with the noise level of
the database contaminating B. It results in N noised versions A1, A2,... An of A,
each of them being a potential representation of the building in the second database.
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The n values of radial distances di = dr(Ai, B) are computed and this distribution
of values is compared with the really observed radial distance d = dr(A,B). Then a
simple estimation of the p-value in favor of null hypothesis H0 may be calculated as
the ratio of simulations di being above d. H0 is classically rejected if p < 0.05 and the
two buildings are considered as non-homologous.

We estimated the covariance kernel between OSM and BD TOPO building polygons,
by performing a pointwise matching with a Dynamic Time Warping approach (Müller
2007) on the 391 matched polygons. The resulting experimental kernel was then used
to adjust a parametric mixture model (figure 17): a mixture of Gaussian (90 %) and
triangular model (10 %), with respective scopes equal to 50 and 100 meters, and with
a maximal standard deviation value of 1.52 meters (figure 17).

Experimental Exponential

150 100 50 0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Gaussian Triangular

Figure 17. Left: the estimated covariance model between OSM and BD TOPO building polygons. Experi-

mental kernel is depicted in black crosses, adjusted model in blue line. Right: the 3 main covariance kernels
used as input in the mixture model (from left to right: Exponential, Gaussian and Triangular).

Examples of simulations are provided on Figure 18. In each case, we compare the
radial distances between blue and red polygons, with the distributions of radial
distances between blue and simulated gray curves. If the latter is a significant outlier,
then H0 is rejected and polygons are assumed to be non-homologous.

1 m

1 m

1 m

1 m

Figure 18. Four example of simulations. Blue: BD TOPO building. Red: OSM building. Gray: noised versions

of BD TOPO building. The distribution of radial distances between blue and gray polygons is compared to

the observed radial distance separating blue and red polygon. For the right two polygons, p-value was above
0.05 and H0 was rejected.

We performed simulations for the 391 pairs of homologous buildings and for 391
randomly sampled pairs of buildings (see experiment 1). Figure 19 depicts the
respective distributions of p-values. It can be seen clearly that the resolving power
of this representation is much better than the one of the raw radial distance values
(Figure 10). With a threshold set at a p-value of 0.05, only 1.7 % of homologous
buildings are rejected, while 14 % of non-homologous buildings are considered as
homologous. With a more symmetrical threshold of 0.2, the separation is even more
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accurate, with about 3 % of homologous buildings rejection, and only 6 % false
homologous decisions. As pointed out in experiment 1, this threshold value should be
tuned accordingly to the completion rate of database and to the number of tested
candidates by the matching algorithm.

Figure 19. Distributions of the p-values estimated by the customized simulations for the homologous (red)
and non-homologous (blue) pairs of buildings.

6.2. Discussion

New insights are acquired thanks to the three experiments allowing us define some
recommendation for the practitioner.

The first insight regards the range of the radial distance values. Theoretically, the
range is comprised between 0 and

√
2, which allows to compute a similarity measure.

Our experiments revealed that values of 0.4 already correspond to very different
shapes. For a user, without additional information a priori, it is advised to consider
the range of values of the radial distance as evolving between 0 (identical polygons)
and 0.5 (very dissimilar polygons).

The second insight deals with the threshold that can be set to separate homologous
and non-homologous pair of features. Without additional information, and on the
particular case of the OSM - BD TOPO data matching, a threshold equal to 0.07
allows to discriminate the pairs of homologous and non-homologous buildings, with a
risk of error estimated at 10% for both false positives and false negatives classes. The
first results showed that the distribution of radial distance values of non-homologous
buildings does not seem to be too sensitive to the radius used to select the candidates
for the features to be matched (i.e. close candidate buildings located within the
search radius area are as similar or dissimilar in terms of radial distance as candidates
that are far from the building to be matched). These results need to be confirmed
with further tests. Moreover, we also extended the criterion using a Bayes rule to
accommodate different completeness datasets and different numbers of candidates
tested. This rule corresponds to different a priori probabilities of finding a homologous
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feature for each feature to be matched.

The third insight is related to the effect of noise. Experiments allowed us to determine
a quadratic error summation rule, which lets us handle the case where both databases
are significantly noisy. We have seen that, for long-range correlations (e.g. referencing
error, camera distortion on aerial images, orthorectification error, etc.), the accepted
threshold on the radial distance evolves linearly between 0.0 and typically 0.1 to
0.2 depending on the noise level. For lower auto correlation noise (e.g. low-cost
local topometric survey, automatic detection on Digital Surface Model, building
mapping with low cost GPS), the allowed threshold increases rapidly to a plateau
value between 0.3 and 0.4. The effect of the noise due to generalization process is
more singular. We have observed a fairly marked effect of simplification algorithms
(e.g. Douglas-Peucker and Vis Valingam), in general at least as important or even
more important than the effect of random geometric noise. This may be due to
a coordinated and asymmetric effect of the perturbation, which is almost never
found in random noise. On the contrary, the effect of squaring is marginal, even
in some extreme cases where building shapes are more sensitive to the squaring process.

Fourth, we have shown that ad hoc simulations on a given building provide a more
discriminating decision threshold (homologous/non-homologous), at the expense
of a slight increase in the computation time. In the OSM and BD TOPO data
matching case, an error rate of less than 10% is obtained. This approach requires the
implementation of an inference of the error model on both databases and a simulation
on each individual building to be matched.

Finally, the results of the experiments 1, 2, 3, and 4 allow the user to choose an
approach according to the available data and resources. For an OSM and BD TOPO
data matching, or with 2 databases having the same types of noise, the abacus of
experiment 1 can be used. Otherwise, the abacus of experiment 2 is recommended. If
it is known that the two databases are significantly noisy, we recommend completing
the abacus from the experiment 2 with the one of the experiment 3. Lastly, for a very
fine decision, the method proposed in experiment 4 can be used.

7. Conclusion

In this paper, we studied the radial distance from different perspectives (i.e. proper-
ties, computation and robustness) in the context of heterogeneous data matching.

We showed that, despite being named radial distance in the literature, it is not
a distance from a mathematical point of view. Indeed, we demonstrated it lacks
separation, i.e. two polygons having different shapes can be separated by a null
distance. This implies a contradiction with the interpretation of zero shape distance
and in the case of data matching, it can generate incorrect matching links. However,
the negative impact is partly offset by two aspects. First, we demonstrated that the
separation remains valid for a specific type of polygon (namely star-shaped polygons).
This is a relevant result, knowing that the majority of polygons are star-shaped,
and as our experiments showed, even non-star-shaped polygons are in fact almost
so in terms of proportion of their boundary. Second, the triangle inequality remains
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valid and we indicated through an example the importance of this property for data
matching.

In terms of computation, we proposed two improvements. The first allows the
computation of a radial signature with a fine (potentially infinite) sampling. When
defining an operational context, the naive approach of the calculation does not allow
to deal with polygons (or signatures) of more than 20 points. With the FFT approach,
the problem can be handled with signatures of more than 10 000 points.

Regarding the robustness of the radial distance, we conducted a set of theoretical
analysis and experiments showing the behavior of the radial distance according to
different types and amplitudes of noise. Moreover, with the simulation methods, we
can easily construct abacuses allowing to decide whether the matching hypothesis
should be rejected, with a controlled risk of error, and according to the type and level
of noise contaminating the database in which the data matching algorithm is looking
for a matching candidate. The last experiment, shown that simulations methods allow
to accept or reject more confidently the null hypothesis for a specific pair of features.
A refined statistical estimation of the quality of this customized decision algorithm
will be the subject or future works.

In addition to the matching context, all our results may be important also for other
application fields potentially using the radial distance: geographic data quality (e.g.
when estimating the correctness of a shape knowing a reference feature), multisource
data fusion (for reducing errors when fusing different homologous features stemming
from different sources), shape classification, generalization and computer vision.

One of the limitations of the study is that the error due to the difference between
the nominal terrain between two databases to match is not taken into account. This
error is difficult to estimate in the absence of ground truth data, information about
the tools used for mapping or lack of specification as it often the case of VGI. Once
the error is modeled, one future work is to develop robust methods to make the
radial distance less sensitive to the noise regarding the nominal terrain. Another
potential perspective would be to extend the radial distance to deal with vector-image
comparisons.

All experiments were performed on polygons representing buildings. It will be inter-
esting to make similar study on other objects such as parcels, lakes, forests, spatial
tesselations, etc. As the radial distance relies on the parametrization of the boundary,
it should be a pertinent indicator even for boundaries rougher than typical building
edges, provided that level of detail is homogeneous along the boundary. Moreover, the
radial distance cannot be applied as such for comparing polygons containing holes
and more research is needed to make it compliable with this extended type of polygon.

Eventually, managing complex links having 1 : n and m : n cardinalities was way
beyond the scope of this paper, but may be of paramount importance for leveraging
the results found here and the capabilities of the radial distance to general polygon
data matching algorithms and for all types of situations encountered in practice. One
way to manage links with 1 : n and m : n cardinalities would be to build new abacuses
and derive operative thresholds to determine whether two groups of buildings are
homologous (the thresholds computed in this paper may be modified by the fact that
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allowing the grouping of buildings may lower computed radial distances in general
and thus also lower the optimal threshold. A more ambitious way to manage 1 : n and
m : n cardinalities would be to isolate the effect of a change in the origin of the radial
signature to identify when two sections of radial signatures (that is, restrictions to
sub-intervals of [0, 1]) correspond to homologous features. Such an analysis could be
facilitated by taking into account the typical shapes of buildings, with straight edges
and right angles, which constrains the form of the radial signature and could make
partial boundary matching more straightforward.
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Appendix A. Proof of Proposition 3.7.

Proposition 3.7 can be rewritten in the following way:

∀γ, γ′ ∈ S, dr(γ, γ′) = 0⇒ I(γ) = H(I(γ′))

where I(γ) is the interior of the closed curve γ and H is a homothety of R2.

For s ∈ [0, L], we note ϕγ(s) the angle between (C(γ), γ(0)) and (C(γ), γ(s)). We
choose ϕ such that ϕ(0) = 0 and ϕ is continuous on [0, L]. As γ does not self-intersect,
it results that ϕ(L) ∈ {−2π, 0, 2π}. I(γ) being star-shaped around C(γ) implies that
for all θ ∈ [0, 2π], ϕ−1

γ (θ) is an interval of [0, L[. As a consequence, ϕ(s) is either
nondecreasing or nonincreasing. As we also suppose that γ turns anticlockwise, it
implies that ϕ is a nondecreasing function of s and ϕ(L) = 2π.
Let us also consider the function:

ρ : [0, L] → R
s 7→ ‖γ(s)− C(γ)‖

If γ is a polygon and V (γ) the set of its vertices, then ϕ and ρ are piecewise-
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differentiable on [0, L]; the only points where they not differentiable are in the set
γ−1(V (γ)), and ϕ and ρ are semi-differentiable at these points.

We consider s0 ∈ [0, L[ and study the right derivatives of ϕ and ρ at point s0 (they
are written ϕ′r(s0) and ρ′r(s0). We also consider s1 > s0 such that

]s0, s1[ ∩ γ−1(V (γ)) = ∅.

Then, γ([s0, s1]) is the segment [γ(s0), γ(s1)], and for all s ∈ [s0, s1], it results that:

(s− s0)2 = (ρ− ρ0)2 +

(
2ρ sin

(
ϕ− ϕ0

2

))2

thus, it results that:

sin

(
ϕ− ϕ0

2

)2

=
1

4ρ2

(
(s− s0)2 − (ρ− ρ0)2

)
= (s− s0)2 1

4ρ2

(
1−

(
ρ− ρ0

s− s0

)2
)

We consider the limit of this equality when s→ s0:

lims→s0

sin

(
ϕ− ϕ0

2

)2

(s− s0)2
=

(
1

2
ϕ′r(s0)

)2

lims→s0
1

4ρ2

(
1−

(
ρ− ρ0

s− s0

)2
)

=
1

4ρ2
(1− ρ′r(s0)2)

and the following expression is inferred:

ϕ′r(s0)2 =
1− ρ′r(s0)2

ρ(s0)2

As ϕ and ρ are continuous and differentiable almost everywhere, we have

ϕ(s) =

∫ s

0

√
1− ρ′(σ)2

ρ(σ)
dσ

As a consequence, the function s → ρ(s) determines the values of ϕ(s) for all
s ∈ [0, L]. So, if γ1 and γ2 are such that ρ1 = ρ2, it is approved that ϕ1 = ϕ2.

Now, let us consider γ1 and γ2 such that rγ1 = rγ2 . For all t ∈ [0, 1], it results that:

ρ1 (tL1)

R1
=
ρ2 (tL2)

R2

.
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That implies:

ϕ′1 (tL1)2 =
1− ρ′1 (tL1)2

ρ1 (tL1)2

=

1−
(
L2R1

L1R2

)2

ρ′2 (tL2)2

(
R1

R2

)2

ρ2 (tL2)2

=

(
L2

L1

)2

(
L1

L2

)2

−
(
R1

R2

)2

ρ′2 (tL2)2

(
R1

R2

)2

ρ2 (tL2)2

Now, we suppose that
L1

L2
>
R1

R2
. This implies ϕ′1 (tL1)2 >

(
L2

L1

)2

ϕ′2 (tL2)2. As ϕ1

and ϕ2 are nondecreasing, this means that L1ϕ
′
1 (tL1) > L2ϕ

′
2 (tL2). Then, it results

that:

2π = ϕ1 (L1) =

∫ L1

0
ϕ′1(s)ds = L1

∫ 1

0
ϕ′ (tL1) dt < L2

∫ 1

0
ϕ′ (tL2) dt = 2π,

which brings a contradiction.

Similarly, if
L1

L2
<
R1

R2
, then L1ϕ

′
1 (tL1) < L2ϕ

′
2 (tL2), which is also a contradiction.

Thus, considering the equality
L1

L2
=

R1

R2
, and for all t ∈ [0, 1], L1ϕ

′
1 (tL1) =

L2ϕ
′
2 (tL2), which implies

∀s ∈ [0, L2] , ϕ2(s) = ϕ1

(
L2

L1
s

)
.

The equality
L1

L2
=
R1

R2
also gives

∀s ∈ [0, L2] , ρ2(s) =
L2

L1
ρ1

(
L1

L2
s

)
.

This means that, if C(γ1) = C(γ2) = C and γ2(0)− C =
L2

L1
(γ1(0)− C), then

∀s ∈ [0, L2] , γ2(s)− C =
L2

L1

(
γ1

(
L1

L2
s

)
− C

)
.

and

I(γ2) = D(
C,

L2
L1

) (I(γ1))
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where D(
C,

L2
L1

) is the dilation of center C with a factor
L2

L1
(or a contraction if the

factor is lower than 1).
In general, when C(γ1) 6= C(γ2), then

∀s ∈ [0, L2] ,

(
γx2
γy2

)
(s) =

(
C(γ2)x

C(γ2)y

)
+
L2

L1

(
cos Θ − sin Θ
sin Θ cos Θ

)(
γx1 − C(γ1)x

γy2 − C(γ1)y

)(
L1

L2
s

)

with Θ the angle between vectors
−−−−−−−→
C(γ1)γ1(0) and

−−−−−−−→
C(γ2)γ2(0). Then, it results that:

I(γ2) = D(
C(γ2),

L2
L1

) ◦R(C(γ2),Θ) ◦ TC(γ2)−C(γ(1) (I(γ1)) ,

with R(C(γ2),Θ) the rotation of an angle Θ around the center C(γ), and TC(γ2)−C(γ(1)

being the translation of vector
−−−−−−−−→
C(γ1)C(γ2).

Finally, we consider γ1 and γ2 such that dr(γ1, γ2) = 0. We notice that as rγ1
and rγ2 are continuous, dr(γ1, γ2) = 0 means that there exists τ ∈ [0, 1[ such that
rγ2 = rγ1(·+ τ). the function rγ1(·+ τ) is the radial signature of the closed curve:

γ̃1 : [0, L1] → R2

s 7→
{
γ(s+ τL1 if s < L1(1− τ)
γ(s+ (τ − 1)L1) if s > L1(1− τ)

.

The curves γ1 and γ̃1 have the same image, so I(γ1) = I(γ̃1). As rγ2 = rγ1(· + τ),
I(γ2) = H(I(γ̃1)) = H(I(γ1)), where H is an homothety. �

Appendix B. Proof of Proposition 3.8.

We exhibit a sequence of closed curves (γn)n∈N, whose distance to a unit circle γ,
d(γn, γ), converges to 1 as n goes to infinity. Referring to Figure 1, let us define a
sequence (βn)n∈N of star-shaped closed curves centered on the origin and composed
of a number of radial branches which is an integer multiple2 of 4n2. For example, β1

contains 4 branches, β2 has 16 branches, β3 has 36 branches, and so on. Second, let
us define another sequence of selector closed curves (αn)n∈N, composed of a damped
circle, selecting only the north and south branches of its corresponding βn, all other
remaining branches being damped by an homothetic factor O(n−1). Eventually, we
define the sequence (γn)n∈N as a pointwise product (in polar space) of α and β
sequences (bottom row in Figure 1). Because the length of γn goes to infinity (as a
product of O(n−1) × O(n2)), the abscissa portion of rγn not decreasing towards 0 is
smaller as n grows, and eventually tends to 0. Geometrically, for a large value of n,
γn is nearly a straight line (Figure 7). In the radial signature space, it is a double
half-dirac function rγn : t 7→ 1

2(δ(t) + δ(t − 1
2)), for which it is not difficult to show

that ||rγn − rγ || =
√

2 and then dr(γn, γ) =
√

2.

2Always being an integer multiple of 4 ensures that all closed curves have perfectly symmetrical north and
south branches, and then that their center of mass is invariably located at the origin even after damping
selection by αn.
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Figure 1. First five closed curves of the sequences (αn)n∈N (top), (βn)n∈N (middle) and (γn)n∈N, (bottom)

defined as the element-wise product γn = αn × βn. It is not difficult to demonstrate that the length of γn
grows infinitely.

Then, it just remains to show that no pair of radial signatures has distance
√

2.
First, let us note that any radial signature computed from a closed curve of length
L is L-lipschitz continuous. Suppose that α and β are two closed curves such that
dr(α, β) =

√
2. Then, it means that 〈rα(·)|rβ(· + τ)〉 = 0 for a particular shift τ ,

which is possible only if rα (as well as rβ) is non-zero on a at most a countable set,
which is impossible for any finite-length curve, since rα, of length Lα is Lα-lipschitz
continuous. Therefore, there is no couple (α, β) ∈ Γ2 such that the upper bound

√
2

is reached by dr(α, β) which concludes the proof. �

The constructive process used in this proof is interesting, since it involves only
star-shaped polygons, hence it reveals that any unit-norm 1

2 -periodic piecewise
constant function can be approximated by a sequence of radial signatures of curves
in Γ∗. Additionnaly, any unit-norm continuous function of L2([0, 1]) being the simple
limit of a sequence of unit-norm piecewise constant functions, the image through
the radial signature application of Γ∗ is a dense subset of L2([0, 1]). Pushing things
a little further, we may demonstrate that these functions can actuallay be exactly
represented by the radial signature of a star-shaped polygon, which means that
Im(Γ∗) = L2([0, 1]), and then the radial signature cannot be an injection on any set
greater that Γ∗. As a consequence, for any non-star-shaped polygon γ ∈ Γ, it is always
possible to find a star-shaped polygon γ∗ ∈ Γ∗, such that dr(γ, γ

∗) = 0, implying that
the radial distance separation property can be rejected at the outset as it cannot hold
outside of Γ∗. This is an alternate point of view motivating the Proposition 3.7. In
some aspects, the set Γ∗ of star-shaped polygons is a maximal subset of Γ (in terms
of inclusion) where the radial distance is still a mathematical distance.

It is interesting now to discuss how this upper bound
√

2 is decreasing towards 0 as we
constrain the radial signatures of polygons to be bounded as it is the case in practice.
For M > 1, we consider the subset ΓM ⊂ Γ of polygons γ such that ‖rγ‖∞ 6 M .
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Using the shift3 to reduce the L2-norm between translated signatures provides the
following upper bound on the radial distance values:

∀ α, β ∈ ΓM


dr(α, β) 6

√
2− 2

M if M 6 2

dr(α, β) 6
√

2− 1
M2 if M > 2

When M 6 2, the optimal strategy to minimize the inner product 〈f | g〉 is to take
f = 1 and have g be a limit of radial signatures, g taking only the values 0 and M .
When M ≥ 2, the optimal strategy is to have f and g both be limits of signatures and
bivalued, taking only values 0 and M , with supports that have the same intersection
span for any value of the shift.

This result is important since in practical situations, M does not exceed the value of
2, hence the radial distance application may be considered as bounded by 1 (and even
then upper bounds are only reached with elaborate radial signatures).

3The upper bound
√

2 is approached with signatures that have arbitrary large values and, thus arbitrary small
support, which enables arbitrary small value of the inner product 〈· | ·〉 even with the optimal shift. When we

constrain the radial signatures to be bounded by M , their support have a minimum span and an optimal shift

can make them overlap and necessarily lowers the upper bound.
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