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Modern psychological theories of spatial cognition postulate the existence of a geometric module for

reorientation. This concept is derived from experimental data showing that in rectangular arenas with

distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference

for the geometric (arena shape) over the nongeometric (landmarks) cues. Moreover, sensitivity of

hippocampal cell firing to changes in the environment layout was taken in support of the geometric

module hypothesis. Using a computational model of rat navigation, the authors proposed and tested the

alternative hypothesis that the influence of spatial geometry on both behavioral and neuronal levels can

be explained by the properties of visual features that constitute local views of the environment. Their

modeling results suggest that the pattern of diagonal errors observed in reorientation tasks can be

understood by the analysis of sensory information processing that underlies the navigation strategy

employed to solve the task. In particular, 2 navigation strategies were considered: (a) a place-based locale

strategy that relies on a model of grid and place cells and (b) a stimulus–response taxon strategy that

involves direct association of local views with action choices. The authors showed that the application

of the 2 strategies in the reorientation tasks results in different patterns of diagonal errors, consistent with

behavioral data. These results argue against the geometric module hypothesis by providing a simpler and

biologically more plausible explanation for the related experimental data. Moreover, the same model also

describes behavioral results in different types of water-maze tasks.
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Throughout the history of research on animal learning, there

have been conflicting views concerning the fundamental issue of

what animals learn during training in a spatial task. Cognitive

theorists such as Tolman (1948) proposed that animals acquire

knowledge of the environment layout, or a cognitive map, whereas

other theorists proposed that animal learning consists of formation

of stimulus–response (S-R) habits (Hull, 1943). Recent behavioral

and lesion data suggest that animals are able to use both the

map-based and S-R navigational strategies when solving spatial

tasks; these strategies are mediated by distinct memory systems

(O’Keefe & Nadel, 1978; Packard & McGaugh, 1992, 1996; White

& McDonald, 2002) and hence may be learned in parallel and

compete for control of behavior (Devan & White, 1999; Packard &

McGaugh, 1996; White & McDonald, 2002).

Further evidence has suggested that external sensory cues are

used differently depending on the current strategy. The map-based,

or locale, strategies seem to favor distal (e.g., landmarks attached

to a maze walls) over proximal (e.g., intramaze objects) cues

(Biegler & Morris, 1993; Cressant, Muller, & Poucet, 1997;

Poucet, Lenck-Santini, & Save, 2003). Moreover, configurations

of distal cues are preferred over individual landmarks (Poucet et

al., 2003; Suzuki, Augerinos, & Black, 1980). In contrast, the S-R,

or taxon, strategies preferentially use proximal cues, when they are

available, as beacons that signal the goal location (Biegler &

Morris, 1993). In the absence of proximal cues, they fall back to

distal-cue configurations (Eichenbaum, Stewart, & Morris, 1990).

A particularly striking evidence for the control of behavior by

configural cues has been observed during reorientation experi-

ments in rectangular arenas (Cheng, 1986; Hermer & Spelke,

1996; Margules & Gallistel, 1988). In a typical experiment, a

food-deprived animal is shown the location of a food source in a

rectangular arena with distinct landmarks in the corners (Cheng,

1986). The animal is subsequently disoriented and is allowed to

relocate the food source. Under these conditions, the animals

exhibit systematic rotational errors, that is, they often go to the

location that is diagonally opposite to the correct location. Since

the correct and the diagonally opposite locations are indistinguish-

able with respect to the rectangular shape of the arena, these data

suggest that the geometric layout of the arena, but not the identities

of the corner landmarks, has been used by the animals during goal

search. Preference for the geometric cues in this and similar
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experiments gave rise to the idea of a geometric module (Cheng,

1986; Gallistel, 1990), which is considered by many cognitive

psychologists as a separate subsystem of the (vertebrate) animal

brain, responsible for reorientation in a familiar environment

(Cheng & Newcombe, 2005; Wang & Spelke, 2002).

In addition to the behavioral and lesion data, neurophysiological

experiments have provided support for the separation of naviga-

tional strategies and for the importance of configural distal cues for

navigation. Activity of place cells in the hippocampus of the rat is

highly correlated with the location of the rat in the environment

(Muller, Kubie, & Ranck, 1987; O’Keefe & Dostrovsky, 1971).

The rat’s position can be decoded with good accuracy from the

activity of a hundred simultaneously recorded place cells (Wilson

& McNaughton, 1993), suggesting that these cells store a repre-

sentation of the environment, in agreement with the cognitive map

concept underlying locale strategies. Although the precise mech-

anism by which place cells acquire spatial selectivity is not known,

their tight anatomical and functional relations with the upstream

population of grid cells provide an insight into how the spatially

selective network may be organized (McNaughton, Battaglia,

Jensen, Moser, & Moser, 2006; O’Keefe & Burgess, 2005; Sols-

tad, Moser, & Einevoll, 2006). Grid cells have been discovered in

the dorsomedial entorhinal cortex (dMEC) one synapse upstream

from the hippocampal area CA1, a principal area containing place

cells (Fyhn, Molden, Witter, Moser, & Moser, 2004). Grid cells

are also spatially selective, but their firing fields are organized in

a periodic triangular structure (a grid) covering the whole record-

ing space (Hafting, Fyhn, Molden, Moser, & Moser, 2005). Dif-

ferent cells have different spatial frequencies of their firing grids,

so that a simple summation of their outputs by the downstream

population can lead to a single-peaked activity akin to the

Gaussian-like activity profile of a place cell (Samsonovich &

McNaughton, 1997). A one-synapse feed-forward network from

grid cells to place cells is suitable to perform such a summation

operation (O’Keefe & Burgess, 2005; Solstad et al., 2006). This

hypothesis is directly supported by the evidence that place cells in

CA1 exhibit location-sensitive activity even without input from

other areas, such as CA3 (Brun et al., 2002). Due to its remarkable

layered organization and periodicity of firing fields, the grid-cell

network has been functionally related to path integration (Fiete,

Burak, & Brookings, 2008; Hafting et al., 2005; O’Keefe &

Burgess, 2005), that is, the ability of an animal to integrate

self-motion input (such as speed and direction of movement) over

time (Etienne & Jeffery, 2004). Since any efficient mapping sys-

tem has to combine internal (self-motion) with external (e.g.,

visual) information during the process of map learning, the com-

bined network of grid cells and place cells may be considered as an

implementation of such a mapping system (McNaughton et al.,

2006; O’Keefe & Burgess, 2005).

In agreement with the data suggesting the importance of distal

cues for locale navigation, place cells have been shown to rely on

distal but not proximal cues. Rotation of a single polarizing cue

card attached to the wall of a maze or of a set of objects located

near the wall of the maze is followed by the corresponding rotation

of place fields (Cressant, Muller, & Poucet, 1999; Muller & Kubie,

1987). In contrast, rotation of the same objects when located near

the center of the maze fails to exert such a control (Cressant et al.,

1997). Significantly, grid cells have also been shown to rotate their

firing fields following the rotation of a distal cue (Hafting et al.,

2005). The importance of configural cues for place-cell firing

follows from the experiments where place cells were recorded

while the geometric layout of the environment changed (Gothard,

Skaggs, & McNaughton, 1996; O’Keefe & Burgess, 1996). In

these conditions, place cells either double (during environment

stretching) or lose (during environment shrinking) their place

fields. Moreover, grid cells rescale their firing fields in response to

similar manipulations (Barry, Hayman, Burgess, & Jeffery, 2007).

A challenge to the understanding of mechanisms of spatial

navigation is to explain the behavioral data using available knowl-

edge on anatomy and neurophysiology of neuronal networks me-

diating spatial memory and goal learning. Here, we address this

challenge by proposing a computational neural model of naviga-

tion that provides a unifying point of view on the behavioral data

described above and links these data to underlying neuronal prop-

erties. The model implements locale and taxon goal-navigation

strategies and focuses on the influence of configurations of distal

cues, represented by visual snapshots of the environment. The

representation of the environment employed by the locale strategy

is stored in a network of modeled grid and place cells, which link

self-motion information with visual input. Such a combination

allows for a direct comparison between the properties of modeled

and real cells during environment manipulations, as well as be-

tween the model and animal behavior in navigational tasks where

the location of a hidden target can be learned by different strate-

gies. Moreover, reorientation behavior in rectangular arenas can

also be analyzed using the same model, suggesting a set of exper-

imental predictions concerning cell activity during reorientation

behavior.

One of the central properties of the proposed model, namely, the

use of visual snapshots as a principal source of external input, is

closely related to the issue of the view-based matching approach to

model navigation (Collett & Collett, 2002). Such an approach has

a long history in the study of insect navigation (see, e.g., Cart-

wright & Collett, 1982, 1983) but recently attracted attention in

relation to the study of human (Epstein, Graham, & Downing,

2003; Gaunet, Vidal, Kemeny, & Berthoz, 2001) and rat (Cheung,

Stürzl, Zeil, & Cheng, 2008; Stürzl, Cheung, Cheng, & Zeil, 2008)

navigation as well. In addition to the standard approach in which

a similarity between snapshots is used directly to drive (taxon)

behavior (Cheung et al., 2008; Collett & Collett, 2002), our model

suggests that snapshots can also be used to build an allocentric

representation of the environment. As we show below, the prop-

erties of spatial representation built in this way may directly

explain a number of neural (e.g., deformation of place fields in

manipulated environments) and behavioral (e.g., rotational errors

during reorientation) phenomena that were previously explained

by assuming the existence of an additional process, such as, for

example, the process of extracting distances to walls (Barry et al.,

2006) or the process of extracting the environmental shape infor-

mation from sensory input (Cheng, 1986).

The Model

In our model, the simulated rat moves through a virtual arena

surrounded by walls. The size of the arena and visual features on

the walls are chosen depending on the experimental paradigm. At

each time step, the visual input is given by a snapshot of the

environment processed by a large set of orientation-sensitive vi-
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sual filters, while the self-motion input is represented by the speed

vector corresponding to the last movement. The motor actions are

generated in the model by two separate pathways (see Figure 1).

The first, taxon navigation pathway, associates visual input di-

rectly with motor actions and represents anatomical connections

between the cortex and the dorsal striatum of the basal ganglia

(caudate-putamen [CP] in the rat). The second, locale navigation

pathway, generates actions based on a representation of space

learned in a simplified model of place cells in the CA1 area of the

hippocampus. The activity of model place cells encodes the loca-

tion of the simulated animal and is further associated with motor

actions, presumably encoded by the nucleus accumbens (NA) of

the ventral striatum. The place cells receive feed-forward input

from a population of simulated grid cells, similar to CA1 cells that

receive direct input from grid cells in Layer II of the dMEC (Brun

et al., 2002; Fyhn et al., 2004). The modeled grid cells perform

integration of self-motion cues over time (i.e., path integration)

and are influenced by visual input (Hafting et al., 2005). Further

details of the model implementation are given below and are fully

elaborated in the Appendix.

Visual Input

Visual snapshots are generated by a simple computer graphics

algorithm (ray casting; Foley, van Dam, Feiner, & Hughes, 1995)

depending on the position and orientation of the simulated rat in

the virtual environment (all environments used in our simulations

are shown in Figure 2). Experimental evidence suggests that in the

rat, (a) the variation in ganglion cell density is relatively small

across the retina and the receptive field size of the cells is approx-

imately constant (Kolb & Tees, 1990) and (b) the vast majority of

cells (�90%) in the primary visual cortex are orientation sensitive

and the size of the center of their receptive field is 3°–13° in

diameter (Girman, Sauvé, & Lund, 1999). As a simplification, we

model the output of the primary visual processing system as

responses of a set of overlapping orientation-sensitive complex

Gabor filters of width �g � 1.8° (spatial wavelength 2�g) distrib-

uted uniformly across the view field (300°) using a rectangular

sampling grid of 96 � 12 locations and eight orientations at each

location. Examples of (simplified) filter representations of two

snapshots from Virtual Environments N–I and B–II are shown in

Figure 3B.

Snapshots (or their filter representations) represent spatial in-

formation in the egocentric (i.e., viewpoint-dependent) frame of

reference. As such, they can be used to generate egocentric goal-

oriented actions, such as approaching a visible target. A simple

example of such behavior would be to move forward while keep-

ing the landmark with shape i (see Figure 3A, Environment B–II)

in the center of the view field (assuming that the reward location

is in front of that landmark). Note that in this case, no knowledge

about the current head direction or position in the room is required

to reach the goal. In our model, navigation in an egocentric

reference frame is mediated by the taxon pathway (see below).

Visual snapshots in the model are also used to support behavior

organized in an allocentric reference frame (i.e., fixed with respect

to the environment), mediated by the locale navigation pathway.

During exploration of a novel environment, snapshots of unfamil-

iar views are stored in hypothesized view cells. The activity of a

view cell i at time t depends on the similarity between the mo-

mentary pattern of filter activities at time t and the pattern stored

in cell i. The activity is maximal if the current view matches the

stored view. Note that views taken from the same location but with

different directions of gaze (i.e., different head directions) look

very different. Therefore, to measure the similarity between views,

we apply the following three-step procedure: First, we estimate the

momentary head direction based on information currently avail-

able in the population of view cells (see Appendix, Equations A10

and A11); second, we rotate the representation of the current view

by the difference in head direction between the current and the

stored views; third, we evaluate the difference between the filter

activities of the rotated and the stored views (see Appendix,

Equation A12). Under the assumption that the current head direc-

tion has been estimated correctly, view cells code for the location

in the environment in allocentric coordinates (see Figure 3C).

Nevertheless, the egocentric aspect of views shows up in the fact

that the activity of the view cells is maximal if the current gaze

direction coincides with the one used during initial exploration.

View cells in our model represent memory of local views that

seem to be stored (in humans) outside of the hippocampus (Gillner

& Mallot, 1998; Spiers, Burgess, Hartley, Vargha-Khadem, &

O’Keefe, 2001).

Goal-Oriented Behavior

Motor actions are encoded in the model by two hypothesized

populations of action cells that represent motor-related output of

CP or NA, respectively. The CP, in particular its lateral part

(Devan & White, 1999), is thought to be involved in the develop-

ment of S-R behavior, in which a set of stimuli is repeatedly

associated with a rewarded motor response (Packard & McGaugh,

(CP) (NA)
AC (taxon) AC (locale)

PC
CA1

dMEC

Place

VC

Visual input

Integration

PathOriented

Cells

GC

ventral striatumdorsal striatum

Motor output

Figure 1. Model overview. Visual input is processed by a set of

orientation-sensitive Gabor filters that project to the caudate-putamen (CP)

of the dorsal striatum (blue arrows, taxon navigation pathway) and also to

the hypothetical view cells (red arrows, locale navigation pathway). Grid

cells (GC) in the dorsomedial entorhinal cortex (dMEC) receive self-

motion input and visual input, preprocessed by the population of view cells

(VC). The GC connect to place cells (PC) in the hippocampal area CA1.

The PC project to the nucleus accumbens (NA) of the ventral striatum. The

dorsal and ventral parts of the striatum are modeled by two populations of

action cells (AC). Cells in the CP encode a taxon strategy, while those in

the NA encode a locale strategy.
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1992, 1996; White & McDonald, 2002). The NA of the ventral

striatum receives direct projection from the CA1 area of the

hippocampus (Kelley & Domesick, 1982) and has been hypothe-

sized to associate location information with reward and emotional

information to produce goal-directed motor behavior (Brown &

Sharp, 1995; Redish, 1999). Lesions of the CP and NA differen-

tially impair the animal’s ability to learn S-R or spatial tasks,

respectively (Annett, McGregor, & Robbins, 1989; Packard &

McGaugh, 1992; Sutherland & Rodriguez, 1990).

In agreement with these data, action cells in our model of CP

receive direct feed-forward input from the visual filters, while

action cells in the modeled NA receive input from place cells (see

Figure 1). In each population, there are many action cells, and the

activity of each action cell encodes a different direction of move-

ment. The preferred directions of the action cells in a population

span 360°, such that the population activity can be treated as a

distributed code for the movement direction. An important differ-

ence between the two action-cell populations is that the activity of

the action cells in CP is considered to encode the egocentric

rotation angle, while the activity of the cells in NA is treated as a

code for the allocentric direction of movement.

In a typical scenario involving the taxon strategy, the simulated

rat is placed in an environment and receives visual input in the

form of a set of visual filter activities corresponding to the cur-

rently perceived snapshot. The visual input results in an activation

of action cells in the CP, which is interpreted by the simulated rat

as a motor command to turn by the resulting angle. As a simpli-

fication, we do not model the movement of the rat along the

resulting direction but simply assume that the rat would move

straight until it hits an obstacle. If the chosen direction is correct,

the rat would reach the goal (e.g., the hidden platform in a water

maze) and receive a reward, otherwise it will hit a wall (no

reward).

In a typical locale strategy scenario, the simulated rat is placed

in an environment, and an estimation of the current allocentric

location and head direction is given by the activity of place cells

(described below). The place-cell activity results in an activation

of motor cells in the NA, interpreted by the rat as a motor

command of moving in an allocentric direction encoded by the

action-cell activity. After the movement is performed (the extent of

the movement is defined as the constant speed of the rat multiplied

by the size of the time step; see Appendix, Table A1), the new

location will correspond to a different pattern of place-cell activity,

resulting in the next movement, and so on until the goal is reached

(or the trial time is over). Upon reaching the goal, a reward is

given.

The trajectory of the rat in a particular trial and hence the

success or failure in reaching the goal in that trial are fully

determined by the synaptic strengths (connection weight values in

the model) between the visual filters and action cells in the CP

(taxon strategy) and between the place cells and action cells in the

NA (locale strategy). Learning consists in adjusting the weight

values to maximize performance. The theoretical framework of

reinforcement learning (Sutton & Barto, 1998) suggests how the

weight values may be learned by an online reward-based algorithm

that minimizes the difference between the predicted and received

ba c d

a b c d e

e

Figure 2. Testing environments used in computer simulations. In each row, the right part of the figure shows

an example snapshot of the room, and the left part of the figure shows the top view of the virtual room. The black

dot and the arrow show the position and direction at which the snapshot was taken. The dotted line in the top

view of Room N–I marks the area accessible to the model rat in this environment. The dashed line in Rooms

N–IIa through N–IIe and N–IIIa through N–IIIe marks a linear trajectory of the model rat. The circle in the top

view of Room B–I marks the border of the simulated water maze. Environment B–II is used in the simulations

of the experiment of Cheng (1986).
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rewards (see Appendix). Such a reward prediction error is thought

to be encoded in the activity of the dopaminergic neurons in the

substantia nigra pars compacta (SNc) and ventral tegmental area

(VTA) of the basal ganglia (Schultz, 1998; Schultz, Dayan, &

Montague, 1997). Experimental evidence has suggested that do-

paminergic neurons in the SNc project to the CP, that lesions of

SNc specifically impair S-R behavior (Da Cunha et al., 2003,

2006), and, moreover, that dopamine input seems to be required

for plasticity to take place in the cortico-striatal synapses (Pawlak

& Kerr, 2008). The NA receives dopaminergic input from the

VTA (Sesack & Pickel, 1990), and lesions of NA produce deficits

in the hidden, but not visible, version of the water-maze task (in

naive rats; Annett et al., 1989). Here, we do not model explicitly

SNc and VTA but simply assume that the reward prediction error

signal (in the form of the � variable in Equation A4 in the

Appendix) arrives at the synapses between the visual filters and CP

action cells (or between the place cells and NA action cells) after

an action has been performed.

Spatial Representation

The evidence for the involvement of the hippocampus in navi-

gation (Morris, Garrud, Rawlins, & O’Keefe, 1982; O’Keefe &

Nadel, 1978) is complemented by behavioral data suggesting its

role in latent learning (O’Keefe & Nadel, 1978), path integration

(Whishaw & Maaswinkel, 1997), and development of stimulus–

stimulus associations (White & McDonald, 2002). On the neural

level, these data have been related to the properties of place cells

in the areas CA3–CA1 of the hippocampus, since their firing fields

develop during unrewarded exploration (Hill, 1978; Wilson &

McNaughton, 1993), persist in darkness (Quirk, Muller, & Kubie,

1990), and depend on multiple sensory stimuli (Gothard et al.,

1996; O’Keefe & Burgess, 1996).

However, dMEC grid cells, directly upstream from the CA1,

have been shown to possess similar properties. Namely, firing

fields of the grid cells were shown to develop rapidly during

exploration, persist in darkness, and rotate their firing fields fol-

N−I B−IIA

B

C

Figure 3. Processing of visual input in Simulated Environments N–I (left column) and B–II (right column). A:

Example snapshots with 300° horizontal view field. B: Responses of visual filters applied to the input snapshots

shown in A. Filter responses are drawn as black lines centered at different positions in the filter grid. The length

of a line is proportional to the mean amplitude of eight Gabor filters with different orientations centered at the

point (zero amplitude is shown as a black dot). The orientation of the line is determined by the mean orientation

of the filters, weighed by the corresponding amplitudes. Mean values are shown for clarity; all filter amplitudes

are used in the model without averaging. Inset shows an example of a Gabor filter sensitive to a vertical edge

in its receptive field (not to scale) C: Firing maps show the receptive fields of view cells that store snapshots

shown in A, calculated with exact allocentric head direction and averaged over all orientations. Arrows show the

position and orientation of the simulated rat at which the corresponding snapshots were taken. Polar plots show

firing rate of the view cells as a function of head direction. The activity is maximal for � � 47° (N–I) or � �

11° (B–II), which corresponds to the head direction of the stored view.

544 SHEYNIKHOVICH ET AL.



lowing rotation of visual cues (Fyhn et al., 2004; Hafting et al.,

2005). Moreover, direct feed-forward projections from the dMEC

to CA1, bypassing dentate gyrus and CA3, are sufficient to pro-

duce place fields (Brun et al., 2002). These data suggest that place

cells in CA1 may inherit their spatially correlated firing from the

grid cells (O’Keefe & Burgess, 2005; Solstad et al., 2006).

In our model, several grid-cell populations encode the position

of the simulated rat in the environment, while place cells represent

simple feed-forward readout of the grid-cell activity (see Figure 1).

More specifically, recurrent connectivity in each grid-cell popula-

tion results in localized activity packets that change their positions

according to internally generated speed and direction information.

The hardwired pattern of connectivity is chosen such that firing

fields of the cells in each population are periodic, and the trans-

lation of the speed information into the movement of activity

packets is chosen to produce triangular grids of experimentally

observed spacing, orientation, and field size (see Figures 4D and

4E). Place cells are recruited during exploration by rapid Hebbian

learning, that is, a new cell is connected to all strongly active grid

cells and the connection weights are initialized by the presynaptic

activities. Simple summation of the activities of presynaptic grid

cells with different spatial frequencies of their grids results in a

Gaussian-like receptive field of a single place cell (see Figure 4B;

McNaughton et al., 2006; O’Keefe & Burgess, 2005; Solstad et al.,

2006). This is consistent with the evidence showing that hip-

pocampal neurons perform linear summation of their synaptic

inputs (Cash & Yuste, 1999; Gasparini & Magee, 2006).

Grid cells in the model are influenced by visual input, which is

preprocessed and stored in the view cells mentioned above. In

visually nonambiguous environments, spatially close locations

share similar visual features, and therefore, a subset of simulta-

neously active view cells represents a particular location in the

environment. This allocentric position code is used in the model to

correct a mismatch between the path integration and visual input

resulting from a cumulative error in the path integrator or from

changes in visual environment. The correction mechanism is im-

plemented in the form of connections between the view cells and

grid cells. The connection weight between a grid cell and a view

cell is set according to the Hebbian rule, that is, it is high if the

cells are simultaneously active above a certain threshold and low

otherwise. Once the weights are set, an activity profile in the

view-cell population will induce an allocentric location signal in

each of the grid-cell populations, resulting in a shift of the grid-cell

activity packets toward the visual estimate (see Appendix, Equa-

tions A13 and A14, for details).

Visual input plays an important role upon the entry to a familiar

environment. More precisely, when the simulated rat is placed in

a familiar environment, the positions of the activity packets in the

grid-cell populations are set according to the visual input. Such an

initialization of the path-integration network by the visual input

represents a recall of the familiar environment by the simulated rat

(Samsonovich & McNaughton, 1997).

Results

The following three sections describe the model behavior in

different experimental paradigms. The first set of simulations

described properties of model neurons along the locale navigation

pathway, focusing on the changes in their activity following

changes in the geometric layout of the experimental arena. The

second set of simulations addressed the ability of the model to

perform goal search in water-maze-like simulated environments.

The last set of simulations investigated how the geometric layout

of the environment can influence goal-oriented behavior and re-

lated our results to the concept of the geometric module introduced

in the beginning of the article. The results of the three sets of

simulations taken together suggest that a model without a geomet-

ric module is able to account for the influence of the environment

shape on grid cells, place cells, and behavior.

Simulation 1: Deformation of Place Fields and Rescaling

of Grid-Cell Firing Patterns

The hypothesis of place-field formation by direct summation of

presynaptic activity of grid cells is attractive because of its sim-

plicity (McNaughton et al., 2006; O’Keefe & Burgess, 2005;

Solstad et al., 2006). However, it is not clear whether this hypoth-

esis can explain the dependence of the place-field shape on the

geometry of the environment (Gothard et al., 1996; O’Keefe &

Burgess, 1996). It is equally unclear how the rescaling of the

grid-cell firing patterns in response to environment changes (Barry

et al., 2007) can be put in agreement with the deformation of

hippocampal place fields.

Place-field formation by summation of grid-cell activities pre-

dicts a comodulation of place and grid cells in response to envi-

ronmental changes. Animals can sense these changes via visual

input, which can in turn influence place cells and grid cells. Since

place cells and grid cells are driven not only by vision but also by

path integration, the interaction between these two types of sensory

BA

D E

C

F

Figure 4. Firing fields of modeled grid cells and place cells. A: Trajec-

tory of the modeled rat during testing phase in a square simulated envi-

ronment with superimposed locations where the firing rates of one modeled

place cell (green) and one modeled grid cell (violet) were higher than 0.7

of their maxima over the whole environment. B, C: Color-coded rate maps

of the place cell shown in A during testing in the normal condition (B) and

when all visual cues were rotated 90° clockwise (C; the black bar denotes

cues on the northern wall in the nonrotated environment). D, E: Rate maps

of two cells from grid-cell populations with indices n � 2 (D; grid

orientation 3°, the same cell as shown in A) and n � 4 (E; grid orientation

9°) during testing. F: Rate map of the cell shown in E with all cues rotated

90° clockwise.
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input is likely to play a role in the induction of changes in the cell

activity in response to environmental changes (Byrne, Becker, &

Burgess, 2007; Samsonovich & McNaughton, 1997). Hence, we

first illustrate the interaction between visual input and path inte-

gration in our model in a fixed familiar environment and then turn

to the analysis of the activity of place and grid cells in stretched

and shrunk environments.

Method. In this simulation, five different computer experi-

ments were conducted. In Experiment 1, the activities of place and

grid cells were analyzed, while the simulated rat was moving in

quasi-random directions within a square experimental arena of 1 m

� 1 m located in the middle of a large room with multiple visual

features (see Environment N–I, Figures 2 and 3). Before the

analysis of place fields was performed, exploration was simulated

by allowing the simulated rat to visit uniformly distributed loca-

tions and orientations in the environment for 3,000 time steps,

which correspond to about 6 min of exploration. At each time step,

a newly recruited view cell memorized a corresponding snapshot

of the environment. Similarly, a newly created place cell memo-

rized the active subset of grid-cell population (see Appendix for

details). After all 3,000 locations were visited, the weights between

view cells and grid cells were set according to the cross-correlation

rule (see Appendix, Equation A13), capturing the essence of

Hebbian learning: Cells that are active together become connected

with stronger weights (Kali & Dayan, 2000; Samsonovich &

McNaughton, 1997). To test whether the model could reproduce

the rotation of the firing fields in response to the rotation of visual

cues (Hafting et al., 2005; Muller & Kubie, 1987), the cue rotation

was simulated by interrupting the simulation, rotating all the visual

cues by 90° clockwise, and restarting the simulation from a dif-

ferent location.

In Experiments 2–5, with shrinking and stretching environ-

ments, two series of rectangular rooms were used (N–II and N–III;

see Figure 2). In each series, the first room (N–IIa and N–IIIa) is

referred to as the original environment and the other rooms as

shrunk (N–II) or stretched (N–III) versions of the original room.

All rooms had the same width (0.86 m), and their lengths were

1.72 m, 1.42 m, 1.12 m, 0.82 m, and 0.52 m for the N–II series and

0.52 m, 0.66 m, 0.82 m, 0.96 m, and 1.12 m for the N–III series.

The lengths were chosen to approximate the real experimental

conditions (Gothard et al., 1996; O’Keefe & Burgess, 1996). Each

room had gray walls 0.6 m high and a white floor and ceiling (see

Figure 2).

In Experiment 2, a set of shrinking rectangular environments

(N–II) was used, and the simulated rat was running back and forth

along a line parallel to the northern wall of the enclosure, simu-

lating movement along a linear track. During the exploration

phase, the simulated rat explored the linear track in the original

environment (N–IIa) similar to the exploration phase of Experi-

ment 1, except that the head direction was either 0° or 180°

according to the direction of movement. In the testing phase, the

simulated rat was exposed to each of the shrinking environments

(N–IIb through N–IIe) in turn; place-cell activities were analyzed

while the simulated rat was moving along the track in these novel

environments. Exploration and testing phases in Experiment 3

were identical to those in Experiment 2 except that this time, the

series N–III of stretching environments was used.

In Experiment 4, the series N–II of shrinking environments was

used; the exploration phase was similar to that in Experiment 2, but

now the simulated rat was allowed to move in two dimensions.

During the testing phase, it moved in a zigzag fashion through the

testing boxes such that directional dependence of the two-

dimensional place fields could be assessed. Exploration and testing

phases in Experiment 5 were identical to those in Experiment 4

except that this time the series N–III of stretching environments

was used.

In the model, learning of a new environment assumes that

grid-cell firing patterns are fixed with respect to the environment

during an initial exploration (the assumption is used to calculate

connection weight values between view cells and grid cells; see

Appendix, Equation A13). This assumption is supported by the

recording data of Hafting et al. (2005) showing that entorhinal grid

cells exhibit stable firing patterns from the outset of exploration in

complete darkness for as long as 20 min. Such a remarkable

stability of firing suggests that even in the absence of visual input,

firing grids of entorhinal cells are fixed to the environment, pos-

sibly by using other sources of external input (Maaswinkel &

Whishaw, 1999; Save, Nerad, & Poucet, 2000) in combination

with a particular exploration strategy (Whishaw, Hines, & Wal-

lace, 2001). It was shown previously that suitable exploration

strategies involving return to previously visited places lead to a

stable learning of the connections from view to place cells even in

the presence of a noisy path integrator (Arleo & Gerstner, 2000).

Since for the purposes of the present article, we were not interested

in exploration strategies per se, we simply fixed the firing grid to

the environment by setting noise in the path integrator to zero

during exploration. During testing, we simulated the cumulative

error by setting the error in the path integrator to 10% of the

displacement and rotation from the previous step.

To analyze changes in population activity of place cells induced

by the environment deformation, we compared the population

firing in deformed environments to that in the original environ-

ment in Experiments 2 and 3. A coefficient of cross-correlation

between the population firing patterns (or population vectors) in

the deformed and original environments served as a measure of

similarity (Gothard et al., 1996). If r i
pc�x� denotes the firing rate of

place cell i at location x in a deformed environment and r i
pc�y�

denotes the firing rate of the same cell at location y in the original

environment, the coefficient of cross-correlation between the pop-

ulation vectors is given by

cxy �

�iri
pc�x�ri

pc�y�

��k�rk
pc�x��2��l�rl

pc�y��2
,

where the denominator ensures that the coefficient of cross-

correlation of two identical population vectors cxx � 1. Each

element of the cross-correlation matrix ||cxy|| shows how similar

population vectors are in a deformed and the original environments

at locations x and y, respectively.

Results and discussion. Our simulations showed that grid cells

and place cells in the model exhibit firing patterns similar to those

recorded in real neurons. After learning, these firing patterns are

stable in time despite the fact that the modeled path integration is

subject to cumulative errors. This stability is due to the associative

connections between visual snapshots (stored in the view cells)

and grid cells learned during exploration. These associative con-

nections can also explain the deformation of place fields and
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rescaling of grid-cell firing patterns in stretching or shrinking

rectangular environments.

During the testing phase of Experiment 1 (square room), the

cumulative error in the path integrator was corrected by visual

input (represented by visual snapshots of the environment) both in

the population of grid cells (see Figures 4A, 4D, and 4E) and the

population of place cells (see Figures 4A and 4B). Rotation of

visual cues was followed by the rotation of the firing pattern of

grid cells (see Figure 4F) and place cells (see Figure 4C), in

agreement with experimental data (Hafting et al., 2005; Muller &

Kubie, 1987). In the model, the rotation of place fields is a direct

consequence of the initialization of the position of the grid-cell

activity packet according to the visual input from view cells.

In shrinking and stretching environments (Experiments 2–5),

place cells that had fields near walls in the original environment

kept their fields near the walls in the novel environments for both

one-dimensional and two-dimensional movement regimes (see,

e.g., Cells 1 and 4, Figure 5A, and Cell 1, Figure 5B). In contrast,

cells with peak firing near the middle lost their fields in the shrunk

environments (see Cells 2 and 3, Environments N–IId and N–IIe,

Figure 5A), whereas their fields became doubly peaked in the

stretched environment (see Cell 2, Environment N–IIIe, Figure

5B), similar to biological CA1 cells (Gothard et al., 1996; O’Keefe

& Burgess, 1996; Redish, Rosenzweig, Bohanick, McNaughton, &

Barnes, 2000).

To check that the same effects could be observed on the level of

the whole place-cell population, we compared the population ac-

tivity in the deformed environments with that in the original

environment (for one-dimensional movement, Experiments 2 and

3). The similarity of the population firing, expressed as the cross-

correlation between the firing rates at each position in the original

environment and those at each position in the deformed environ-

ment (see Method, above), is illustrated in Figure 6. The disap-

pearance of place fields in shrunk environments corresponds on

the cross-correlation plots to the zero correlation between the

population firing rates near the middle of the original environment

(see Figure 6A, N–IId and N–IIe). The doubling of the place fields

in strongly stretched environments can be seen by observing that

when the simulated rat moves from left to right (see Figure 6B,

N–IIId and N–IIIe, top), the high-correlation band crosses the

middle (dotted) line earlier than the rat reaches the middle of the

stretched environment; the same happens when the simulated rat

moves in the opposite direction (see Figure 6B, N–IIId and N–IIIe,

bottom). Therefore, the resulting place field, averaged over the two
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Figure 5. Place fields in shrinking and stretching environments. A: Place fields (firing rate as a function of the

simulated rat position on the track) of four modeled CA1 cells in the original (N–IIa; top row) and shrunk (from

top to bottom: N–IIb, N–IIc, N–IId, N–IIe) environments during the rightward movement. B: Two-dimensional

place fields of two different place cells for the original (N–IIIa) and stretched (N–IIIe) versions of the box for

leftward movement (right), rightward movement (second right), and averaged across the two directions (second

left). The direction of movement is shown by the black arrow on top of the plots.
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directions of movement, consists of two components, the activa-

tion of which will depend on the movement direction of the

simulated rat (Samsonovich & McNaughton, 1997).

Stability of place fields near walls is explained in our model by

similarity of visual (snapshot) information in the original and

deformed environments when the simulated rat is close to the

walls. In this case, the visual input is strong enough to control the

position of the place fields. However, when the rat is moving at a

long distance from the walls, both path integration and visual input

contribute to place-cell firing. Path integration in the model works

by shifting the activity packet in a grid-cell layer from one group

of cells to the next. In the case of deformed environments, visual

input either speeds up (in shrunk environments) or slows down (in

stretched environments) the movement of the activity packets.

Speeding up of the activity packets results in narrow place fields,

while slowing them down widens the fields. Very strong defor-

mation results in disappearance or doubling of place fields (Sam-

sonovich & McNaughton, 1997). Strong shrinking causes the

activity packets to lose their coherence with downstream place

cells due to periodicity in their firing locations, making the place

fields disappear. Strong stretching of the environment causes

asymmetry of stretched place fields: When moving from left to

1.00.0 correlation

A

B

Figure 6. Similarity of population firing patterns in the original and deformed environments. Each plot shows

cross-correlation cxy between firing rate vectors of the place-cell population (yellow � high correlation, green �

low correlation; see Method section of Simulation 1) that correspond to position y of the simulated animal in the

original environment (vertical axis) and its position x in the deformed environment (horizontal axis). The red

lines correspond to the locations of the cross-correlation maxima if the population firing were determined only

by path integration. The black dotted line corresponds to the middle of the original environment. In all plots, a

cell that, in the original environment, has its place field near the middle, in the deformed environment will have

its place field shifted to the position corresponding to the crossing between the middle line and the high-

correlation band. A: Cross-correlation matrices for the original (N–IIa) and four shrunk (N–IIb through N–IIe)

environments for two directions of movement (shown by the black arrow on top of the plots). Cells near the

middle of the original environment lose their place fields when the deformation is strong, as shown by the zero

correlation of firing rates near the middle line for Environments N–IId and N–IIe. B: Cross-correlation matrices

for the original (N–IIIa) and four stretched (N–IIIb through N–IIIe) environments. Cells near the middle of the

original environment double their place fields when the deformation is strong (Environments N–IIId and N–IIIe).

During rat movement from left to right, cells in the middle fire closer to the left wall in the stretched track (small

arrow in the top panel, Environment N–IIIe), whereas they fire closer to the right wall during movement from

right to left (small arrow in the bottom panel, Environment N–IIIe).
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right, the left part of the field is more active, whereas, during the

leftward movement, the right part of the field is more active

(O’Keefe & Burgess, 1996).

Next, we looked at the grid-cell activity during two-dimensional

movement in the deformed environments (Experiments 4 and 5). For

a small amount of shrinking or stretching, we observed rescaling of

the firing grids (see Environments N–IIb and N–IIIb, Figure 7) in

agreement with the data from Barry et al. (2007). However, a

stronger deformation resulted in disappearance (shrinking: N–IIc

through N–IIe, Figure 7A) or doubling (stretching: N–IIId through

N–IIIe, Figure 7B) of firing fields near the middle of the environ-

ment. Moreover, for some amounts of stretching, the double fields

became asymmetric, similar to the firing fields of downstream

place cells (see Figure 7B, insets for Cells 4 and 5, Environment

N–IIIc). In contrast to the place fields, the asymmetry in the

grid-cell firing disappeared for even stronger deformation (see

Figure 7B, inset for Cell 5, Environment N–IIId). The latter effect

is due to the periodicity of the firing fields: When the spatial

frequency of the double fields becomes equal to the spatial fre-

quency of the grid, the double field loses its directional depen-

dence. The disappearance and doubling of grid-cell firing fields

were not reported by Barry et al. (2007), possibly due to the fact

that they analyzed only one shrunk (amount of shrinking was 0.70

relative to the baseline) and one stretched (amount of stretching

was 1.43 relative to baseline) environment. In our model, the

disappearance and doubling effects on the level of grid cells were

observed for stronger shrinking (i.e., for environments shrunk to

less than 65% of the size of the original environment) and stronger

stretching (i.e., stretched to more than 157% of the original size;

see Figure 7).

Thus, experimental data on place-field deformation in shrunk or

stretched environments can be explained by visual feature process-

ing, from visual input to grid cells and from grid cells to place

cells, without recognition of walls or explicit calculation of dis-

tances to walls. In this case, the apparent influence of the geomet-

ric layout on place- and grid-cell activity (which is sometimes

taken as an evidence for the importance of the shape of surround-

ing space for spatial processing in relation to the problem of the

geometric module; see Wang & Spelke, 2003) is accounted for by

the mismatch correction between visual and self-motion cues.

Such a mismatch correction mechanism per se is independent from

any geometry-related information (as in, e.g., Experiment 1 of the

present set of simulations) but is expressed in Experiments 2–5 in

a way that might be interpreted as influence of geometry. On the

level of grid cells, our model predicts that (a) grid-cell rescaling

should be observed even in the absence of functional connections

between grid cells and place cells and (b) switching visual input

off during a recording session in a deformed environment should

eliminate the rescaling effect.

We note here that our explanation of the place-field shape

deformation and grid rescaling depends heavily on the presence of

external sensory cues that make the information about layout

changes available to the rat. Therefore, in the case where external

sensory cues are removed, the model predicts that path integration

will take control over place fields for a longer time compared to

the case when external cues are present. This explanation is

consistent with the data of Gothard, Hoffman, Battaglia, and

McNaughton (2001) showing that in a shrinking linear track,

place fields are aligned with the (movable) starting position longer

in the dark than in the light.

Simulation 2: Hidden Goal Navigation in the Water Maze

In this set of simulations, we examined learning of goal-oriented

strategies in the model. For this purpose, we simulated two water-

maze tasks in which rats had to learn the location of a hidden goal.

The Morris water-maze task with variable starting locations (see

N−IIIeN−IIIdN−IIIcN−IIIbN−IIIa

N−IIeN−IIdN−IIcN−IIbN−IIa

cell 1

A

B

cell 4

cell 3

cell 2

cell 5

cell 6

Figure 7. Rescaling of the firing pattern of a modeled grid cell in

response to environment deformation. A: Firing fields of three grid cells

from populations n � 2, 4, 6 (from top to bottom, the grid orientations are

3°, 9°, and 15°, respectively) in the training environment (N–IIa) and four

shrunk environments (N–IIb through N–IIe; amount of shrinking relative to

the training environment 0.83, 0.65, 0.48, and 0.30, respectively). B: Firing

fields of three different grid cells from populations n � 1, 2, 4 (from top

to bottom, the grid orientations are 0°, 3°, and 9°, respectively) in the

training environment (N–IIIa) and four stretched environments (N–IIIb

through N–IIIe; amount of stretching relative to the training environment is

1.27, 1.57, 1.81, and 2.15, respectively). Insets for Cells 4 and 5: firing

fields of the same cells for different movement directions. Rescaling is

observed for the smaller amount of deformation (shrinking: N–IIb; stretch-

ing: N–IIIb). Stronger deformation results in disappearance of firing fields

near the middle of the environment (shrinking: N–IIc through N–IIe) or

doubling of the fields near the middle (stretching: N–IIId and N–IIIe). For

an intermediate amount of stretching, the double fields exhibit a depen-

dence on the direction of movement (Cells 4 and 5, N–IIIc); however, the

directional dependence disappears for even stronger stretching (Cell 4,

N–IIId).
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Figure 8A) has been shown to depend critically on the hippocam-

pus (Morris et al., 1982) and is generally considered a standard test

of spatial memory (McDonald, Hong, & Devan, 2004). Animals

trained in this task can immediately generalize to novel starting

locations (Morris, 1981), suggesting that they have acquired a

representation of spatial layout of the surrounding environment.

However, when started from the constant starting location (see

Figure 8B) in each trial, animals with hippocampal lesions were

almost as successful as normal rats (Eichenbaum et al., 1990),

suggesting that a different memory system was used in this case,

which might store the S-R association between the extramaze cues

visible from the start and the heading toward the hidden platform

(Da Cunha et al., 2006). Further experiments have shown the

dependence of such an S-R behavior on brain areas along the taxon

pathway, that is, CP (Packard & McGaugh, 1992, 1996; White &

McDonald, 2002) and SNc (Da Cunha et al., 2003, 2006). In

contrast to the hippocampus-dependent locale strategy, taxon strat-

egies produce stereotyped trajectories, as demonstrated by the

inability of fornix-lesioned rats to find the hidden platform from a

novel starting position (Eichenbaum et al., 1990).

Method. Both the variable-start and constant-start tasks were

simulated in a square room of 2 m � 2 m with high walls and

multiple visual cues. The experimental arena, located in the center

of the room, was surrounded by a gray circular wall 1.2 m in

diameter and 0.2 m high so as to simulate the wall of the water

maze (see Environment B–I, Figure 2). An invisible target area 6

cm in diameter located in the southwest quadrant of the simulated

water maze served as a hidden goal.

Before training (i.e., during the exploration phase), the simu-

lated rat explored the water maze without the platform to learn

place fields, similar to the previous simulation. After exploration,

the simulated rat could use either taxon or locale navigational

strategy to learn the goal location. Ten different rats were simu-

lated, and results were averaged across the 10 simulated animals.

In our model, learning of the two strategies occurs in the

synapses between the visual filters and action cells in CP (for the

taxon navigation) and between place cells in the hippocampus and

action cells in NA (for the locale navigation). Similarly to the

dorsal-striatum- and hippocampus-dependent pathways in the rat

(Devan & White, 1999; Packard & McGaugh, 1996; White &

McDonald, 2002), the locale and taxon pathways in the model are

independent, and therefore, they can learn in parallel and compete

for control of behavior. A simplified model of competition was

adopted in the simulations: In each trial, the simulated rat used two

strategies to reach the hidden platform in two separate runs. A

strategy was considered either successful (coded by 1) or not

successful (coded by 0) depending on a performance criterion (see

Figures 9A and 9C). The winning strategy for each trial was

determined by a running average, based on the number of suc-

cesses in the 10 preceding trials. Such a simple competition

scheme allows for a separate analysis of intact versus lesioned

simulated rats. An intact animal is assumed to always choose the

winning strategy, while a lesioned animal can only use a strategy

that is not affected by the lesion.

In Experiment 1, simulated rats were tested in the variable-start

condition. During training, the simulated animals learned to go to

the invisible platform. A training trial started by placing the

simulated rat in one of the four starting positions (see Figure 8A),

chosen at random in the beginning of the trial. The initial orien-

tation of the simulated rat was randomly chosen between 0° and

360°. If the goal was hit (during the locale strategy run) or the head

direction after rotation was straight to the platform (for the taxon

strategy run), the simulated rat received a positive reward (R � 1).

Wall hits during locale strategy runs were negatively rewarded

(R � 	0.5).

In Experiment 2, the rats were tested in the constant-start con-

dition. The training was identical to that in Experiment 1, except

that the same position S was used in each trial (see Figure 8B).

After training was completed, the rats were tested from novel

starting positions. All weights in the model were kept fixed, and

the simulated rats were given 100 testing trials from each of the

positions W and E not used during training.

Results and discussion. To explore goal-oriented behavior of

the model, we simulated the Morris water-maze task with variable-

start and constant-start conditions. In both conditions, the simu-

lated rat was able to learn the task. We analyzed the role of the

locale and taxon strategies for both conditions.

Simulation results showed that in the variable-start condition,

the locale strategy was the winner across all training trials and

quickly reached a high average success rate (see Figure 9D, left).

In contrast, the success rate of the taxon strategy did not increase

significantly during training, suggesting that the taxon strategy was

S
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S

A Variable−start task Constant−start taskB

Figure 8. Experimental setup for two water-maze tasks. The large circle represents the top view of the circular

water maze. The black dots mark the starting positions in the maze (denoted N, E, S, and W). The small dotted

circle marks the area of the hidden platform in the simulated maze. A: Variable-start condition (Morris, 1981).

B: Constant-start condition (Eichenbaum et al., 1990).
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not able to learn this task (see also Figure 9C, left). Thus, the

model is consistent with the experimental data showing that intact

animals rely strongly on the locale strategy in this task and that

lesions of the hippocampus (or NA) disrupt learning, whereas

lesions along the taxon pathway (i.e., SNc or CP) do not produce

any impairment (Da Cunha et al., 2006; Morris et al., 1982).

Moreover, an analysis of the escape latency (see Figure 9A, left)

revealed that when using locale strategy, the simulated rat learned

rapidly during the first four to five trials and achieved, after

approximately 15 trials, an asymptotic performance (Morris,

1981).

In the constant-start condition, both strategies were able to learn

the location of the hidden platform (see Figure 9D, right). These

results are consistent with the evidence that the task can be solved

by intact animals as well as animals with a lesioned fornix (i.e., the

axon bundle that connects hippocampus to NA; Eichenbaum et al.,

1990). An analysis of the escape latency and heading distributions

supported further these results (see Figures 9A, right, and 9C,

right). In addition, learning of the taxon strategy was slower at the

beginning of training, while its performance was superior to that of

the locale strategy after prolonged training, suggesting that for an

intact animal the preference for the taxon strategy increases with

experience (Packard & McGaugh, 1996).

To examine the ability to generalize to novel starting locations,

the simulated rat was tested from two novel starting positions (W

and E) after the training in the constant-start condition (S). When

the simulated rat was using the locale strategy, it generalized

immediately to the novel starting locations, as shown by the

comparison of the average escape latencies from the novel and

familiar locations (see Figures 10A and 10B). The reason for the

good generalization ability in the case of the locale strategy is that

during training the simulated rat had a possibility to learn the

direction of swimming to the platform from most of the locations

in the maze, despite the fact that it started always from the same

location (as illustrated by the action map acquired by the simulated

rat during the constant-start condition; see Figure 9B, right). In

contrast, the taxon strategy was disrupted by novel visual cues,

such that, in all trials, the direction to the platform was estimated

incorrectly (see Figures 10A and 10C).

Together, these results demonstrate that configurations of distal

cues, encoded in visual snapshots, can be successfully used to

learn to approach a hidden platform from variable starting loca-

tions using a hippocampal position code (Morris, 1981), as well as

to learn the direction to the platform in the constant-start condition

using direct sensory-motor associations (Eichenbaum et al., 1990).

The two simulated memory systems function independently and

mediate the allocentric (locale) and egocentric (taxon) navigation

strategies. In the variable-start condition, the form of spatial mem-

ory acquired during learning is flexible in generating novel paths,

while, in the constant-start condition, the memory is limited to a

fixed set of S-R associations and thus produces stereotyped be-

havior (O’Keefe & Nadel, 1978).

Simulation 3: Reorientation in Rectangular Environments

According to the geometric module hypothesis (Cheng, 1986;

Hermer & Spelke, 1996; Wang & Spelke, 2002), an animal reori-

ents itself upon entry into a familiar environment using solely the

geometric shape of the environment, but not other, nongeometric

features, such as textures, colors, odors, or visual landmarks. Since

the shape information must be somehow extracted from the sen-

sory input, the conceptual brain module (Fodor, 1983) that extracts

it must discard the nongeometric information present in the sen-

sory input or, equivalently, be impenetrable to it (Gallistel, 1990).

This hypothesis is based on two main experimental results

originally described by Cheng (1986) for rats and later reproduced

with other species (see Cheng & Newcombe, 2005, for review).

The first one is derived from a working memory task and consists in

the observation (Cheng, 1986) that rats often make rotational errors

when they try to relocate a previously found food in a rectangular

arena with distinct landmarks in the corners (see Figure 11A). More

precisely, in this experiment, rats searched for food near the

correct location in 46% of trials and near its diagonally opposite

location in 28% of trials (they searched far from both locations

during the remaining 26% of trials; see Figure 11C). The pattern of

errors did not change even after extensive training. This result was

interpreted as a preference for the room geometry information over

the landmark information during reorientation. The second result is

that in the same environment but in a different task (reference

memory task; see Figure 11B), the rats could use landmarks to

identify goal location. When rats were trained to go always to the

same corner from the center of the box, the percentage of rotational

errors decreased gradually to 
22% compared to 
76% of correct

trials (Cheng, 1986). This and similar results have usually been

interpreted as evidence that although the nongeometric cues can be

used after specialized training, they are not used during reorienta-

tion, supporting the impenetrability argument (Cheng, 1986;

Hermer & Spelke, 1996; Wang & Spelke, 2002).

Results of the simulations performed in the previous section

suggested a different interpretation of these data. Since, in the first

task of the experiment of Cheng (1986; see Figure 11A), different

starting positions were used in each trial, the only successful

strategy is the locale strategy. The taxon strategy cannot be applied

in this case due to the lack of stable sensory-response associations

linked with reward. Hence, the rotational errors, as well as their

stability over time, might have been caused specifically by the

application of the locale strategy. However, since the second task

(see Figure 11B) permits a stable association of cues and reward,

the rats could use a taxon strategy in this task, which might explain

the observed decrease in the number of rotational errors. Why are

rotational errors more prominent in the locale strategy than in the

taxon strategy?

A crucial difference between the two strategies is that the locale

strategy encodes actions in an allocentric frame of reference (i.e.,

a coordinate system that is fixed with respect to external cues),

while the taxon strategy does so in an egocentric one (i.e., with

respect to the current view). Since all actions performed by the

organism are inherently egocentric, the locale strategy requires a

coordinate transformation, and to perform this transformation,

current allocentric position and head direction need to be esti-

mated. In contrast, for taxon strategies, such a coordinate trans-

formation is not needed, since all actions are performed with

respect to the currently visible cues.

In our model, the allocentric position and head direction are

determined during a reorientation phase by matching the currently

perceived snapshot (represented by the responses of the

orientation-sensitive visual filters to the input image) with snap-

shots stored in memory during exploration (see Appendix, Equa-
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tions A10–A14). In a rectangular environment with symmetrically

arranged landmarks, as well as in the environments where one of

the walls has a different color (Cheng, 1986; Hermer & Spelke,

1996), the snapshots taken in opposite directions from rotationally

opposite locations are highly similar (in terms of the difference

between their filter representations). Hence, the rotational errors

can be caused by the ambiguity of visual cues in the process of

snapshot matching. The following set of simulations was designed

to check whether the key experimental results from Cheng (1986)

could be reproduced by our model, that is, without an explicit

geometry-related processing module.

Method. The simulations were conducted in a virtual environ-

ment, designed in analogy to the setup used in the experiment of

Cheng (1986), and consisted of a rectangular arena with gray walls

and distinct landmarks in the four corners. The arena size was

1.2 m � 0.6 m with walls 0.6 m high (see Environment B–II,

Figures 2 and 3).

Similar to the water-maze experiment described above, 10 ani-

mals were simulated, and two experimental conditions were used:

variable start and constant start. The two conditions corresponded

to the working memory and reference memory experiments of

Cheng (1986), respectively.

Experiment 1 aimed to show that the reorientation procedure,

required by the locale strategy in the variable-start condition, is

subject to rotational errors caused by the ambiguity in the visual input

during snapshot matching. After the standard exploration phase (i.e.,

for 3,000 time steps), 1,000 reorientation trials were performed. In

each trial, the simulated rat was placed at one of five starting positions

as denoted in Figure 11A. Initial orientation was randomly chosen

between 0° and 360°. Once placed at the starting location, the simu-

lated rat performed a reorientation procedure, that is, the current

allocentric heading was estimated from the set of local views stored

during the exploration phase and the path-integration network was

reset accordingly (see Appendix, Equations A10–A14). The outcome

of a reorientation trial was considered as correct when the absolute

value of the difference between the estimated and real allocentric

headings was less than 20°, as a rotational error when the difference

was greater then 160°, and as a miss otherwise. The same procedure

as above was repeated in the cue-rich Environment N–I and the

symmetric Environment N–IIIa (with quasi-random starting posi-

tions) to estimate the dependence of the number of rotational errors

from the number of polarizing visual cues.

To measure spatial receptive fields of view cells (for one sim-

ulated animal), we placed the simulated animal at a set of locations

distributed over a regular grid in each of the simulated environ-

ments (B–II, N–I, and N–IIIa). At each point of the grid, the

simulated animal was oriented at eight different orientations. For

each position and orientation, the reorientation procedure was

performed as described above, and the activities of all view cells

were calculated with the estimated allocentric heading.

Experiment 2 was designed analogous to the reference memory

task of Cheng (1986) with a fixed starting condition. Our simula-

tions tested the suggestion that switching to taxon strategy can

decrease the number of rotational errors when the simulated rat

starts always from the same position in the box. In this experiment,

the simulated rats were trained to turn toward the same landmark

from the same starting position (the center of the box) across all

training trials. The initial orientation of the simulated rat was

randomly chosen between 0° and 360° at the start of the trial. This

phase was performed identical to the taxon training in Simulation

2. The reward was given when the heading of the simulated rat

after the end of the trial was not more than �10° off from the

direction toward the landmark in the northwest corner (i.e., the

simulated rat performed a correct turn). Otherwise, no reward was

given. If the resulting heading was within �10° of the direction to

the rotationally opposite corner, it was considered a rotational

error. The ratio between the number of correct turns and that of

rotational errors was calculated for each trial, averaged over ani-

mals, and smoothed with 100-trial-kernel.

Results and discussion. We simulated the working memory

experiment of Cheng (1986) that led to the hypothesis of the

geometric module. The results of simulations showed that reori-

entation errors in the model correspond well to the rotational errors

observed by Cheng (see Figure 11C). We found that reorientation

was correct in 45% of trials and resulted in a rotational error in

27% of trials (in the remaining 28% of trials, the estimated heading

was neither correct nor rotationally opposite).

We next asked the question how our model would perform in

environments that have either more or fewer polarizing cues than

the environment used in the experiment of Cheng (1986). We

found that the simulated rats made no orientation errors in the

cue-rich Environment N–I, since snapshots taken in different di-

rections can be distinguished well by the visual system (see Figure

11C). In contrast, the heading was estimated correctly as often as

a rotational error was made in a perfectly symmetric rectangular

Environment N–IIIa.

The crucial role of the view-based heading estimation for the

simulation results is illustrated in Figure 12. Estimation of heading

in the simulated environment of Cheng (1986) and in the symmet-

ric environment is subject to rotational errors, as seen from the

doubly peaked histograms (see Figure 12A, B–II and N–IIIa). The

rotational errors in Environments B–II and N–IIIa are caused by

Figure 9. Simulation results of the variable-start (left column) and constant-start (right column) water-maze tasks. A: Evolution of the escape latency

for the locale strategy. Trials where the escape latency was below a threshold (dashed line) were considered successful for the locale strategy. The threshold

was chosen as �stab  �stab, where �stab and �stab are the average values of the escape latency and its standard deviation when the performance stabilized

(in the present simulations, after 20 trials). B: Action maps acquired by the locale strategy during training. The arrows show learned directions to the

platform (open circle) from the sample locations. The black dots mark starting positions of the simulated rat. C: Distributions of heading errors during 200

training trials for the taxon strategy. Zero error corresponds to the case when the simulated rat heads directly toward the center of the platform. Trials where

the direction estimation error was within 10° (dashed lines) were considered successful for the taxon strategy. D: The curves show, for each trial, the average

number of successes across 10 preceding trials for the locale (red) and taxon (blue) strategies. The colored bar at the top of the plot shows the winning

strategy. In the variable-start condition, the locale strategy is winning (left). In the constant-start condition, both strategies have similar success rates, but

eventually, the taxon strategy takes over (right).
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the similarity of visual snapshots taken from rotationally opposite

locations and are hence due to the (nearly) symmetric layout of the

environment. In the cue-rich environment, however, where such a

symmetry does not exist, no rotational errors were observed (see

Figure 12A, N–I).

Rotational errors made during heading estimation lead to rota-

tional errors during self-localization. In the model, this is illus-

trated by the doubly peaked spatial receptive fields of view cells in

Environment B–II and in the symmetric environment (see Figure

12B, B–II and N–IIIa, respectively). The part of the receptive field

in the location rotationally opposite to the correct one (marked by

the arrows in Figure 12B) is caused by the rotational errors in

heading estimation. Note that the receptive fields are single peaked

if the heading is always estimated correctly (see Figure 3C). We

emphasize that the activity in the view-cell population is always

single peaked and corresponds to either the correct or rotationally

opposite position, depending on the heading error (see Figures 12C

and 12D). The population activity can be interpreted as the internal

estimation of the current position by the animal and suggests that

when the rotational error is committed, the animal thinks that it is

at the position rotationally opposite to the correct one. On the basis

of these results, we propose that the error in heading estimation

ultimately causes the animal to search for a goal in a place

diagonally opposite to the actual food location (Cheng, 1986;

Margules & Gallistel, 1988; Pearce, Good, Jones, & McGregor,

2004).

Although all three environments considered in our simulations

were rectangular, the percentage of rotational errors with respect to

the total number of errors changed from 0 (Environment N–I) to


50% (Environment B–II) to 
70% (Environment N–IIIa). Such

a gradual increase in the number of orientation errors upon a

reduction of the number of polarizing visual cues indeed suggests

BA

C

Figure 10. Novel-start tests. A: Success rates for the locale (red) and taxon (blue) strategies in 200 testing trials

from starting positions W and E. The taxon strategy fails, leaving the locale strategy as a clear winner. B: Mean

escape latency � SE from the novel starting positions for the locale strategy (white) in comparison to the latency

of the first training trial (random search; black) and the asymptotic latency (gray) for the variable-start task. C:

Distributions of estimated directions to the platform for the taxon strategy, measured during 200 trials from the

novel starting positions W (left) and E (right). Zero is aligned with the direction to the platform. Bin size is 1°.
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that rotational errors are caused in the model by the structure of

visual features rather than by the arena geometry.

According to our hypothesis, a decrease in the number of

rotational errors in the experiment with a fixed start (see Figure

11B) can be explained by the application of a taxon strategy. This

suggestion is supported by the simulation results (see Figure 11D).

In the beginning of training in the constant-start condition, the

percentage of rotational errors was as high as the number of correct

turns, but it gradually decreased with learning to about 30%,

reproducing qualitatively the results of Cheng (1986).

These results clearly show that although the visual system of the

simulated rat can use landmark information to locate the goal in an

egocentric search scenario, this information does not prevent the

simulated rat from making rotational errors during reorientation

within an allocentric frame of reference (see Figures 11C and 12).

In impoverished environments, visual features from the edges of

walls are often more salient than those from the landmarks, leading

to rotational errors when the arrangement of landmarks is sym-

metric.

In addition to providing a possible explanation for the data of

Cheng (1986), the simulation results are consistent with the data

showing that rotational errors disappear when rats are allowed to

see nonambiguous extramaze cues (Margules & Gallistel, 1988)

and that in a rectangular water maze without corner features,

approximately half of the errors are rotational errors (Margules &

Gallistel, 1988; Pearce et al., 2004). Results of the experiments

with rats (Cheng, 1986) and children (Hermer & Spelke, 1996)

suggested that changing the color of one of the walls does not help

to decrease the number of rotational errors, in favor of the impen-

etrability argument mentioned above. The model is consistent with

these data simply due to the fact that the visual system in the model

is not sensitive to brightness and color of the visual stimuli, only

to contrast. Put differently, our results suggest that edgelike visual

stimuli are more salient than uniform stimuli during reorientation.

The rotational errors during navigation in the working memory

task are explained in our model by rotational errors during the

initial self-localization when the animal is replaced into the envi-

ronment. The self-localization error is caused by the ambiguity of

B

DC

A

Figure 11. Experimental setup and simulation results for the experiments of Cheng (1986). A: Working

memory task. The large rectangle is the environment; corners contain distinct landmarks. The small crosses mark

starting positions. In the first part of a trial, rats searched for food hidden at the location marked by the solid

circle (the solid arrow shows the direction to the food source from one of the staring locations, which may have

been learned by the simulated rat during the learning phase). Once the food was found and partially eaten, the

rat was removed, disoriented, and placed at a different starting position (e.g., near the northern wall) from which

it had to find the remaining food. The rats in this experiment often made rotational errors, that is, from the new

starting location, they went toward the place that was rotationally opposite to the place where the food was

hidden. The dotted circle marks the location rotationally opposite to the correct food location, and the dashed

arrow shows a direction of movement corresponding to the rotational error from the new starting position.

Different food locations and starting positions were used in different trials. B: Reference memory task. The

experimental protocol is the same as in A except that the starting position (cross) and food location (circle)

remain constant from trial to trial. C: Bars show percentage of correct choices, rotational errors, and misses for

real (black; data from Cheng, 1986) and simulated (dark gray; Environment B–II) rats in the experiment

described in A. Animal data combine the rat choices in two versions of the working memory task (Cheng, 1986).

Results of the same task performed by the simulated rats in the cue-rich (N–I) and symmetric (N–IIIa)

environments are shown in light gray and white, respectively. D: Smoothed ratio of the number of rotational

errors and that of correct trials during the simulation of the reference memory task described in B, as a function

of the number of trials (see Method section of Simulation 3). The dotted and dashed lines show the asymptotic

ratios for the real rats in the working memory and reference memory experiments, respectively (Cheng, 1986).

Anim. � animal; Rot. � rotational; Sim. � simulation; Symm. � symmetric.
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Figure 12. Allocentric coding in the view-cell population. A: Absolute values of the error in heading

estimation in the simulated environment of Cheng (1986; Environment B–II, left), the cue-rich Environment N–I

(middle), and the symmetric Environment N–IIIa (right) for one simulated animal. Bin size 2°. B: Receptive

fields of example view cells in the three environments, calculated using a view-based estimation of the

allocentric heading (see Method section of Simulation 3). Arrows show the position and orientation of the

simulated rat at which the corresponding snapshots were taken. Note that the receptive fields of view cells are

double peaked in Environments B–II (left) and N–IIIa (right) but are single peaked in the cue-rich Environment

N–I (middle). The cells in B–II and N–I are the same as those shown in Figure 3C. C, D: Activity in

the population of view cells when the simulated rat is located at the position and orientation that correspond

to the preferred position and orientation of the cells shown in B. Each dot represents a view cell. The position

of the dot represents the location from which the snapshot was taken when the view cell was learned. The

elevation of the dot from the horizontal plane and its color correspond to the activity of the cell (colors from blue

to red code for activity levels from low to high). C: Population activity when the allocentric heading is estimated

correctly. D: Population activity when the heading is estimated with 180° error. Abs. � absolute.
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visual cues that gives rise (in the case of a rectangular environment

with different lengths of adjacent sides) to two different choices of

directional reference. This ambiguity is resolved during head di-

rection estimation (see Appendix, Equation A10) such that, on the

level of view cells and place cells, the information about the cue

ambiguity is lost and cannot be used to correct the rotational error,

even after the rat fails to observe the food at the expected location.

In other words, the animal does not keep a memory of its initial

uncertainty. This is a direct consequence of our model approach

and could be tested in experiments.

General Discussion

We have presented a model of navigation that is able to use an

egocentric taxon strategy and an allocentric locale strategy to

remember a goal location. The taxon strategy associates momen-

tary views of the environment (snapshots) directly with rewarded

motor actions and supports S-R behavior. The locale strategy is

based on the memorized representation of the environment, which

is built by associating visual snapshots with path integration in

populations of grid cells and place cells. Place cells become

associated with rewarded motor actions during goal learning, sup-

porting place-based navigation.

Our model uses a view-based approach to (a) explain several

key neurophysiological properties of grid cells and place cells, (b)

reproduce S-R and place-based behaviors of normal and lesioned

rats in the water maze, and (c) provide an explanation for key

experimental results concerning the influence of environmental

geometry on goal-search behavior. The view-based approach to the

study of place-sensitive activity in the hippocampal formation

provides an alternative to other approaches that require calculation

of distances to environmental boundaries (Barry et al., 2006;

Hartley, Burgess, Lever, Cacucci, & Keefe, 2000) or landmark

detection (Sharp, 1991; Touretzky & Redish, 1996). Moreover, the

view-based explanation of geometry-related effects is biologically

more plausible than the explanation involving a dedicated brain

module for geometry processing (Cheng, 1986; Cheng & New-

combe, 2005; Hermer & Spelke, 1996). These results tie together

four important lines of research on animal spatial cognition: the

role of place cells for behavior, the role of different navigational

strategies, the role of geometry of space for spatial orientation, and

the role of learning. These four aspects are now discussed in detail.

Grid Cells and Place Cells

In our model, visual input is represented exclusively by snap-

shots of the environment sampled by a large set of overlapping

orientation-sensitive filters. Despite this simple, low-level repre-

sentation, the model is able to capture a number of neurophysio-

logical properties of grid and place cells: (a) CA1 and dMEC cells

exhibit spatially localized and gridlike firing patterns, respectively

(Fyhn et al., 2004; O’Keefe & Conway, 1978); (b) anatomical

topology is not observed in the CA1 population, but cells in the

dMEC are organized in several subpopulations with different

spatial frequencies and orientations (Hafting et al., 2005; Muller &

Kubie, 1987; O’Keefe & Conway, 1978); (c) firing fields of both

cell types rotate following a rotation of visual cues (Hafting et al.,

2005; Muller & Kubie, 1987); (d) CA1 cells stretch their fields if

the environment is stretched, and some place fields disappear when

the environment is shrunk (O’Keefe & Burgess, 1996; Redish et

al., 2000); and (e) firing fields of entorhinal grid cells rescale in

response to stretching or shrinking of the environment (Barry et

al., 2007).

Computational models of place cells (Arleo & Gerstner, 2000;

Burgess, Recce, & O’Keefe, 1994; Hartley et al., 2000; Kali &

Dayan, 2000; Samsonovich & McNaughton, 1997; Sharp, 1991;

Touretzky & Redish, 1996; to cite only a few) and grid cells

(Burgess, Barry, & O’Keefe, 2007; Fuhs & Touretzky, 2006;

McNaughton et al., 2006; Rolls, Stringer, & Elliot, 2006) are

numerous. In this work, we do not propose a new model of place

cells or grid cells but rather try to answer the question whether the

feed-forward projection hypothesis for CA1 place-cell formation is

consistent with known properties of place cells, for example,

dependence of place-field shapes on the geometric layout of the

environment (O’Keefe & Burgess, 1996), or their dynamics during

movement along a shrinking linear track (Gothard et al., 1996).

The results of our simulations suggest that the answer is positive.

Several previous models of place cells have addressed the issue of

place-field deformation in response to environment manipulation

(Byrne et al., 2007; O’Keefe & Burgess, 1996; Samsonovich &

McNaughton, 1997), while the phenomenon of rescaling of ento-

rhinal firing patterns has not been considered so far, and hence, our

results are novel in this respect.

The key property of place cells is that their spatial firing fields

are fixed with respect to the external environment, making it

possible to treat their activity as a location signal. In our model,

this property is mainly due to the connections from view cells (via

grid cells) to place cells. The activity of a view cell depends

strongly on the current allocentric location of the animal and only

weakly on the current allocentric orientation (see Figure 3), such

that a population of view cells can reliably fix the place field in the

environment. Hartley et al. (2000) put forward a model of place-

cell firing in which boundary vector cells (BVCs) play a role

similar to that of view cells in our model. A BVC responds

maximally when the set of distances to currently observed bound-

aries matches those to which the BVC is tuned. Consider an

environment in which the only visual cues are formed by the edges

of a wall (i.e., no visual pattern is present on the wall, the floor, or

the ceiling of the environment). Under the assumption that the

current allocentric heading is estimated correctly, a view cell that

stores a snapshot in direction � in this environment would be

equivalent to a BVC with preferred direction �. The preferred

distance of the BVC would be encoded in the position of the wall

edges on the snapshot image.

However, despite their equivalence in some cases, view cells are

conceptually different from BVCs, since distance calculation and

image matching are quite different operations. The difference is

immediately seen if, in our example, the height of the wall is

changed after the environment has been explored. The change in

the wall height would cause view cells in our model to fire in a

different location, defined by view matching. In a navigation task,

such a change would cause the animal to search for a goal in a

different position, with respect to the environment where the

height of the wall remained the same. No such change would be

observed in the BVC model. To our knowledge, there is no

experimental data on rats that can provide direct support for one or

the other model. For species other than rats (e.g., honeybees and

pigeons), experimental evidence has suggested that visual infor-
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mation is treated differently depending on the species (K. Cheng,

personal communication, November 3, 2008).

The model of place-cell firing described here includes visual

input and path integration and does not take into account the

potential role of olfactory and tactile information. This is a clear

limitation of the present model and has to be addressed in future

work.

Taxon and Locale Strategies

On the behavioral level, the model reproduces rat behavior in

variable- and constant-start versions of the water-maze task and is

consistent with a number of lesion studies. In a common view,

locale strategies involve cognitive mapping abilities that allow the

animal to compute its path (i.e., perform some sort of trajectory

planning) toward the place where the goal was encountered pre-

viously (Morris, 1981; O’Keefe & Nadel, 1978). This is usually

put in contrast to S-R learning, which associates motor responses

to relevant stimuli using Pavlovian-like conditioning mechanisms

(Devan & White, 1999; Packard & McGaugh, 1996).

In our model, both taxon and locale strategies learn to approach

the goal using the same reward-based algorithm that associates

stimuli with motor responses, and hence, both can be considered as

S-R-based strategies, in contradiction to the common view. The

distinction between the two strategies in our model lies in the fact

that the notion of stimulus S is interpreted differently for the two

strategies. In the case of taxon strategy, the stimuli are directly

encoded as visual features and become associated with motor

actions during reward-based learning. In contrast, the locale strat-

egy is learned in two phases: First, the visual features are pro-

cessed to yield place-cell activities in a phase of unrewarded latent

learning; second, the place-cell activities are used as stimuli during

the S-R learning phase.

Despite the fact that the locale strategy in the model is based on

S-R learning and does not involve trajectory planning, the behavior

of the simulated rat in the Morris water-maze task is remarkably

similar to that of real rats. This suggests that for wide range of

navigation tasks in which an animal has to remember the position

of a hidden goal in a fixed environment, the navigation strategy

that is often termed cognitive or map-based can be implemented by

a simple, associative learning mechanism (Chamizo, 2003), based

on place cells. It does not exclude, of course, that true planning

abilities may be needed in other spatial tasks, such as those that

require making shortcuts.

Influence of Environmental Geometry

An important conclusion from our results concerns the effects of

environmental geometry on the activity of spatially selective cells

and goal-oriented behavior. Our results suggest that the influence

of geometry of space observed in experimental data is a by-product

of visual information processing. Rotational errors, observed dur-

ing reorientation in rectangular arenas, are caused in the model by

the structure of visual inputs, rather than by the arena geometry.

Hence, we argue that the concept of a geometric module is not

necessary. More precisely, (a) if the geometric module is viewed

as a separate brain structure responsible for geometry-related cal-

culations, then there is no need of such a structure, since our model

can reproduce Cheng’s (1986) results without it; and (b) if the

geometric module is meant to be a theoretical abstraction, then we

question the explanatory power of this abstraction. In environ-

ments in which the arrangement of walls is symmetric, the edges

of walls represent ambiguous cues, whereas visual patterns at-

tached to the walls (e.g., landmarks) represent nonambiguous cues.

Behavioral decisions made on the basis of the ambiguous cues may

appear to be caused by the arena geometry but could in fact be

based on sets of local features arranged in a symmetric and hence

ambiguous configuration. The latter seems to us to be a more

parsimonious explanation.

The idea that a simple navigation strategy based on view-based

matching may explain the rotation errors in the experiment of

Cheng (1986) was very recently investigated by Stürzl et al. (2008)

in parallel to our own work (Sheynikhovich, 2007). They showed

that a simple snapshot-matching navigation strategy can explain

rotational errors in a quasi-symmetric environment similar to the

one used in the experiment of Cheng. Apart from proposing the

link between the orientation errors and activities of place cells and

grid cells in the hippocampal formation, our present model extends

their findings in two important ways. First, our model proposes a

biologically plausible mechanism of reward-based learning of nav-

igational strategies, whereas, in the standard view-based matching

algorithms, the navigating animal moves in such a way as to

increase the match between the currently visible snapshot and the

a priori known target snapshot (Collett & Collett, 2002; Stürzl et

al., 2008). Second, due to the learning of two different strategies in

the model, we were able to account for the persistence of rotational

errors during working memory experiment, and for the decrease of

the errors during the reference memory experiment of Cheng.

Although, in both cases, the rotational errors were caused by the

ambiguity in the visual input, there is a fundamental difference in

the way the two navigational strategies deal with this ambiguity in

the model. During reorientation required by the locale strategy,

rotational errors result from the matching process between the

currently perceived snapshots and all snapshots stored in memory

during exploration. Since snapshots are taken in random direc-

tions, the ambiguity of visual cues and the number of rotational

errors do not decrease with reward-based training and are inde-

pendent of the starting location. The situation is different for the

taxon strategy that associates incoming snapshots with rewarded

rotation angles. In the beginning of training in the constant-start

condition, the number of snapshots that are already associated with

turns by the correct angle is low, and the number of rotational

errors is high (see Figure 11D). However, as the learning contin-

ues, progressively more snapshots become associated with corre-

sponding rotations, leading to the decrease of rotational errors with

training. In other words, the model suggests that the decrease in the

number of rotational errors when switching from variable to con-

stant starting positions might be due to change in navigational

strategy.

We would like to emphasize that although, in our simulations,

the effect of geometry was due to the presence of opaque walls

surrounding the arena, the wall presence is not a necessary con-

dition for the model to work. Figure 13 illustrates this point. In

Figure 13A (top), we show a snapshot taken from the center of the

simulated water-maze environment, with a gray circular wall,

white water, and multiple background cues. Even if the wall is

made absolutely transparent (see Figure 13B, top), the edge

formed by the surface of the maze and the background can still be
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visible (unless special precautions are taken to diminish the visi-

bility in the experiment) and can be used as a cue. The same holds

true for the case of the edge formed by a drop (i.e., when an

elevated experimental arena has no walls; Barry et al., 2006). The

bottom panels in Figure 13 show the filter responses to the corre-

sponding snapshots. In an environment with a lot of polarizing

background cues, the filter responses to the edge of the arena

surface might not play an important role, whereas, in a visually

impoverished environment, they might provide information about

the position of the animal with respect to the maze edge (which

might be interpreted as encoding of the distance to the transparent

wall, Maurer & Derivaz, 2000, or to the drop, Barry et al., 2006).

Latent Unsupervised Learning Versus

Reward-Based Learning

In our model, visual input is encoded by an ensemble of view

cells. Each view cell has learned and stored a particular view of the

environment during exploration. The learning and recruitment

occur in an unsupervised manner and are independent of reward.

Similarly, the connections between view cells and grid cells and

those between grid cells and place cells are set according to an

unsupervised Hebbian learning rule. Hence, the representation of

the environment by place cells is formed in a completely unsuper-

vised manner, that is, independent of the reward structure, akin to

the concept of latent learning in psychology.

Given the representation by place cells, the model learns to

perform the appropriate actions to reach the escape platform using

locale navigation strategy. The learning of the locale strategy is

triggered by reward given at the target location. Hence, the locale

pathway in our model has a preprocessing stream from visual input

to place cells that is independent of reward and formed by latent

unsupervised learning. Preprocessing is followed by the associa-

tion between places and actions learned by reward-modulated

plasticity. The taxon strategy in our model is, as a whole, reward

dependent, since the association between visual input and actions

is learned by reinforcement learning.

We speculate that the differences in learning between the two

pathways may partially explain recent experiments of blocking and

overshadowing effects that show a difference between local in-

tramaze landmarks and global environmental shape on goal-search

behavior (Doeller & Burgess, 2008; Hayward, Good, & Pearce,

2004). In a pure reward-based learning paradigm, if one stimulus

is learned to reliably predict reinforcement, it will prevent (or

block) learning of associations between other stimuli and the

reinforcement. For example, if a visual cue present in the view

field predicts that turning by an angle � will result in reward (e.g.,

by strengthening connection weights between the visual filters

corresponding to the position of the cue in the snapshot and the

action cell corresponding to turning angle �), then adding a second

visual cue will not give rise to a weight increase between the

second cue and (the same) action cell (resulting from the fact that

� in Equation A4 in the Appendix will be equal to 0 after the

association between the first cue and reward has been learned).

Thus, since taxon navigation in our model is based on pure S-R

association learned by a reinforcement learning rule, taxon navi-

gation should show overshadowing or blocking. Consequently, an

object that was learned to be consistently located with respect to a

first landmark cannot be located with respect to a second landmark

that is added on, or made consistent, only later (Doeller & Burgess,

2008).

For the locale strategy, however, the situation is different. If a

sufficiently salient cue (i.e., the one that triggers creation of new

view cells) is added after an object location has already been

learned by the locale strategy, the new view cells might become

associated by unsupervised Hebbian learning with grid cells and

place cells in the initial (reward-independent) processing stream

from visual input to place cells. These new view cells will then be

able to drive behavior (via the connections to grid cells and place

cells to action cells) even in the absence of the previously learned

cues. This might explain why learning an object location with

respect to one part of the wall does not block learning with respect

to another part of the wall in a circular maze (Doeller & Burgess,

2008). In our simulations, a part of the wall constitutes a prominent

visual cue and hence could potentially be encoded by new view

cells that are formed independent of reward.

Finally, the model assumptions that the taxon and locale strat-

egies can be learned in parallel and are mediated by separate

memory systems suggest an explanation for the absence of block-

ing and overshadowing between intramaze landmarks (that allow

taxon learning) and the shape of the environment (that favors

place-based learning; Hayward et al., 2004; Hayward, McGregor,

Good, & Pearce, 2003). However, a detailed model of interaction

between the two strategies (Chavarriaga, Strösslin, Sheynikhovich,

& Gerstner, 2005a, 2005b) is required to explain the precise

pattern of overshadowing and blocking effects in various cue

configurations and training protocols (Doeller & Burgess, 2008;

Roberts & Pearce, 1998), which is out of the scope of the present

article.

Predictions Derived From the Model

Several predictions can be made in relation to our results con-

cerning the issue of the effect of geometry on place-cell firing and

behavior. First, since rotational errors are mainly caused by the

arrangement of visual features in the environment, their number

can be decreased either by making the overall arrangement of

landmarks nonsymmetric or by making the landmarks sufficiently

different. For example, adding a disambiguating visual feature at

A B

Figure 13. Visual input in the model in the case of transparent walls or

an elevated environment without walls. Top row: Snapshots taken from the

center of a simulated environment consisting of a circular arena with white

surface and opaque gray walls (A) or invisible walls (B), located inside of a

large square room with multiple visual cues and black floor. Bottom row: Filter

representation of the two snapshots. Even in the absence of the opaque wall,

its border with the white arena surface can be detected by the visual system

(filter responses corresponding to the surface edge in the environment with

invisible walls are shown in red).
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the middle of one of the walls should decrease rotational error in

the working memory experiment of Cheng (1986). This prediction

is supported by the data from reorientation experiments with

children, in which rotational errors decreased significantly when a

bookshelf was placed at the middle of one of the walls of the

rectangular testing room (Learmonth, Newcombe, & Huttenlocher,

2001). Second, since the decrease in the number of rotational

errors is explained in the model by strategy switching, we predict

that lesioning the taxon pathway (CP or SNc) will increase the

number of rotational errors in the reference memory task (see

Figure 11B) relative to controls, while not changing the perfor-

mance in the working memory task (see Figure 11A). Third, since,

in our simulations, the variability of starting position strongly

biased the simulated rat toward using the locale strategy, we

predict that changing starting position from trial to trial in the

reference memory experiment of Cheng would result in an in-

crease in the number of rotational errors, with respect to the case

of fixed starting position. Finally, the model predicts that when a

rotational error is committed, place cells (and grid cells) corre-

sponding to the location that is rotationally opposite to the actual

one should be active (Lenck-Santini, Muller, Save, & Poucet,

2002; O’Keefe & Speakman, 1987). In other words, the rat thinks

it is at a different, diagonally opposite place, rather than at the

place where it actually is.
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Appendix

Implementation of the Model

In all simulations, the position of the model rat changed in

discrete time steps �t � 0.125 s. The running speed � of the model

rat was constant and equal to 16 cm/s. The values of model

parameters used in the equations below are listed in Table A1.

Visual Input

An example of a two-dimensional Gabor filter sensitive to

vertical lines in the image is shown in Figure 3B, left (inset), in the

main text. Such a Gabor filter is a two-dimensional complex

wavelet defined in the space domain as

g�x�kl, w� m� � exp��

�x� � x�kl �2

2�g
2 � � exp�iw� m � �x� � x�kl��,

(A1)

where x�kl � �xkl, ykl� is the coordinate of the grid point (k, l) at

which the filter is centered in visual space, w� m/�w� m� defines the

filter orientation, �w� m�/ 2� is the frequency of the modulating

sinusoidal wave, �g is the width of the circular receptive field, and

x� is running over all pixels in the image. Sampling in our model of

visual input is sufficiently dense so that the distance between the

nearby grid points is 2�g. A response of the filter to the corre-

sponding portion of the gray-level image I perceived at time t is

characterized by its amplitude:

rklm
vis �t� � ��ℜ �g�x�kl, w� m�� � I�t��2

� �ℑ �g�x�kl, w� m�� � I�t��2,

(A2)

where ℜ � � � and ℑ � � � are the real and imaginary parts, respec-

tively, and ��� denotes integration over visual space. The set of

K � k � l � m filter amplitudes rj
vis where index j runs over all

grid points and orientations, serves as the internal neural represen-

tation of the visual snapshot observed at time t.

Learning of Taxon and Locale Strategies

Action cell i in the model of caudate-putamen (CP) represents a

particular direction of movement �i � 2�i/Nac, where Nac � 360

cells. The action cells are driven by the responses of visual filters

to input snapshots, such that the activity of a cell i is equal to a

weighted sum of the presynaptic input ri
CP

� �jwij
CPrj

vis. Given the

activities of the action cells in CP, the optimal movement accord-

ing to the taxon strategy consists of an egocentric rotation by angle

�CP defined as the preferred direction of the maximally active cell.

Action cells in nucleus accumbens (NA) are driven by the input

from place cells, and their activity is described analogously to the

cells in CP, that is, ri
NA

� �jwij
NArj

pc, where rj
pc is the activity of

place cell j (see Equation A9). The optimal action encoded by the

activities of the cells in NA is a movement in an allocentric

direction �̂NA defined by the population vector

�̂NA
� arctan

� iri
NAsin��i�

�iri
NAcos��i�

. (A3)

Conversion of the allocentric angle �̂NA to the egocentric motor

action �NA is performed using an estimation of current heading �

(see Equation A11) as �NA
� �̂NA

� �. Here, we apply a

simple algorithmic approach for the readout of the action-cell

activities and their conversion into a unified reference frame. In a

more biologically plausible setting, both operations can be per-

formed by using lateral interactions between actions cells (Deneve,

Latham, & Pouget, 1999, 2001).

How successful a strategy is on a particular trial is determined

by the weights wij
CP for the taxon strategy and wij

NA for the locale

strategy. We apply standard reinforcement learning theory (Sutton

& Barto, 1998) to learn the weight values. The learning algorithms

are identical for the CP and NA populations, and so, we omit the

population index from the equations below. In our model, the

value Q of the movement in direction �i is given by the firing rate

of the corresponding action cell, that is, Q(st, at � �i) � ri, where

ri is the activity of the ith action cell. According to reinforcement

learning theory, optimal action values on subsequent time steps

should be related as Q(st, at) � Rt  �Q(st1, at1). The weights

are adjusted on each time step so as to enforce this relationship:

�wij(t) � � � �(t) � eij(t), (A4)

where � � 0.0001 is the learning rate, �(t) � Rt  �Q(st, at) 	

Q(st	1, at	1) is the reward prediction error, and eij(t) is the

eligibility trace that represents the memory of past actions. The

eligibility trace of a synapse (Sutton & Barto, 1998) is increased

each time the synapse has participated in generating a movement

and decays with a constant ��

eij�t � 1� � exp�� ��i � ��2/ 2��
2�rj � ��eij�t�, (A5)

where rj � rj
pc for the locale strategy, and rj � rj

vis for the taxon

strategy. The exponential term ensures that actions �i similar to

the actually performed action � are also eligible for learning,

thereby providing generalization in the action space (Strösslin,

Sheynikhovich, Chavarriaga, & Gerstner, 2005). A taxon trial is

finished after a single orientation step, and so, the last term in

Equation A5 is always zero for the taxon strategy (i.e., only one

previous action is taken into account). To explore potentially

useful actions, an ε-greedy action selection mechanism is used

during learning: The optimal action is performed with probability

1 	 ε, while a movement in a random direction is chosen with

probability ε(ε � 0.1).

(Appendix continues)
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Grid Cells

In our model, path integration is performed in a network con-

sisting of N identical grid-cell populations, which can be repre-

sented as two-dimensional sheets of recurrently connected neurons

(Fuhs & Touretzky, 2006; McNaughton et al., 2006). The recurrent

connectivity in population n � 1, . . . , N is chosen to form a

two-dimensional attractor map, such that the shape of the activity

profile at the stable state of recurrent dynamics is approximately

constant, while its position P� n�t� on the sheet can change as a result

of an external input. The position of the activity profile in the sheet

is controlled by the animal’s speed and direction of movement, as

well as by visual input, as described below.

The architecture of the attractor network in each sheet, giving

rise to the periodic triangular grid of Gaussian-like firing fields, is

standard and is described in the online supplementary materials.

In this section, we describe the update of an activity profile

position due to a pure self-motion input (i.e., path integration),

while the correction of path integration by visual input is described

later (see Equation A14). If the only available information about

the movement comes from self-motion, then the position of the

activity profile in the grid-cell population n at time t with respect

to its position P� n�t � 1� at the previous time step is given by

P� n
pi�t� � P� n�t � 1� � Rn � ��n s��, (A6)

where Rn is the rotation matrix that defines the mapping of the

movement direction of the animal to the movement direction of the

activity profile across the sheet

Rn � � cos��n� � sin��n�
sin��n� cos��n�

�, (A7)

�n defines the mapping of the animal velocity to the velocity of the

activity profile, and s� � ��pi�t � cos��pi�t��,�pi�t � sin��pi�t��� is the

internal estimation of the change in position with speed and head

direction given by

�pi�t) � �  �,

�pi�t) � �(t 	 1)  ��  �. (A8)

Here, � and � are zero-mean normal random variables with stan-

dard deviations �� and �� (see Table A1), that describe noise in the

internal estimation of the constant animal velocity � and rotation

from the previous time step ��, respectively. The second line in

Equation A8 describes an algorithmic implementation of the inte-

gration of head angular velocity over time, which is thought to be

performed in the brain by a network of head direction cells (Ranck,

1984; Taube, Muller, & Ranck, 1990a, 1990b). For neural models

of the head direction network, see Arleo and Gerstner (2001) and

Skaggs, Knierim, Kudrimoti, and McNaughton (1995). The cor-

rection of the pure self-motion estimate of the head direction at

time t is described later (see Equation A11).

In Equation A7, �n � (n 	 1) � 15°/N, n � 1, . . . , N defines

relative orientations of different grids that, according to the exper-

imental data from Barry et al. (2007), are distributed in the range

from 0° to 15°. The experimentally observed spacings between the

grid vertices (Hafting et al., 2005) were simulated by appropriately

Table A1

Model Parameters

Parameter Variable Value

1. Time step, s �t 0.125
2. Running speed of the simulated rat, cm/s � 16
3. Horizontal view field of the simulated rats, degrees V 300
4. Size of the visual filter grid K 9,216
5. Gabor filter spatial width, degrees �g 1.8
6. Size of the action-cell populations Nac 360
7. Reward-based learning rate � 10	4

8. Future discount factor � 0.8
9. Eligibility trace decay factor � 0.8

10. Probability of a random action ε 0.1
11. Width of generalization profile in the action space, degrees �� 20
12. Number of grid-cell populations N 6
13. Size of the grid-cell population Ngc

2 625
14. Standard deviation of the Gaussian noise in the self-motion

estimate of speed and direction, in percent of the change from
previous step (testing/exploration) ��,�� 10/0.0

15. Lateral spread of the weightsa �hex 1.2
16. Divisive normalization constanta � 0.015
17. Place-cell activity threshold �pc 0.6
18. Firing rate threshold to consider a cell highly active �act 0.7
19. Number of active cells to consider a location as familiar T 15
20. Calibration constant for head direction (during testing/upon entry)  hd 0.7/1.0
21. View-cell directionality �� 1.2
22. View-cell activity amplitude A 1
23. Width of the visual Gaussian in the filter space �vc 0.6
24. Calibration constant for position (during testing/upon entry)  pos 0.1/1.0

Note. The main free parameters that were adjusted to produce the simulation results are 5, 11, 17, 18, and
20–24. Other parameters were set either directly from available experimental data (e.g., 2 and 3; see text) or according
to standard computational principles that govern learning (e.g., 7–10) or self-organization (e.g., 15 and 16).
a This parameter of the grid-cell network model is described in the supplementary materials.
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tuning the values of the parameters �n. Although grid orientations

in the dorsomedial entorhinal cortex change independently of grid

spacings, in the model we use the same index n for both the

spacings and orientations (an arbitrary permutation of �n indepen-

dent of �n does not change any of the results). Upon the entry into

a environment (i.e., at time t � 0), the activity packets are assigned

arbitrary positions in the corresponding charts and current heading

is initialized by an arbitrary angle (we use �(0) � 0).

Place Cells

Place cells are driven by feed-forward input from the grid cells.

Activity of cell i is given by

ri
pc

� ��
j

wij
pcrj

gc
� �pc�



, (A9)

where rj
gc is the activity of grid cell j, wij

pc is the connection weight,

and �pc is the activity threshold ([x] � x if x ! 0 and [x] � 0

otherwise).

During exploration, a place cell is recruited from a pool of

cells if the current location is represented by less than T �

15 sufficiently active place cells, that is, �kH�rk
pc

� �act�

� T, where H�x� � 1 if x � 0 and H�x� � 0 otherwise. At

the moment of recruitment, the weights wij
pc of the cell i are set

equal to the normalized activity of the grid cells, that is,

wij
pc

� rj
gc�t�/�j�rj

gc�t��2, where t is the time step of exploration at

the moment of recruitment. The weights of this form can be

learned online using any self-normalizing competitive learning

rule (see, e.g., Oja, 1982).

Snapshot-Based Estimation of Head Direction

Equation A8 represents a purely idiothetic update of the current

estimate of head direction, and hence, (a) it is subject to the

cumulative error, and (b) it has to be reset upon the entry to a

familiar environment. The solution for both problems requires the

knowledge of an allocentric estimate of the head direction. We use

the following snapshot-based reorientation procedure. Suppose

that a local view i taken from a location x has been stored in

memory together with the corresponding head direction �i. At a

later time, the model animal returns to the same location but with

an unknown head orientation. To estimate the unknown head

direction �, we determine the angle �� � � 	 �i that leads to

the best alignment of the current local view with the stored one.

The goodness of an alignment with shift �� is given by the

cross-correlation Ci(��) between the current view and the stored

view i. Searching for the maximum of Ci across all possible shifts

�� yields the correct angle � � �i � argmax
��
�Ci�����.

Generalizing this idea to all the views taken from all different

locations yields the allocentric head direction estimate

�vis
� argmax

�� �
i

Ci�����
�i����

� . (A10)

Correction of the idiothetic estimate of head direction �pi (see

Equation A8) is performed at each time step according to the

following formula:

��t) � �pi   hd(�
vis 	 �pi), (A11)

where  hd defines the amount of correction. Upon the entry to a

familiar environment, head direction � is initialized with value

�vis by setting  hd � 1. While our model of the head direction

network (see Equations A8 and A11) is algorithmic (Franz,

Schölkopf, Mallot, & Bülthoff, 1998), rather than neuronal, it

captures the fact that head direction cells are anchored to visual

cues of the environment (Mizumori & Williams, 1993).

Readjustment of Path Integration

View cells are used in the model to perform vision-based

correction of the idiothetic estimate of the current position, per-

formed in the network of grid cells (see Equation A6). Similarly to

the simulated place cells, a new view cell is recruited at each time

step during exploration, unless T � 15 view cells are strongly

active. Upon recruitment, the new view cell i is initialized with a

basis function center "� i
vc with components "ij

vc
� rj

vis�t� that

represents the current view at time t (see Equation A2). At the

same time, we store the estimated momentary head direction �i �

�(t) in which this view was taken (given by Equation A11). If the

simulated rat observes later a different view with an estimated

head direction �, the stored view "� i
vc is rotated by the angular

difference (� 	 �i), and view cell i responds with the activity

ri
vc

� A exp�� 1

2�vc
2 � 1

#i

�r�vis
� "� ı̂

vc��
2

�

� exp�cos�� � �i� � 1

��
2 � , (A12)

where A is the amplitude, "� ı̂
vc is the center of the radial basis

function after rotation by an amount � 	 �i (note the hat over

the i), r�vis is the vector of amplitudes of the Gabor wavelets

corresponding to the currently observed view, ||.|| is the Euclidean

norm, and #i � V 	 (� 	 �i) is a normalization factor that

accounts for the overlap of the two visual fields in the angular

plane. The second exponential term gives more weight to the

comparisons with larger overlap # of the visual fields (�� � 1.2).

This factor ensures that only views that have been taken in similar

head directions are compared with each other. Note that a simple

view-matching approach without rotation and alignment of views

would show negligible similarity for differences in head directions

(Appendix continues)
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� 	 �i larger than the width of a single Gabor filter (i.e., �g in

Equation A1 expressed in angular coordinates). The value of the

parameter �vc, controlling the sensitivity of the visual system, was

chosen such that the average width of the receptive field of a view

cell was equal to 
10 cm. The view-cell activities given by

Equation A12 represent a distributed code for the allocentric

position of the simulated animal in a familiar environment. An

example of the receptive field of a view cell and dependence of the

view cell firing from the head direction of movement through the

field (i.e., the head direction) are shown in Figure 3C in the main

text.

Readjustment of the path-integration network is performed via

associative connections between view cells and grid cells. We set

the connection weight wij
vis projecting from view cell j to grid cell

i depending on the size of the spatial overlap between the regions

in space where these cells are strongly active (i.e., the firing rate of

the cell exceeds �act), resulting in the following expression for the

weight values:

wij
vis

� Z 	1�
x,y,$

�ri
gc�x,y,$� � �act� � �rj

vc�x,y,$� � �act�,

(A13)

where Z is the normalization term ensuring that �j�wij
vis�2 � 1, @i; x,

y, $ are the spatial positions and orientations visited by the

simulated animal during exploration. Equation A13 can be

interpreted as the result of Hebbian learning between view

cells and grid cells, with rj being the presynaptic and ri the

postsynaptic firing rates. Given the weights, a stimulation of the

visual system alone will cause a location signal P� n
vc in each of the N

grid-cell populations, which is used to update the path integrator

P� n�t� � P� n
pi�t� �  pos�P� n

vc�t� � P� n
pi�t��, (A14)

where P� n
pi is the estimation of the new position due to the pure

self-motion input (see Equation A6) and  pos controls the impor-

tance of visual input. A relatively high value of the activity

threshold for the weight values (�act � 0.7) ensures that only

strongly active grid cells and view cells become connected, such

that the location signal induced by the visual system activates only

a small subset of grid cells in each population.

If an animal enters a familiar environment (i.e., with existing

place-cell population), the reorientation procedure is performed,

which consists of (a) determining the allocentric head direction by

calculating �vis according to Equation A10, (b) determining the

allocentric position by calculating view-cell activities ri
vc according

to Equation A12, and (c) initializing the activity profile positions

in all grid-cell populations according to the view-cell activities

propagated via the connections with strengths wij
vis.
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