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Son of man,

You cannot say, or guess, for you know only

A heap of broken images, where the sun beats,

And the dead tree gives no shelter, the cricket no relief

T.S Eliot, The Waste Land

Abstract

Fragmentalism was originally introduced as a new A-theory of time. It

was further refined and discussed, and different developments of the orig-

inal insight have been proposed. In a celebrated paper, Jonathan Simon

contends that fragmentalism delivers a new realist account of the quan-

tum state—which he calls conservative realism—according to which: (i)

the quantum state is a complete description of a physical system; (ii) the

quantum (superposition) state is grounded in its terms, and (iii) the su-

perposition terms are themselves grounded in local goings-on about the

system in question. We will argue that fragmentalism, at least along the

lines proposed by Simon, does not offer a new, satisfactory realistic ac-

count of the quantum state. This raises the question about whether there

are some other viable forms of quantum fragmentalism.
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1 Fragmentalism and Its Applications

Fragmentalism was originally introduced as a new A-theory of time in Fine

(2005). It has been further refined and discussed,1 and different developments

of the original insight have been proposed.2 Recently it has been considered, and

even advocated, as a possible interpretation of physical theories such as Special

Relativity.3 In a celebrated paper, Simon suggests that fragmentalism offers a

new insight into Quantum Mechanics as well.4 In particular, Simon contends

that fragmentalism delivers a new realist account of the quantum state—which

he calls conservative realism—according to which: (i) a quantum state provides

a complete description of a given physical system; (ii) a quantum (superposition)

state is grounded5 in its terms,6 and (iii) the superposition terms are themselves

grounded in local goings-on about the components of the system in question—if

the system is composed of other subsystems. Much deserves to be said about

the details of Simon’s proposal. Yet, in this paper, we simply focus on his

main insight about the quantum domain.7 This key insight, we take it, is to

identify different terms in a superposition state with state of affairs that belong

1See e.g. Correia and Rosenkranz (2012), Lipman (2015, 2016, 2018), and Loss (2017).

2See e.g. Pooley (2013), Iaquinto (2019), Torrengo and Iaquinto (2019, 2020).

3See Hofweber and Lange (2017), and Lipman (Forthcoming) respectively. Fine (2005)

himself suggests that fragmentalism is more plausible than the standard versions of tense

realism when it comes to make sense of the special theory of relativity.

4See Simon (2018). The paper offers some insightful remarks on the bearing of fragmen-

talism on the metaphysics of persistence as well. We will not discuss this here.

5We are not using this term in any technical sense here, so as to suggest that grounding—in

the technical sense of, e.g., Fine (2012)—is the right relation to cash out the relevant claim.

6We are abusing terminology here, for arguably the terms in a superposition state, and

the superposition itself are mathematical objects, whereas the quantum state is supposed to

be the referent of those mathematical objects. This conflation is widespread in the literature

and mostly harmless. For a recent, insightful discussion see Maudlin (2019: 79-93).

7We leave many interesting questions aside: does fragmentalism really deliver (i)-(iii)

above? What is the main difference between this understanding of the quantum state and
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to different Fine’s fragments. In what follows we offer an argument against this

identification.

2 Fragments and Superpositions

Simon (2018) takes fragmentalism to be any metaphysical view which incorpo-

rates the insight

[T]hat there is a symmetric coordination relation between facts, such

that facts that are pairwise incompatible (like Hugh’s being happy

and Hugh’s being sad) can both obtain provided that they are not

related by this relation (Simon, 2018: 123).

A little more precisely, a fragment is a maximal collection of states of af-

fairs8 that are bound together by the “symmetric coordination relation”.9 The

latter can be cashed out in different ways. Lipman (2015), whose terminology

is explicitly adopted by Simon, exploits a primitive notion of co-obtainment. In

his words, states of affairs that co-obtain “form a unified qualitative manifes-

tation of the relevant objects, one single bit of world within which the things

are a certain way”.10 States of affairs that fail to co-obtain, instead, cannot be

some relative state readings, such as the one in Conroy (2012)? How is this variant of quantum

fragmentalism related to the so-called primitive ontology approach—see e.g. Allori (2013)—

which Simon explicitly mentions?—and so on.

8Simon uses both “facts” and “states of affairs”. We will stick to the latter in what

follows for Simon uses the “state of affairs” terminology in the quantum context. See e.g. the

passage we quote later on in this section. Notice that, strictly speaking, fragmentalism is not

necessarily committed to an ontology of facts or states of affairs. One might just resort to

some kind of entities able to instantiate fundamental properties and relations. Reference to

facts or states of affairs can also be avoided by resorting to a proper “in reality” sentential

operator, as in Fine (2005: 268).

9See Fine (2005: 281).

10Lipman (2015: 3127).
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“the case together, [...] they do not make for a unified chunk of world”.11 Two

incompatible states of affairs can both obtain under the hypothesis that they

do not also co-obtain. Similarly, Iaquinto (2020) resorts to the primitive notion

of obtainment-within-a-fragment. When a state of affairs obtains within a given

fragment, that state of affairs exists relative to that fragment. While two incom-

patible states of affairs can both constitute reality, they cannot obtain within

the same fragment, and so they cannot exist relative to the same fragment. Yet

another option is to cash out the symmetric coordination relation in terms of

binary fusion, as in Loss (2017). Although two incompatible states of affairs can

both constitute reality, reality cannot be constituted by their binary fusion. Re-

gardless of their differences, what these interpretations of fragmentalism share

is the idea that incompatible states of affairs that belong to different fragments

cannot obtain together. In the case of tense the point is straightforward. If

moments of time are conceived of as fragments, as in Fine (2005: 308-310), it

is clear that states of affairs belonging to two collections cannot be the case

together. Socrates can be sitting at one moment and standing at another, but

there is no moment at which he is both sitting and standing—that is, no frag-

ment in which those two state of affairs obtain together.

The contention is that fragmentalism as described above offers a new realistic

reading of the state of a quantum system. Simon (2018) provides a fragmentalist

account of both a simple superposition state, and an entangled state. We mainly

restrict our attention here to the simpler superposition case, for it is enough

to underwrite our main argument.12 Consider the superposition state Simon

himself considers, namely the following state of an electron:

|ψ〉 = c1| ↑z〉+ c2| ↓z〉 (1)

Quantum state |ψ〉 is a state in which an electron is in a superposition of

11Lipman (2015: 3128); italics in the original.

12We will consider entanglement later on, and then again in §4.
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spin-up and spin-down along the z-axis. As we mentioned already, Simon’s con-

tention is that we should identify the superposition terms in (1) with states of

affairs that belong to different fragments.13

This delivers the following fragmentalist understanding of quantum state (1),

which we take directly from Simon:14

[T]he fragmentalist can countenance the face value reading of (1):

the state of affairs of the electron’s having up-spin along the z-axis

obtains, and so does the state of affairs of that same electron’s having

down-spin along the z-axis: but these two states of affairs do not co-

obtain, and indeed, as they are incompatible, they cannot co-obtain

(Simon, 2018: 139-40).

Note that this cannot be the end of the story.15 This is because the state:

|ψ∗〉 = c1| ↑z〉 − c2| ↓z〉 (2)

has exactly the same terms, and is a very different quantum state that leads to

13In the limiting case in which there is only one state of affairs in a fragment one could

identify superposition terms with fragments directly. In effect, this is what some passages in

Simon (2018) explicitly suggest. For example this one:

In other words, fragmentalism offers a precise answer to a vexing question, one

that many take to afford only imprecise answers: what is a quantum mechanical

“branch”? The fragmentalist answer is that a branch is a fragment (Simon,

2018: 140).

We just need to be reminded that “branches” correspond to superposition terms.

14In what follows, the question of how to make sense of the coefficients in the quantum state

is left aside. However, Simon himself suggests different interpretative possibilities. See Simon

(2018: 140-141).

15Here we are indebted to XXX.
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completely different empirical predictions. As a matter of fact, (1) is equiva-

lent to | ↑x〉, whereas (2) is equivalent to | ↓x〉. In general, the problem is the

following: every view that focuses only on superposition terms will lose phase

correlations between those terms. In the particular case at hand, it seems, a

natural fix suggests itself. The quantum fragmentalist should say that (1) also

describes a fragment where the state of affairs of the electron having spin-up

along the x-axis obtains, whereas (2) also describes a fragment where the state

of affairs of the electron having spin-down along the x-axis obtains.16 The same

holds for spin-y and all other relevant quantum observables. The challenge

would be to provide such a story in all possible quantum cases. And note that

not any story would do. It would have to be a story that is grounded in local

goings-on, if we are to vindicate full-blown conservative realism. We do not

want to push this line of argument here.

But we do want to suggest that the challenge is serious. The worry here is

that the easy fix we suggested might look holist, in that it enshrines quantum

information about both superposition terms. But—so the worry continues—

avoidance of holism was part and parcel of the new conservative realism that

quantum fragmentalism was supposed to deliver. There is a fair reply here on

behalf of the quantum fragmentalist. The most interesting form of holism that

fragmentalism promises to avoid is holism about composite systems. To put it

roughly, according to such holism, the state of a composite system does not su-

pervene on the states of its component parts. Nothing like this is at stake here:

we are only dealing with a simple physical system in a superposition. Granted.

But the worry resurfaces if composite systems are taken into account. Consider

the following two Bell-states:

16This fragment has to be different from the ones in which the spin-z state of affairs obtains

so as not to run afoul of generalized uncertainty principles.
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|ψ+〉 =
1√
2

(| ↓〉1| ↓〉2 + | ↑〉1| ↑〉2) (3)

|ψ−〉 =
1√
2

(| ↓〉1| ↓〉2 − | ↑〉1| ↑〉2) (4)

States (3) and (4) are two-particle states—that is, states of a composite

system—that have the same terms, yet they are different. How can the quantum

fragmentalist distinguish them? The easy fix we suggested does look holist in

the relevant sense here, for it concedes that (3) and (4) describe also states of

affairs about the composite two-particle system.17

As we said already, we will leave this as a challenge—a serious one we think,

yet perhaps not insurmountable. This is partly because we believe there is

a more serious objection against this particular way of constructing quantum

fragmentalism. In the next section we will argue that the fragmentalist reading

of the quantum state—should the previous challenge be successfully met—is at

odds with some quantum phenomena, in particular with quantum interference.

3 Against Quantum Fragments

The main argument against the identification of superposition terms with state

of affairs in different fragments we have in mind is a simple two-premise argu-

ment:

P1. Given the basic tenets of fragmentalism, states of affairs that belong to

different fragments do not—and in fact, cannot—interact.

P2. Different terms in a superposition state can—and indeed sometimes do—

interact.

C. Superposition terms are not states of affairs that belong to different frag-

ments.

17We will come back to this in §4. Thanks to an anonymous referee here.
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Clearly, the burden of such simple argument lies in the defense of premises P1

and P2.

Here is an argument for P1. Although there are different ways to pin down

the notion of “fragmentation”, as seen in §2, the minimal idea is that states of

affairs that do not belong to the same fragment cannot obtain together. Simon

himself seems to concede this in the passage we quoted above. Now consider an

interaction between the states of affairs s1 and s2. It seems clear that obtaining

together is a necessary condition for (the possibility of) interaction.

In effect, a few words of clarification are in order. Here and in what follows

we use the term “interaction” in a specific sense. We don’t mean to give a

definition of interaction. Rather we want to provide an informal gloss of the

specific sense at issue here.18 In this specific sense, we contend, x interacts with

y if and only if x acts on y and y acts on x to produce effect z, or, equivalently, x

acts together with y to produce effect z. This terminology is particularly useful

in this context for it highlights that x and y have to obtain together, in order

to produce z. Once again, we do not mean the previous bi-conditional to be

read as a definition. Yet we can provide examples. There are certain dances

where the dancers have to act together in order to produce certain figures. In a

chemical reaction the reactants interact in this strict sense in order to produce

a different substance or compound. They too, like the dancers, act together. In

this specific sense, we claim, s1 and s2 interact only if they obtain together.19

18This is because we don’t want to deny that there are other uses of the term “interaction”

that do not conform to the characterization we provide in the main text.

19Perhaps a case can be made that the impossibility of interaction can be argued for in

more general terms if only one recognizes that, in the case at hand, we are not dealing with a

temporal understanding of fragments, but rather with a broadly modal understanding. This

modal nature of fragments is the one that is responsible for the impossibility of interaction

between two states of affairs that belong to different fragments—so the thought goes. This is

surely a fascinating suggestion—we owe it to XXX. Yet, it clearly deserves a detailed account of
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But s1 and s2 can obtain together only if they belong to the same fragment.

Thus, according to fragmentalism, state of affairs that belong to different frag-

ments cannot interact, as per premise P1.20

We will argue for premise P2 by way of an example. That is, we will in-

voke interaction of different superposition terms to explain some basic quantum

phenomena such as the existence of an interference pattern in the double-slit

experiment.

Let us briefly review the double-slit experiment itself, in the classical formu-

lation of Feynman (1963). A particle source, say an electron gun, emits electrons

of the same wavelength, and thus of the same momentum. The gun fires a large

amount of electrons, in the direction of two small slits, slit 1 and 2. Behind the

two slits we put a screen that is covered with a large number of closely spaced

particle detectors.

For each round of experiments we fire billions of electrons at the screen.

First we close one of the slits, say slit 1, forcing the electrons to pass through

slit 2 before hitting the screen. We make a histogram of the number of electrons

arriving at each detector on the screen as a function of detector positions. When

only one slit is open, we get exactly the pattern we expect from classical physics.

Let us call it a single-slit pattern. We obtain a single-slit pattern if we open slit

1 and close slit 2.

Now, we open both the slits. What we get is famously an interference

pattern which is different from the classically expected pattern that we get

by simply summing over the two single-slit patterns. Here is a possible semi-

classical explanation. Some electrons pass through slit 1, some electrons pass

the modal nature of the fragments in the case at hand. We are afraid this calls for independent

scrutiny. We believe that the more modest remarks on the specific sense of “interaction” that

is at stake here suffice to bring the point home. So we will leave it at that.

20Clearly, if the states of affairs cannot interact, they do not.
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through slit 2, and then they somehow interact with each other to produce the

interference pattern.

But now we let our electron gun fire just one electron at a time. No inter-

action with any other electron is possible, for we fire electrons only once the

preceding one has been detected on the screen. The astonishing behaviour ex-

hibited by the electrons is that they still produce the interference pattern. How

can we explain such a behaviour?

Here is the classical quantum mechanical explanation. The quantum state of

each electron can be taken to be, given suitable simplifications,21 the following

superposition:

|ψ〉 = c1|1〉+ c2|2〉 (5)

where |1〉 and |2〉 represent the states of passing through slit 1 and slit 2

respectively. In the words of Barrett, these states represent

[T]wo wave-packets [that] spread out and interfere with each other

in the region between the barrier and the screen (Barrett, 2001: 5-6,

italics added).

Now, state (5) is a simple superposition state, the same as state (1) which

Simon considers. And clearly, if x interferes with y, x interacts with y, inter-

ference being a particular case of interaction. As Lewis (2016) puts it:

“[I]interference” is just a name for interaction between two wave

components (Lewis, 2016: 98).

As a matter of fact, Lewis describes the situation in terms of interaction

directly:

21Strictly speaking, the state is represented by a plane wave |ψ〉 = eipx/~ which is a much

more complicated superposition of position terms. This simplification is harmless in the

present context. See also Barrett (2001: 6).
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The wavefunction for the electron splits into two packets, one passing

through the left slit and the other passing through the right slit,

and beyond the slits the two terms come together and interact to

produce the characteristic interference wave pattern at the screen

(Lewis, 2016: 62, italics added).

The general idea is simple enough: it is exactly the interaction of the two su-

perposition terms that produces the interference pattern we observe.22 We can

provide some simple algebraic details about such an interaction. Let P1(e) and

P2(e) be the probability distribution associated with an electron striking the

screen directly opposite slit 1 and slit 2 respectively. P12(e) is the probability

distribution when both slits are open. Then, we have quantum interference—a

particular kind of quantum interaction—if and only if P12(e) 6= P1(e) + P2(e).

In effect, what we observe is the following:

P12(e) = P1(e) + P2(e) + 2
√
P1(e)P2(e)cosθ (6)

where θ is the phase difference between the two wave-packets |1〉 and |2〉.

The last term on the right hand-side of (6) is known as the interference term. It

provides, so to speak, a quantitative measure of the interaction between the two

22A fragmentalist could try to argue that incompatible states of affairs cannot co-obtain at

the fundamental level, but that they could co-obtain at a derivative one. This would make

room for arguing that, at the fundamental level, there is no interference pattern. As it were,

the interference pattern only emerges at a derivative level. This was suggested to us by XXX.

While we agree that this is a fascinating suggestion that is worth exploring, we think that more

should be said to be able to evaluate it. First, we need to be told what counts as fundamental

and derivative levels in the quantum case. Second, we need to see an argument to the point

that interference between superposition terms only belongs to the derivative level. We are not

aware of any such arguments in the literature. In the light of the above, we will simply claim

that, absent such arguments, the burden of the proof is on the objector.
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terms of the superposition state. Note that it depends on both the superposition

terms, as it should, for it encodes something about their interaction. This gives

us premise P2, or so we contend.23

4 Varieties of Quantum Fragmentalism

The argument in §3—if correct—shows that fragmentalism, at least along the

lines proposed by Simon (2018), does not offer, in general, a new satisfactory

realistic account of the quantum state. This raises the question about whether

there are some other viable forms of quantum fragmentalism.24

Perhaps one can suggest that Simon’s version of quantum fragmentalism can be

applied only to entangled states. The thought here is that when we deal with

entangled states we should consider environmental decoherence.25 Environmen-

tal decoherence is, extremely roughly, the suppression of quantum interference

due to interaction—and successive entanglement—of a system with the environ-

ment: in the case of decoherence the superposition terms behave semi-classically

in that we observe no interaction between them. The rationale behind this move

is readily appreciated: we argued in §3 that the problem for quantum fragmen-

talism is due to the interaction of the superposition terms. If we could restrict

in a principled way the application of fragmentalism to those quantum states

that exhibit no such interaction, it seems that the problem would go away.

23XXX suggested to us that the argument we put forward may be seen as a particular

instance of a much more general argument. The general argument would be that fragmentalism

would struggle, if not fail, to accommodate the case in which two incompatible states of affairs

that belong to two different fragments are such that some of their constituents—that are

not necessarily numerically distinct—are related by an external relation. We think this is a

suggestion worth exploring, but it goes well beyond the scope of the paper.

24Some of which are suggested by some passages by Simon himself.

25For a philosophically minded introduction see Bacciagaluppi (2003).
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But even this is not enough: for there are cases in which entanglement with

the environment and successive decoherence do not suppress the interaction

completely—algebraically the interference term is close to zero but still non-

zero. For such cases, the argument in §3 still applies. And even for the cases in

which decoherence does suppress the interference completely, modal considera-

tions should be brought to bear. For fragmentalism entails not only that states

of affairs belonging to different fragments do not interact, but that they cannot

interact. But for microscopic systems decoherence is reversible. We can undo the

effects of the interaction with the environment and observe interference effects.26

One last possibility is to consider fragmentalism as only applicable to the

quantum entangled state of the entire universe. In such a case, decoherence will

suppress quantum interference very effectively. As a matter of fact, as Lewis

points out

[D]ecoherence for macroscopic systems is rapid, very complete and

highly irreversible. This means that if the state of a macroscopic

system comes to have two components, these components will not

exhibit any appreciable interference effects (...) This means that for

all practical purposes the two components do not interact (Lewis,

2016: 98).

Let us spend a few words on this possibility. First, we should recognize

the explicit limitations of the proposal. In general, we would have a use for

quantum fragmentalism only in the case of entangled decoherent (sub)-systems.

The universe might be one prominent example. But there seems to be other

26To wit, the argument depends on the following principle governing the interaction between

temporal and modal operators: If sometimes φ, then Possibly φ. This is logically equivalent

to what Dorr and Goodman call Perpetuity, i.e., If Necessarily φ, then Always φ—where

Sometimes and Always are temporal operators defined in terms of the standard Priorean

operators. For a defense of Perpetuity see Dorr and Goodman (Forthcoming).
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relavant systems that would be outside the scope of a fragmentalist account.

These include systems we routinely experiment on, such as the ones involved in

the double-slit experiment of §3.

Second, we should note that the challenge we raised in §2 becomes important

here. Consider the universe as a case in point. Suppose the challenge in §2

is not met. That is, suppose the only way for the fragmentalist to distinguish

different quantum states with the same terms is to concede that those states

describe also states of affairs of the relevant composite system—the universe in

the case at hand. Then quantum fragmentalism seems dangerously close to be

Everettian Quantum Mechanics in disguise.27 Finally, in this case even subtler

details about modal considerations should be brought to bear. As we said, frag-

mentalism entails that some states of affairs belonging to different fragments

cannot interact. If this is supposed to have the force of metaphysical impossibil-

ity, then decoherence theory is not likely to underwrite such a conclusion. But

even if only nomological necessity is involved, it is unclear whether decoherence

will be enough to support the modal conclusion that superposition terms cannot

interact. Consider Lewis’s passage we just quoted. Lewis is cautious—rightfully

so, we might add—in claiming that the components of the quantum state of a

macroscopic system do not interact, for all practical purposes. This falls short

of supporting the conclusion that there is no interaction in any metaphysically

and nomologically interesting sense, let alone the possibility of such an inter-

action. Here is a way of looking at things. It is—at least partly—because of

the possibility of interference that we use complex valued-functions to repre-

sent quantum states, rather than say, real-valued ones. For interference effects

depend on amplitude and phases, and complex numbers capture this aspect ex-

plicitly, in that they are characterized by amplitudes and phases themselves.

27At least in the so-called “Dechoerence Only” variant—see e.g. Wallace (2012) and Wil-

son (2020). In effect, one could push the point that it is worse off than Decoherence Only

Everettian Quantum Mechanics insofar as the latter can accomodate interference. Thanks to

an anonymous referee here.
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In any event, this seems to us one of the most promising way to develop

a (perhaps restricted) fragmentalist understanding of quantum mechanics: to

investigate the interaction between modal considerations at work in (modal)

fragmentalism and modal claims that can be supported by decoherence theory.

However, in the light of the above, it seems safe to say that the overall conclu-

sion still stands. In general, quantum terms are not states of affairs that belong

to different fragments. The world is not a heap of broken quantum fragments.

But even if Quantum Mechanics were not to offer any shelter to the fragmen-

talist, she should not despair. She should just look at The Progress of the Soul,

where it is written:

What fragmentary rubbish this world is.28
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