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Abstract
Zinc plays an important role in the functioning of all cells, including neurons. The precise mechanisms respon-
sible for its neurotoxic and neuroprotective effects remain unclear despite extensive investigations. Similar Zn+2 

effects can also be observed in cells outside the nervous system, and their lower sensitivity to hypoxia prolongs the 
cytotoxic effect of excess zinc. The evident dualism of zinc’s effects depends primarily on the energetic state of the 
particular cell and the efficacy of ion pumps; on genetically conditioned mechanisms regulating Zn efflux from 
cells and Zn sequestration inside the cell; and on the concentration of extracellular free Zn (Adv Clin Exp Med 
2012, 21, 2, 245–248).
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Streszczenie
Cynk odgrywa ważną rolę w funkcjonowaniu wszystkich komórek, w tym neuronów. Zarówno neurotoksyczne, jak 
i neutoprotekcyjne działanie cynku było przedmiotem licznych badań, niemniej jednak mechanizm jego podwój-
nego oddziaływania nadal pozostaje niewyjaśniony. Podobne rezultaty działania jonów cynku można także obser-
wować w komórkach poza układem nerwowym, a ich mniejsza wrażliwość na niedotlenienie przedłuża w czasie 
cytotoksyczne działanie nadmiaru cynku. Ten oczywisty dualizm działania cynku zależy głównie od stanu ener-
getycznego komórki i wydajności pomp jonowych, jak również od uwarunkowanych genetycznie mechanizmów 
regulujących wypływ cynku z komórki i jego nagromadzenie wewnątrz komórki, a także od stężenia wolnego 
cynku w przestrzeni pozakomórkowej (Adv Clin Exp Med. 2012, 21, 2, 245–248).
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The neurotoxicity of zinc ions (Zn2+) has been 
the subject of numerous investigations. Intracellular 
zinc content is genetically conditioned. Interesting-
ly, it shows a relatively low intraindividual variabil-
ity, but varies from organ to organ [1–3]. There are 
two pools of intracellular zinc: a slow pool, which 
is related to (among other things) protein synthesis 
and cell membranes (so-called structural zinc), and 
a fast pool, which serves as a catalytic center and sig-
nal transmitter (so-called “free zinc”) [4, 5]. 

The concentration of free zinc inside cells is 
lower than the concentration outside cells, for 
example in serum [2, 3], which yields an electro-

chemical gradient conditioned by the presence of 
transmembrane transport that requires energy ex-
penditure. Thus, each change leading to a decrease 
in adenosine-5’-triphosphate (ATP) production 
will cause an increase in intracellular zinc concen-
tration.

In physiological conditions, increased zinc in-
flux to the cell enhances zinc membrane transport-
er synthesis, both in the cell membrane (ZnT-1), 
causing zinc efflux from the cell, and in lysosomal 
membranes (ZnT-4, ZnT-6), increasing intracel-
lular sequestration, thus keeping the intracellular 
cytoplasmic free zinc content on an optimal level.
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The dual neurotoxic and neuroprotective ef-
fects of zinc are widely known, but the precise 
mechanisms responsible for its neurotoxic and 
neuroprotective effects remain unclear [6]. 

Zinc plays an important role in the activity of 
all cells, including neurons, which are extremely 
sensitive to hypoxia. Similar effects of zinc activ-
ity can also be observed in cells outside the central 
nervous system (CNS), and it should be empha-
sized that their lower sensitivity to hypoxia pro-
longs the cytotoxic effect of excessive amounts of 
Zn2+ ions [7]. 

It seems that the apparent dualism of zinc’s 
functioning depends primarily on the energetic 
state of the cell and the efficacy of the transmem-
brane ion pumps, but also on genetically condi-
tioned mechanisms regulating Zn cell efflux and 
ion sequestration inside the cell, and on the extra-
cellular free zinc concentration [7, 8].

If mechanisms regulating energy production, 
controlled by the negative feedback loop, and 
mechanisms regulating the cytosolic zinc level 
work properly, zinc fulfills its important metabolic 
tasks and cytoprotective functions. In cases of cel-
lular energy imbalance, subsequent zinc influx and 
accumulation in cytosol enhances the dysfunction 
through positive feedback, finally leading to cell 
apoptosis [9]. 

As Trombley et al. wrote: “Zinc has been 
proposed to disrupt calcium homeostasis, inhibit 
mitochondrial electron transport, disrupt tubulin 
assembly, and overactivate calcium-mediated en-
zymes. Furthermore, zinc reacts with the thiol and 
imidazole moieties of many proteins, and, thus, 
can disrupt their structure and function” [10]. 

It has also been shown that expression of zinc 
homeostatic proteins in the CNS is, as Karol et al. 
phrased it, “regulated by crosstalk between synap-
tic and intracellular pools of Zn(2+)” [11]. 

It is of interest that physiological distribution 
of ZnT-1 (the cell membrane transporter) within 
the CNS corresponds to areas of high intraneu-
ronal zinc content [12]. Moreover, it has also been 
found that transient experimental brain ischemia 
coincides with stronger ZnT-1 gene expression 
[13]. Both of these facts might reflect a pre-condi-
tioning phenomenon.

It seems that all neural energy-state disorders 
(i.e., oxygen and glucose deficit) caused by altera-
tions in the composition of inflowing blood, de-
creased blood inflow, blood stasis, prolonged route 
of diffusion and damage to cell membranes can 
disturb neural function, due to impairment of in-
tracellular energy production [14]. 

In numerous conditions affecting the central 
nervous system, such as microembolism (e.g. with 
cholesterol crystals), macroembolism, small vessel 

disease, leukoaraiosis, diabetic vascular changes, 
arterial hypertension (microvascular changes) or 
Alzheimer’s disease, the causative mechanism on 
the cell level is the same, i.e. excess zinc causing 
a loosening of the mitochondrial respiratory chain 
[15, 16].

An increase in vesicular zinc release from pre-
synaptic terminals, leading to inhibition of reactive 
oxygen species (ROS) production and microglia ac-
tivation, appears to alleviate brain neuronal injury 
caused by insulin-induced hypoglycemia [17].

Regulation of zinc metabolism, decreasing 
the level of its dyshomeostasis, could be possible 
by administering medicines that would directly 
or indirectly influence the zinc turnover. Taking 
into account the toxic effect of excessive loads of 
intracellular Zn2+, an essential goal appears to be 
improving cell membrane function and the effec-
tiveness of zinc efflux to the extracellular space. 
Since an excess of intracellular Zn2+ disturbs the 
mechanisms of oxygen metabolism, it simultane-
ously diminishes zinc efflux from the cell, initiat-
ing a vicious circle. The experimental use of agents 
affecting intracellular oxygen metabolism, such as 
pyruvates, results in reducing zinc accumulation 
and improving cell survival [18, 19].

A similar mechanism may be associated with 
the neuroprotective effect of agents lowering the 
activity of carbonic anhydrase, which is a zinc-
dependent enzyme [20]. Cytosol acidification, 
which cannot be managed by negative feedback, is 
a factor impairing intracellular energy production, 
which also increases intracellular zinc accumula-
tion. Moreover, zinc affects the regulation of H+ 
ion influx into the cell [21]. 

It can be assumed that a higher level of Zn2+ 
in the extracellular environment reduces the influx 
of H+ into the cell and therefore prevents excessive 
acidification, whereas a lower level of extracellular 
Zn2+ increases the intracellular influx of H+, i.e. cy-
tosol acidification [22].

It is supposed that the use of antiplatelet drugs 
could be effective in neuroprotection, because dur-
ing aggregation, platelets release large amounts of 
zinc, increasing its local concentration 30–40-fold, 
which is an independent cytotoxic effect accompa-
nying changes caused by hypoxia [23].

A similar situation occurs with drugs affecting 
the renin-angiotensin-aldosterone system (RAAS) 
or blocking calcium channels, since the RAAS is in-
volved in zinc metabolism [24] and calcium chan-
nels are functionally related to ZnT-1 activity [25].

Neuroprotection from zinc toxicity may also 
be provided by estrogens [25]. Such an effect has 
also been shown for carnosine, a substance that 
occurs in the CNS and shows features of a neu-
rotransmitter [10].
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The authors suppose that some substances 
blocking Zn2+ channels, directly affecting mem-
brane protein zinc transporters, could be essential 
for neuroprotection, because of their probable re-
duction of the zinc flow through cell membranes 
and its content in cytosol Substances inhibiting 
Zn2+ influx to the cell (flowing with the electro-
chemical gradient) seem to be more promising 
than substances enhancing its efflux (flowing 
against the electrochemical gradient) [2, 3]. 

Because the first mentioned neuroprotec-
tive agents require an efficient energetic state of 
the cells, the current authors hypothesize that 
a short-term expedient neuroprotective effect 
could be achieved by using zinc-chelating agents 
to reduce the extracellular load of zinc, which 
would decrease its influx to energetically ineffi-
cient cells. 
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