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Abstract
The urothelium separates the urinary tract lumen from underlying tissues of the tract wall.
Previously considered as merely an effective barrier between these two compartments it is now
recognized as a more active tissue that senses and transduces information about physical and
chemical conditions within the urinary tract, such as luminal pressure, urine composition, etc. To
understand this sensory function it is useful to consider the urothelium and suburothelium as a
functional unit; containing uroepithelial cells, afferent and efferent nerve fibers and suburothelial
interstitial cells. This structure responds to alterations in its external environment through the
release of diffusible agents, such as ATP and acetylcholine, and eventually modulates the activity
of afferent nerves and underlying smooth muscles. This review considers different stresses the
urothelium/suburothelium responds to; the particular chemicals released; the cellular receptors that
are consequently affected; and how nerve and muscle function is modulated. Brief consideration is
also to regional differences in the urothelium/suburothelium along the urinary tract. The
importance of different pathways in relaying sensory information in the normal urinary tract, or
whether they are significant only in pathological conditions is also discussed. An operational
definition of intelligence is used, whereby a system (urothelium/suburothelium) responds to
external changes, to maximize the possibility of the urinary tract achieving its normal function. If
so, the urothelium can be regarded as intelligent. The advantage of this approach is that input–
output functions can be mathematically formulated, and the importance of different components
contributing to abnormal urinary tract function can be calculated.
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INTRODUCTION AND BARRIER FUNCTION OF THE UROTHELIUM
The uroepithelium (urothelium) is the interface between the lumen of the urinary tract and
underlying tissues. The most superficial layer is composed of large, hexagonal umbrella
cells, covered with uroplakins and connected by tight junctions.1,2. Below is an intermediate
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cell layer and a basal cell layer connected to a basement membrane. The region between the
urothelium and the underlying smooth muscle layers is called the suburothelium and is
richly supplied by blood vessels, nerves and fibroblasts (including myofibroblasts or
interstitial cells (IC)) and embedded in a collagen matrix.3,4 Although the passive barrier
function which separates luminal contents from the muscle layers is principally a function of
the true urothelium there is accumulating evidence that the urothelium and suburothelium
(henceforth called UsU and referred to also as the mucosa) forms a functional transduction
unit and will be considered below.

The ability of the urothelium to function as an effective barrier to the passage of small
molecules and ions has been considered previously5 and apart from effective umbrella cell
tight junctions,1 several other important features contribute such as: the presence of
uroplakins and an effective glycosaminoglycan layer covering the luminal face6,7 and the
ability to incorporate additional membrane into the superficial layer when it is stretched, as
for example when the bladder fills with urine.8

INTELLIGENCE: ITS APPLICATION TO THE UROTHELIUM
Recent studies suggest that the UsU also responds to external physical and chemical stimuli
by secreting agents that in turn influence afferent nerve signaling and more directly the
function of underlying tissues in the wall of the urinary tract. Moreover, the transfer function
between stimulus strength and output may vary and thus can explain how the transducer
function of the urothelium adapts to different conditions, or contributes to pathological
lower urinary tract conditions. Can we therefore consider the urothelium to be “intelligent?”
Intelligence may be defined in several ways, including.

• Cognitive intelligence: the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly, and learn from experience.9

• Machine intelligence: in a changing environment a system acts to increase the
probability of achieving its ultimate goal.10,11

• Operational intelligence: the mere ability to collect and sort information, as
appropriate to the intelligence services.

The second of these is perhaps the most valuable as it is amenable to exact mathematical
formulation.10 Moreover it expresses the idea that a system (here the urothelium) responds
to different inputs (stresses) to achieve control over a goal (the micturition cycle): moreover,
lower urinary tract dysfunction may be explained by physical changes to the system. It is
required to identify the particular environmental changes; how they are sensed; how the
information is integrated; what are the effectors (targets); what changes occur that are
associated with urinary tract dysfunction.

RESPONSE OF THE UROTHELIUM TO STRESSES
The urothelium can come under many forms of stress that include: physical stress (during
bladder filing); ischemia as occurs also during bladder filling;12 contact with urine of
varying ionic composition and osmolality; changes to the endocrine environment; as well as
abnormal situations such as urinary tract infections and radiation damage during
radiotherapy treatments.

Several histological and functional observations suggest that the urothelium can indeed
respond to external stresses.

• The urothelium and suburothelial ICs possess many receptors to potential signaling
molecules.13
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• The UsU is densely innervated, with unmyelinated fibers.14,15

• The urothelium secretes many molecules that can have a transmitter function.13

• Stimulation or removal of, or damage to, the UsU changes the activity of
underlying tissues, including smooth muscle.16,17

RECEPTORS IN UROTHELIUM AND SUBUROTHELIUM CELLS
Numerous receptors/ion channels have been identified on urothelial cells and suburothelial
ICs including those to purines (ionotropic P2X, metabotropic P2Y subtypes), adenosine,
catecholamines (α,β), acetylcholine (muscarinic, nicotinic), neurotrophins (p75, trkA, EGF
family ErbB1-3), growth factors (VEGF); as well as different TRP channels (that can
respond for example to altered local pH), amiloride- and mechanosensitive-epithelial Na+

channels (ENaC) and the intracellular machinery that can respond to steroid hormones such
as aldosterone.13,18–26 The presence of these receptors and ion channels will enable the
urothelium to respond to stresses from a variety of sources (see below).

INNERVATION OF THE UROTHELIUM/SUBUROTHELIUM
Nerve fibers immunoreactive to P2X, TRPV-1 and peptidergic receptors are present
throughout the suburothelium and even penetrate the urothelium. Moreover, some fibers also
have the machinery to synthesize nitric oxide with as yet unknown function.13,27,28 In
addition, adrenergic (tyrosine hydroxylase-positive) and cholinergic (choline
acetyltransferase, ChAT-positive) nerves have been identified in close proximity to the
urothelium.29 Thus nerves may not just respond to neurotransmitters (see below), but also
act as a source of modulators and exhibit efferent function. The density of innervation and
associated receptors varies in biopsies taken from patients and animal models exhibiting
detrusor overactivity (DO) and is further modulated after treatment with agents that reduce
DO. Thus, in humans with neurogenic DO (NDO) there is an increase in the density of
nerves immunoreactive to TRPV1 and P2X3 receptors. Furthermore, intravesical
administration of resiniferatoxin, a C-fiber afferent neurotoxin that attenuates the incidence
of DO in these patients, reduces also the density of TRPV1 and P2X3 immunoreactive
suburothelial nerves.30,31 Botulinum toxin has also been used to reduce the incidence and
severity of NDO and biopsies from these patients also exhibited fewer P2X3 and TRPV1-
staining nerve fibers.32

Within the suburothelium there is a network of cells with morphological characteristics of
myofibroblasts or interstitial cells connected by gap junctions containing connexin 43.33

These cells also make intimate connections with nerves and can also respond to exogenous
ATP and a decrease of extracellular pH. Furthermore, the number of these cells is
significantly increased in animal and human biopsies taken from bladders exhibiting DO.34

It has been proposed that these cells are intermediaries in signal transduction between the
urothelium and afferent nerves. This is of particular interest as the receptors (e.g., P2Y6) and
intracellular pathways that evoke excitatory responses in these cells are different from those
in other cells in the bladder wall.23,35 They therefore offer a relatively selective target if they
are involved in signal-transduction, especially in bladders exhibiting DO.

SECRETION OF TRANSMITTERS AND ACTIVATOR PATHWAYS
The release of molecules by the urothelium that are ligands to the receptors described above
implies that the UsU layer possesses considerable integrative activity, as well as influencing
outputs of associated nerves and nearby muscular tissue. Several molecules and receptors
have been particularly well-investigated including: ATP/purinergic/adenosine receptors;
TRPV channels; and acetylcholine/muscarinic receptors.
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ATP and Adenosine Pathways
A key observation about the sensory role of the urothelium was the finding that physical
stress caused a release of ATP, with the involvement of epithelial Na+ channels.36 The
expression of P2X3 receptors on UsU nerve fibers32 permitted a sensory transduction to be
proposed whereby bladder filling stretched the urothelium, causing basolateral ATP release
and subsequent activation of bladder wall afferents. The functional syncytium of
suburothelial interstitial cells, also responsive to exogenous ATP, would permit greater
integration of the signaling mechanism across larger regions of the bladder wall.

The importance of this as a sensory pathway is also suggested by the fact that urothelial
ATP release was augmented in tissue from patients with NDO, and this augmentation was in
turn reduced after successful treatment with botulinum toxin.37 Stretch-induced urothelial
ATP release from human biopsies is also associated with increasing age,38 itself associated
with a greater prevalence of idiopathic DO. Augmented ATP release has also been
demonstrated in tissue from bladders with bladder pain syndrome, or equivalent animal
models and suggests that this is a fundamental sensory mechanism that when augmented
leads to several lower urinary tract disorders. Furthermore, ATP can lower the threshold for
generating ionic currents through TRPV1 receptors (below), again suggesting considerable
integration of activity to increase the gain of the sensory system.

A relatively unexplored aspect of the UsU purinergic signaling system is the role of
adenosine. The bladder wall expresses ectoATPases that breakdown extracellular ATP to
AMP and adenosine. The urothelium expresses adenosine receptors,22 thus offering a further
route to regulate this sensory pathway.

Transient Receptor Potential (TRP) Pathways
There are many TRP channels, but the best characterized in the bladder is TRPV1 which has
been described not only in bladder afferents, but also in the urothelium, suburothelial ICs,
and smooth muscle cells.13,39 The ion-channel protein is activated by moderate heat and
protons, as well as agents such as capsaicin, analogues such as resiniferatoxin and lipid
metabolites such as anandamide. The channel may have role in normal bladder function as
TRPV1-null mice exhibit more low-amplitude, non-voiding bladder contractions suggesting
a role in urine storage, as well as reducing stretch-induced ATP release and bladder afferent
discharge.18

TRPV1 channels have also been implicated in bladder disorders, such as NDO and
inflammation-induced models of cystitis,30,40 when there is a greater expression of TRPV1
receptors on nerves and urothelium. Furthermore, they could be involved in evoking
responses during bladder filling when bladder wall blood flow is reduced,12 leading to local
hypoxia and acidosis, especially in hypertrophied bladders. Intravesical instillation of
vanilloids, such as capsaicin or resiniferatoxin, improves urodynamic parameters in patients
with NDO and reduces pain in patients with hypersensitivity disorders. It has been presumed
that these agents target bladder nerves, but they could also influence urothelial cells by
desensitizing their receptors or depleting their stores of transmitters.

Less is known about the role of other TRPs in bladder function or disease. TRPV4 is a non-
selective cation channel activated by heat, shear stress, changes in osmolarity and lipid
ligands and is expressed within the uroepithelium.41 TRPV4-null mice show impaired
voiding and in the rat, intravesical instillation of a TRPV4 agonist triggers a voiding reflex
which could regulate the late phase of micturition.41

Some TRP channels are cold-sensing (TRPM8 and TRPA1), so that they are of interest in the
light of the ice-water test that may evoke involuntary detrusor contractions in patients with

Birder et al. Page 4

Neurourol Urodyn. Author manuscript; available in PMC 2011 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



chronic spinal cord lesions or following bladder outlet obstruction.42,43 Intravesical
instillation of menthol augments the bladder cooling reflex and suggests that TRPM8,
expressed in both nerves and the urothelium, may be involved.44 TRPA1 receptors are also
expressed in C-fiber afferents and urothelium and agonists induce detrusor overactivity.45

Acetylcholine Receptor Pathways
Acetylcholine, like ATP, can be released from the urothelium when stretched46 indicating an
additional sensory mechanism that can augment acetylcholine released from local afferents.
Furthermore, pelvic nerve electrical stimulation, or reflex activation of the autonomic
nervous system by spinal cord injury elicits changes to urothelial permeability,47 possibly
through a cholinergic mechanism. The urothelium expresses all muscarinic receptor
subtypes as well as nicotinic receptors.19,48 This again suggests the possibility of localized
integration as exogenous muscarinic and nicotinic agonists elicit an increase of intracellular
Ca2+ concentration and release of NO and ATP from cultured urothelial cells.49

The mechanism and role for acetylcholine released through these routes however, remains
unclear. Whether agents such as botulinum toxin also affect cholinergic routes in the UsU as
they affect purinergic pathways remains to be identified.

LOCAL INTERACTION WITH SMOOTH MUSCLES
Much of the above discussion has concentrated on the role of the UsU in regulating afferent
nerve activity. It is hypothesized therefore that the UsU acts as a receptor system:
transducing and integrating sensory signals, whilst the nervous system encodes the
information for relay to the central nervous system. However, it is also apparent that the
UsU can also influence directly the underlying tissue of the urinary tract wall, in particular
the smooth muscle layers. This offers the possibility that the UsU can also regulate urinary
tract function independently of nervous reflexes that leave the urinary tract. Whether this
local control is mediated by local nervous reflexes, by propagation via other excitable cells,
such as the interstitial network of the suburothelium and detrusor layer, or via the physical
diffusion of chemicals between the UsU and smooth muscle needs to be identified.
However, there is evidence that the interstitial cell network and chemical diffusion are both
involved.

An original observation was that the urothelium exerted a negative inotropic effect on
detrusor contractility through a diffusible factor, because the effect persisted even when the
mucosa was dissected away from the detrusor muscle layer but kept in close proximity.50

The factor remains to be identified but can be released selectively by muscarinic receptor
activation, as contractions evoked by raised extracellular [K] or neurokinin A were
unaffected by removal of the mucosa.51 By contrast, the presence of an intact mucosa seems
to increase the incidence of spontaneous activity in isolated detrusor preparations
unstimulated by nerve activation or the action of exogenous agonists. Furthermore,
spontaneous activity evoked by agents such as UTP or ADP was especially prominent in
mucosa-intact preparations.52 The latter observation is of significance because UTP and
ADP are ineffective in generating contractile responses in pure detrusor muscle and suggests
an effect mediated by an intact mucosa. In fact, these agents are as effective as ATP in
generating excitatory responses from suburothelial interstitial cells (ICs).52 It may be
hypothesized that the UsU can exert a dual effect on detrusor muscle, a negative inotropic
influence mediated by a diffusible agent and a stimulatory effect mediated by ICs that
requires physical contact between the two layers. This hypothesis could explain observations
such as: an increase of spontaneous activity in isolated whole bladders that have an
increased population of ICs (e.g., in spinal-cord injured adult rats or neonatal rats); the
increased spontaneous activity is greatly attenuated by gap junction blockers; and
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attenuation of increased spontaneous activity by agents such as glivec that target c-kit
receptors present on ICs, but not on detrusor muscle cells.34

Interaction between the UsU and detrusor layers may also be observed with imaging of
membrane potential and intracellular Ca2+ waves in isolated sheets of bladder or segments
of the bladder wall.16,17 Stimulation of the UsU layer with mechanical stimuli or very low
concentrations of muscarinic agonists initiates propagating waves that spread across this
layer. Propagation into the detrusor layer is slow and relatively ineffective in normal
bladders but is more effective in bladders that exhibit enhanced spontaneous activity and
increased IC numbers. Thus, the functional interaction between UsU and the detrusor layer
may be especially important in generating large, spontaneous bladder contractions
reminiscent of those in patients with DO.

REGIONAL DIFFERENCES IN UROTHELIAL FUNCTION
Most studies on urinary tract epithelium have concentrated on that from the dome of the
bladder. That from the trigone appears to be comparable and similar modulatory effects over
smooth muscle spontaneous activity by different purines are observed.53 In the urethra there
is a change from the transitional epithelial cells to a stratified or columnar epithelium that
lack many of the characteristic markers of the bladder urothelium.54 Furthermore, the
distribution and immunoreactive labels in nerves and ICs are different in the bladder proper,
bladder neck and urethra suggesting different mechanisms that regulate the integrative
functions of these tissues,55 but there is as yet to real understanding of the significance of
such differences. One important reason for more work in understanding the morphology and
function of urethral urothelium is to generate effective artificial urethral implants,56 that
ideally would have a lining of differentiated urethral cells. The morphological and functional
characteristics of upper tract urothelium are also less-well understood compared to the
bladder dome. In this instance the desire would be to understand how dilatation of the ureter,
as when upper tract intraluminal pressures are raised, will affect urothelial function. Some
studies demonstrate that many of functional phenomena, such as urothelial control over
smooth muscle contractility and release of ATP upon physical stress are present in the upper
urinary tract.57,58

CONCLUSIONS AND RECOMMENDATIONS
The urothelium is recognized to be more than a simple barrier separating the luminal
contents from the deeper tissues of the urinary tract. As a functional unit it may be more
appropriate to consider the urothelium and suburothelium as a functional unit which
responds to external stresses by the release of modulator agents that regulate the activity not
just of nearby afferent nerves but also underlying smooth muscle. If intelligence is
considered to be a reflection of a biological system which alters its output in response to
changing surroundings, with the object of allowing the organism to adjust to this altered
environment, then the urothelium, like any sensory system may be considered intelligence. It
does not presuppose its ability to plan ahead but merely to effectively respond to stimuli.
The interest in this approach is to understand how the urothelium can respond to more
abnormal stimuli and how derangements to this complex system may contribute to urinary
tract disorders. A number of particular research goals can be proposed that may have more
immediate impact.

• To understand the cellular mechanisms whereby the urothelium secretes activators
in response to physical and chemical stresses.

• To understand the significance of different membrane receptors and ion channels in
transducing the effects of activators.
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• To understand the cellular and tissue actions of agents such as botulinum toxin and
antimuscarinics that modulate effectively lower urinary tract symptoms.

• To understand the interaction between different cell types (urothelium, ICs, nerve
fibers) in the urothelium/suburothelium to enable the integrated function of this
structure to be better understood.

• To characterize immunoreactive labels in the urothelium/suburothelium of different
regions of the urinary tract to enable artificial implants to be generated more
effectively.
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