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Abstract

This paper analyzes the dependence of average consumption on the
saving rate in a one-sector neoclassical Solow growth model with pro-
duction shocks and stochastic rates of population growth and depreci-
ation where arbitrary ergodic processes are considered. We show that
the long-run behavior of the stochastic capital intensity, and hence av-
erage consumption along any sample-path, is uniquely determined by
a random fixed point which depends continuously on the saving rate.
This result enables us to prove the existence of a golden rule saving rate
which maximizes average consumption per capita. We also show that
the golden rule path is dynamically efficient. The results are illustrated
numerically for Cobb–Douglas and CES production function.

Key words and phrases. Stochastic Solow model, Golden Rule, random
fixed points, random dynamical systems.

JEL classification numbers. E13, C60, O41.

1 Introduction

The existence of a golden rule saving rate for the Solow growth model is
a standard textbook problem, see e.g. Phelps (1966) and Barro and Sala-
i-Martin (1995). The analogous question for the stochastic Solow model,
however, has not been studied in the literature so far to the author’s best
knowledge. If productivity, population growth, or depreciation is subject to
exogenous perturbations, the analysis of the descriptive Solow growth model
requires methods different from those applied in the deterministic case. A
first analysis of this stochastic growth model is due to Mirman (1972,1973).
Using the framework of Markov processes, he could prove existence and
uniqueness of stationary probability measures (Markov equilibria) for the
Solow model with i.i.d. (independent and identically distributed) production
shocks.

In the last 25 years, our understanding of the dynamical properties of
non-linear stochastic dynamical systems has improved dramatically. This
opens the door to the study of stochastic economic models and problems
that have not been tractable before. In this paper, we apply random dy-
namical systems theory for the study of the stochastic Solow model. This
theory, which is comprehensively presented in the monograph by Arnold
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(1998), provides a coherent mathematical description of non-linear dynam-
ical systems with randomness. An increasing number of methods for the
analysis of stochastic systems is being developed using this framework.

Here, we employ the concept of a random fixed point to prove the exis-
tence of a golden rule saving rate for the stochastic Solow model in which
the productivity and the rates of population growth and depreciation are
subject to perturbations stemming from arbitrary ergodic processes. This
approach has been used in Schenk–Hoppé and Schmalfuss (in press) to de-
scribe the long-run behavior of the capital stock in the stochastic Solow
model. We will apply their main result on the existence of a unique globally
attracting random fixed point.

Due to the presence of exogenous shocks, consumption in each period de-
pends on the past realization of shocks and the initial capital stock. We will
first prove that average consumption along each sample-path of the stochas-
tic Solow growth model is well-defined and independent of the particular
realization of the sequence of shocks and of the initial capital stock. There-
fore, the average consumption of an infinitely lived representative agent is
independent of the prevailing history of perturbations. Since the shocks
are assumed to be ergodic processes, average consumption is equal to the
mean of consumption at the random fixed point. A central result of this
paper then ensures that the average consumption is a continuous function
of the saving rate. A direct consequence of these findings is the existence
of a golden rule saving rate yielding maximal average consumption. We
also prove a dynamic efficiency result which ensures the importance of the
golden rule in the stochastic Solow growth model. Our results are illustrated
numerically for Cobb–Douglas and CES production function.

The remainder of the paper is organized as follows. Section 2 introduces
the stochastic Solow model and explains the model of the parameter fluc-
tuations. In Section 3 we analyze the long-run behavior of the stochastic
Solow model using the concept of a random dynamical system. Section 4
contains the main result of this paper on the existence of a golden rule sav-
ing rate. Dynamic efficiency of the golden rule path is proved in Section 5.
Two examples are studied in Section 6.
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2 The Model

In this paper, we analyze the generalization of the neoclassical Solow (1956)
growth model given by

kt+1 = hs(θtω, kt) :=
(1− δ(θtω)) kt + s ξ(θtω) f(kt)

1 + n(θtω)
(1)

The stochastic parameters depreciation rate δ(θtω), population growth rate
n(θtω), and production shock ξ(θtω) are assumed to be ergodic processes.
This models exogenously determined stationary fluctuations of the respec-
tive parameters. Fluctuations in the population growth rate represent
changes in the birth and death rates as well as labor migration. A dis-
cussion on exogenous stochastic depreciation rates is provided by Ambler
and Paquet (1994). The saving rate s is assumed to be deterministic pa-
rameter, fixed for all times. f is a neoclassical production function. At each
period of time, the capital intensity kt+1 in the next period is a random
variable whose state is determined by the realization of the stochastic pa-
rameters δ(θtω), n(θtω), and ξ(θtω), and by the capital intensity kt in the
current period.

Throughout the paper we impose the following conditions on the param-
eters:

(i) δ(ω) ∈ [δmin, δmax] ⊂ [0, 1]

(ii) n(ω) ∈ [nmin, nmax] ⊂ ]− 1,∞[

(iii) ξ(ω) ∈ [ξmin,∞[⊂ ]0,∞[, and Eξ < ∞
(iv) δmax + nmax > 0

Under these assumptions, the stochastic rate of population growth is in a
compact interval and there is a lower bound on the production shock. The
production function satisfies an Inada-type condition:

(v) f : R+ → R+ is increasing, strictly concave, and continuously differ-
entiable. 0 ≤ limk→∞ f ′(k) < (δmax + nmax)/ξmin. If f(0) = 0, then
f ′(0) = ∞. (No condition is needed if f(0) > 0.)

Using a mathematical description of the stochastic parameters from er-
godic theory, we can model stochastic processes as dynamical systems. Let
(Ω,F , P) denote a probability space, and let θ : Ω → Ω be a bi-measurable
map (i.e. θ is measurable and θ−1 exists and is measurable) such that θ is er-
godic with respect to P (i.e. for all F ∈ F such that θF = F , P(F ) ∈ {0, 1}).
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Then the family of mappings θt : Ω → Ω, t ∈ Z forms a measurable flow,
i.e. θ0 = idΩ, θt = θ ◦ ... ◦ θ (t-times) for t > 0, and θ−t = θ−1 ◦ ... ◦ θ−1

for −t < 0. The tupel (Ω,F , P, (θt)t∈Z) is called an ergodic dynamical sys-
tem. For each measurable function g : Ω → R, g(θtω) is an ergodic process
defined for all times t ∈ Z. In particular, any real-valued ergodic process
has such a representation, cf. Arnold (1998, Appendix A.1). The canoni-
cal representation is as follows. Let ξt be an ergodic process with values
in a Borel set X ⊂ R. Define the sample-path space Ω = XZ, the Borel
σ-algebra F = B(Ω), and let P denote the probability measure which is
defined by the finite-dimensional distributions of ξt. (Existence follows from
Kolmogorov’s fundamental theorem.) For instance, if ξt is an i.i.d. process
with distribution λ then P = λZ is the product measure. The mapping θ
is defined as θtω(·) := ω(t + ·). The sequence of random variables Ω → X,
ω 7→ θtω(0) = ω(t) is the process we started with.

In (1), the stochastic parameters are defined over a common ergodic
dynamical system. However, note that these processes may have arbitrary
correlation and, in particular, may be independent.

Let us briefly discuss the implications of assumptions (i)–(v) for the de-
terministic Solow model which is obtained from (1) by choosing the ergodic
processes δ(ω) ≡ δ, n(ω) ≡ n, and ξ(ω) ≡ ξ. Then (1) becomes

kt+1 = hs(kt) :=
(1− δ) kt + s ξ f(kt)

1 + n
(2)

the Solow model with production function ξf(k).
If n + δ > 0, s ξ > 0, and f satisfies (v), then (2) has a unique positive

fixed point, denoted by ks(ξ, n, δ), which is globally asymptotically stable.
This result is obtained as follows: Fix any saving rate s > 0. Then condi-
tion (v) implies hs(k) > k for all sufficiently small k > 0, and hs(k) < k for
all sufficiently large k > 0. We further have that hs(k) is continuous in k,
increasing, and strictly concave. From these observations one can straight-
forwardly conclude existence, uniqueness, and global asymptotic stability of
ks(ξ, n, δ). For s = 0, we define k0(ξ, n, δ) := 0, which is the unique steady
state in this case.

The following result is straightforward from conditions (i)–(v) and the
preceding discussion.

Lemma 2.1 For each 0 ≤ s ≤ 1 the set

G(s) := [ks(ξmin, nmax, δmax),∞[

is forward invariant, i.e. hs(ω, G(s)) ⊂ G(s) for all ω. ks(ξmin, nmax, δmax)
denotes the unique positive steady state of (2) with respective parameters.
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This result ensures that for any initial capital intensity larger than or equal
to ks(ξmin, nmax, δmax) the economy will never (i.e. for no feasible sequence
of shocks and at no subsequent period of time) experience a capital intensity
less than ks(ξmin, nmax, δmax).

We also have to make an assumption on the expected value of the con-
traction rate of the maps hs(ω, k) at the left-hand boundary of the forward
invariant set G(s). This condition ensures convergence of sample-paths of
capital intensities. (E denotes the expected value with respect to P.)

(vi) There exists a c > 0 such that

sup
0≤s≤1

E log h′s(ω, ks(ξmin, nmax, δmax)) ≤ −c < 0

By the defining equation (1) one has that h′s(ω, k) = 1−δ(ω)+sξ(ω)f ′(k)
1+n(ω) for

s > 0, and h′0(ω, k) = (1− δ(ω))/(1 + n(ω)) for s = 0.
Assumption (vi) implies that the law of motion h is a contraction (in

the sense that the mean value of the rate of contraction is negative) at the
capital intensity ks(ξmin, nmax, δmax). Moreover, the rate of contraction is
uniformly bounded away from zero with respect to the saving rate s. Since
h is concave this implies that h is contracting on average (uniformly in s)
at any larger capital intensity. In the deterministic case (vi) is equivalent
to asymptotic stability of the fixed point ks(ξ, n, δ) for each 0 ≤ s ≤ 1; but
this is obviously satisfied under conditions (i)–(v) according to the above
discussion.

3 The Long-Run Behavior

In this section we present the main result on the long-run behavior of the
stochastic Solow model (1). We need to introduce the notion of a random
dynamical system which is the key concept in the further analysis. A random
dynamical system consists of two ingredients: (1) an ergodic dynamical
system as a model of the perturbation and (2) a dynamical system that
is coupled to this ergodic dynamical system. Fix any sample-path of the
stochastic parameters, i.e. fix any ω ∈ Ω, and let k be an initial value
for the capital intensity. Denote by ϕs(t, ω, k) the state of the system at
time t which is determined by (1). That is, ϕs is generated by iterations
of the random map k 7→ hs(ω, k) (denoted by hs(ω) for short): ϕs(t, ω) =
hs(θt−1ω) ◦ . . . ◦ hs(ω) for t > 0, and ϕs(0, ω) = id. In particular, the
time-one map ϕs(1, ω) = hs(ω). Since hs(ω) is invertible, one has ϕs(t, ω) =
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hs(θ−tω)◦. . . ◦hs(θ−1ω) for −t < 0. Further, each map hs(ω) is continuously
differentiable and thus ϕs(t, ω) : R+ → R+ is continuously differentiable for
all (t, ω).

The family of maps ϕs(t, ω, k) defined by (1) forms a random dynamical
system on R+ over the ergodic dynamical system (Ω,F , P, (θt)t∈Z) modeling
the perturbation. That is, ϕs : Z × Ω × R+ → R+, (t, ω, k) 7→ ϕs(t, ω, k)
is a measurable mapping such that ϕs(0, ω) = idR+ and ϕs(t + u, ω) =
ϕs(t, θuω) ◦ ϕs(u, ω) for all u, t ∈ Z and all ω ∈ Ω. These properties replace
the flow property of a deterministic dynamical system that is generated by
the iteration of a map.

The notions ‘almost surely’ (a.s.) and ‘almost all’ refer to the measure P
of the ergodic dynamical system which models the exogenous perturbation.

Theorem 3.1 Suppose conditions (i)–(vi) are satisfied. Then the random
dynamical system generated by the stochastic Solow model (1) possesses a
unique positive random fixed point k?

s(ω) for each s > 0, i.e. Ω → R++,
ω 7→ k?

s(ω) is a random variable such that a.s.

k?
s(θω) = hs(ω, k?

s(ω)) (3)

The random fixed point k?
s(ω) has the following properties.

(i) k?
s(ω) is globally asymptotically stable, i.e. for all k > 0

lim
t→∞

|ϕs(t, ω, k)− k?
s(θ

tω)| = 0 a.s. (4)

(ii) k?
s(ω) is measurable with respect to the past F− which is defined as the

σ-algebra F− = σ{ω 7→ ϕs(u, θ−tω) | 0 ≤ t ≤ u}.

(iii) k?
s(ω) is tempered, i.e. lim supt→∞(log+ k?

s(θ
tω))/t = 0 a.s. Further,

any tempered random variable y : Ω → R++ converges to k?
s(ω) in the

sense that limt→∞ ϕs(t, θ−tω, y(θ−tω)) = k?
s(ω) a.s.

(iv) If Ek?
s < ∞, the empirical law of each sample-path ϕs(t, ω, k) with

k > 0 is equal to k?
sP, i.e. limT→∞ 1/T

∑T
t=0 1B(ϕs(t, ω, k)) = k?

sP(B)
a.s. for each measurable set B. 1B : R+ → {0, 1} denotes the indicator
map, i.e. 1B(k) = 1 if and only if k ∈ B.

For s = 0, k?
0(ω) ≡ 0 is a unique globally asymptotically stable random fixed

point, possessing all above properties.
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The proof of Theorem 3.1 can be found in the appendix.
A random fixed point is a random variable that is defined over the er-

godic dynamical system which models the exogenous perturbation. For each
sample-path of the perturbation, i.e. for each fixed ω ∈ Ω, the random fixed
point defines a sample-path in the state space via t 7→ k?

s(θ
tω). Equation (3)

says that the random fixed point k?
s(ω) generates a stationary solution to

the stochastic Solow model in the sense that k?
s(θ

t+1ω) = hs(θtω, k?
s(θ

tω))
for all t ∈ Z. If the stochastic variables are trivial, i.e. constants, then a
random fixed point is simply a fixed point of the corresponding determinis-
tic system. In this case, we reobtain from Theorem 3.1 the results already
discussed for the deterministic Solow model.

The stability result (i) says that the evolution of the capital intensity is
uniquely determined by the random fixed point. More precisely, for almost
any sample-path of the stochastic variables, the sample-path of any capital
intensity with positive initial value converges toward the sample-path of the
random fixed point, cf. (4). The interpretation of this result is straight-
forward. Any economic policy that causes a temporary change in the law
of motion of the economy (1) and that leads to a different capital inten-
sity cannot have a long-run effect. After abandoning this policy, the capital
intensity converges again toward the sample-path of the random fixed point.

Result (ii) is not only of technical interest. It asserts that the state of
the random fixed point at each period of time can be constructed from the
sole knowledge of the past, i.e. consumers do not have to correctly anticipate
future events to determine its state.

Result (iii) is a technical result which is needed in the following. Tem-
peredness of the random fixed point tells us that almost any sample-path
t 7→ k?

s(θ
tω) grows sub-exponentially fast. According to a result due to

O’Brien (1982), the only alternative would be that almost any sample-path
grows faster than exp(a t) for any finite a > 0. See Arnold (1998, Sec-
tion 4.1.1), for a thorough discussion of this topic. The contraction prop-
erty, limt→∞ ϕs(t, θ−tω, y(θ−tω)) = k?

s(ω) for any tempered positive random
variable y, provides information on the “attraction strength” of the random
fixed point k?

s(ω). ϕs(t, θ−tω, y(θ−tω)) is the capital intensity at time zero
of an economy with capital intensity y(θ−tω) at time −t < 0, i.e. in the past.
Therefore, any sequence of economies, indexed by t, which has the property
that each economy t starts at time −t with a capital intensity not exceeding
y(θ−tω), leads to a sequence of capital intensities at time zero that converges
toward k?

s(ω).
Result (iv) is a statement on the statistical property of each sample-

path of capital intensities. If agents average over observed capital inten-
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sities, they obtain a stable feature of its long-run distribution: regardless
of the period of time at which the measurement is started, the empirical
measure converges to the probability measure k?

sP. If the random vari-
ables (ξ(θtω), n(θtω), δ(θtω)), t ∈ Z are i.i.d. (independent and identically
distributed), property (iv) ensures that k?

sP is a Markov equilibrium. The
Markov equilibrium is stable in the sense that it is equal to the empirical
measure for almost any sample-path. This renders the corresponding results
in Mirman (1972,1973).

The following result is central to ensure existence of a golden rule in the
next section. The proof is contained in the appendix.

Proposition 3.2 The random fixed point k?
s(ω), defined in Theorem 3.1, is

continuous and strictly increasing in the saving rate s ∈ [0, 1].

4 Existence of the Golden Rule

We are now in a position to study the influence of the saving rate on the
consumption in the stochastic Solow model. Analogous to the deterministic
case we ask whether there is a saving rate such that average consumption
per capita is maximal.

For any sample-path of the stochastic variables, consumption in stochas-
tic Solow model at any period t is given by (1 − s) ξ(θtω) f(ϕ(t, ω, k)). We
know from Theorem 3.1 that the long-run behavior of an economy with a
fixed saving rate s is uniquely determined by the sample-path t 7→ k?

s(θ
tω).

Therefore, average consumption will also be determined by the random fixed
point. Let us assume Eξf(k?

1) < ∞. Then, by Theorem 3.1 (i) and continu-
ity of f , the ergodic theorem yields that a.s.

lim
T→∞

1
T

T∑
t=0

(1− s) ξ(θtω) f(ϕs(t, ω, k)) = (1− s) E (ξ(ω) f(k?
s(ω))) (5)

for all k > 0. This implies that the average consumption along almost all
sample-paths is well-defined and equal to the expected value of the con-
sumption c?

s(ω) := (1 − s) ξ(ω) f(k?
s(ω)) at the random fixed point k?

s(ω).
Obviously, c?

1(ω) ≡ 0, and c?
0(ω) ≡ 0 by Theorem 3.1. For the deterministic

Solow model, c?
s(ω) is equal to the consumption at the non-trivial steady

state.
We are now in a position to state the main result of this paper.

Theorem 4.1 Suppose conditions (i)–(vi) are satisfied. If Eξf(k?
1) < ∞,

then there exists a golden rule. That is, there is a saving rate sgold ∈ [0, 1]
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such that average consumption, Ec?
s = (1 − s)Eξf(k?

s), is maximal for s =
sgold.

Theorem 4.1 extends the well-known result on the existence of a golden
rule saving rate for the Solow model to the stochastic case. In the proof,
which is relegated to the appendix, it is verified that Ec?

s depends contin-
uously on the saving rate. The applicability of this result is fostered by
the next two Corollaries in which sufficient conditions for Eξf(k?

1) < ∞ are
given that are simple to check for specific parameters.

Corollary 4.2 Suppose conditions (i)–(vi) are satisfied. Then there exists
a golden rule, if
(a) f is bounded, or

(b) δmin + nmin > 0, ξ(ω) ∈ [ξmin, ξmax], and lim
k→∞

f ′(k) <
δmin + nmin

ξmax

If the only stochastic perturbations are i.i.d. production shocks, we ob-
tain the following result.

Corollary 4.3 Suppose conditions (i)–(vi) are satisfied, ξ is an i.i.d. pro-
cess, and δ and n are constants. Then the following holds. If limk→∞ f ′(k) <
(δ + n)/Eξ, then there exists a golden rule.

The golden rule saving rate has to be determined numerically in general
because of the lack of a characterization via first-order conditions. However,
for a certain class of production functions, we can prove that the golden
rule for the stochastic model coincides with the one for the associated deter-
ministic model. In this case, the golden rule is determined by an analytical
expression. The result applies to the case of a Cobb–Douglas technology,
see Section 6.

Theorem 4.4 Suppose conditions (i)–(vi) are satisfied, and Eξf(k?
1) < ∞.

If there exists a continuously differentiable function g : [0, 1] → [0, 1] such
that for all k > 0

s f(g(s) k) = g(s) f(k) (6)

then any golden rule fulfills

∂

∂s

(
1− s

s
g(s)

)
= 0 (7)

If (7) has a unique solution, then this solution is the unique golden rule.
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If the production function has the “weighted” homogeneous-of-degree-
one property (6), the random fixed point k?

s(ω) depends on the saving rate
in a very particular way: One has that k?

s(ω) = g(s) k?
1(ω), see the proof of

Theorem 4.4 in the appendix. One also obtains a simple formula for average
consumption: Ec?

s(ω) = 1−s
s g(s) E(ξ(ω) f(k?

1(ω))). From this equation the
characterization of the golden rule given by (7) is straightforward. The proof
also leads to the following

Remark 4.5 (i) Under the assumptions of Theorem 4.4 the golden rule
depends only on parameters of the production function.

(ii) The function g(s) in Theorem 4.4 is strictly increasing by Proposi-
tion 3.2. Further, g(0) = 0 and g(1) = 1.

5 Dynamic Efficiency

We derive a dynamic efficiency result for the stochastic Solow model which
reveals the importance of the golden rule for that model. It is useful to recall
the dynamic efficiency result for the deterministic model first.

In the absence of shocks, consumption is strictly decreasing in all capital
stocks which exceed the capital intensity k?

sgold , the fixed point which is
assigned to the golden rule saving rate sgold in the deterministic case. This
observation immediately implies that any feasible sample-path of capital
intensities k̃t with k̃t ≥ k?

sgold and k̃t > k?
sgold for at least one t cannot

be dynamically efficient: increasing consumption in each period in which
k̃t > k?

sgold such that the next period’s capital stock is not lower than k?
sgold

raises consumption in these periods while it does not harm consumers in all
other periods.

In the stochastic case, average consumption, i.e. consumption averaged
along sample-paths of the capital intensity, is considered, and the golden
rule is defined as the saving rate sgold for which average consumption is
maximal. Note that in the deterministic case average consumption along
each sample-path is equal to consumption at the steady state. Since all
sample-paths along which consumption only differs at most in finitely many
periods yield the same average consumption, our dynamic inefficiency result
can only cover the case in which consumption is altered in infinitely many
periods. This motivates the following definition.

Definition 5.1 A stochastic process of capital intensities k̃(ω) is called
dynamically inefficient if average consumption along almost any feasible
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sample-path t 7→ k̃(θtω) is strictly lower than average consumption asso-
ciated to the golden rule saving rate, i.e.

Ec̃(ω) < Ec?
sgold(ω)

where c̃(ω) := (1− δ(ω)) k̃(ω) + ξ(ω) f(k̃(ω))− (1 + n(ω)) k̃(θω). A sample-
path of capital intensities k̃(ω) is called feasible if c̃(ω) ≥ 0 a.s.

By the ergodic theorem, average consumption along sample-paths is
equal to the expected value of consumption at the random fixed point for
any period of time almost surely. Therefore, average consumption along
any dynamically inefficient stochastic process of capital intensities is strictly
lower than along almost any sample-path at the golden rule saving rate.

Let us first show existence of stochastic processes with feasible sample-
paths along which capital intensities are greater than those associated to
the golden rule. We prove that there is a constant ε̄ > 0 such that for all
processes ε(ω) with 0 ≤ ε(ω) ≤ ε̄ for all ω and Eε(ω) > 0, the sample-paths
t 7→ k?

sgold(θtω)+ε(θtω) are feasible. Obviously it suffices to show that there
is an ε̄ > 0 such that for all ω

k?
sgold(θω) + ε̄ ≤

(1− δ(ω)) k?
sgold(ω) + ξ(ω) f(k?

sgold(ω))
1 + n(ω)

Using (1) and the random fixed point property, this equation is equivalent
to

ε̄ ≤
(1− sgold) ξ(ω) f(k?

sgold(ω))
1 + n(ω)

We readily obtain the existence result from this relation, noting that

0 <
(1−sgold) ξmin f(ksgold(ξmin, nmax, δmax))

1 + nmax
≤

(1−sgold) ξ(ω) f(k?
sgold(ω))

1 + n(ω)

by conditions (i)–(v).
We can now state the main result of this section, see the appendix for

the proof.

Theorem 5.2 Suppose conditions (i)–(vi) are satisfied, Eξf(k?
1) < ∞, and

E
[
δ(ω) + n(ω)− ξ(ω)f ′

(
k?

sgold(ω)
)]
≥ 0. (8)

Each policy which changes the capital intensity k?
sgold(ω) associated to the

golden rule by a feasible amount ε(ω) with
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(a) Eε(ω) > 0; and

(b) Cov
(
ε(ω), δ(ω) + n(θ−1ω)− ξ(ω)f ′

(
k?

sgold(ω)
))
≥ 0

leads to a dynamically inefficient stochastic process of capital intensities.

Theorem 5.2 states that any deviation t 7→ ε(θtω) with Eε > 0 from the
sample-path t 7→ k?

sgold(θtω) is disadvantageous in the sense that it leads to
a dynamically inefficient outcome.

Equation (8) requires that average marginal productivity at the random
fixed point associated with golden rule should not exceed the mean value of
the sum of population growth rate and depreciation. In the deterministic
case condition (8) is satisfied because δ +n = ξf ′(k?

sgold) which characterizes
the golden rule via the first-order condition.

Condition (a) ensures that the feasible stochastic processes considered
lead to a larger average capital intensity than that associated to the golden
rule saving rate. As already pointed out above, any sample-path with
E(k̃(ω) − k?

sgold(ω)) = 0 does not change average consumption and, from
this point of view, does not represent a policy that is distinguishable from
obeying the golden rule. However, the condition Eε(ω) > 0 does not rule out
feasible stochastic processes with lower capital intensities than the golden
rule path at infinitely many periods in time. Such sample-paths may well
be dynamically inefficient.

Condition (b) restricts the feasible deviations from the golden rule path
by requiring a positive correlation between the difference of the sum of de-
preciation and (previous period’s) population growth rate and marginal pro-
ductivity. (b) is obviously fulfilled for a constant positive deviation from the
golden rule path.

6 Two Examples

Two examples are analyzed to illustrate our theoretical results. For the
standard cases of Cobb–Douglas resp. CES production function, we derive
the golden rule saving rate and study numerically the effect of the different
stochastic parameters on average consumption. In both cases we consider
three stochastic models and, for comparison, the associated deterministic
model in which all parameters are set to their respective expected value.
The specifications are

(a) Deterministic: ξ = 1, n = 0, and δ = 1/2
(b) Production shocks: ξ ∈ {3/4, 5/4}, n = 0, and δ = 1/2
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(c) Stochastic population growth: ξ = 1, n ∈ {±7/100}, and δ = 1/2
(d) Stochastic depreciation: ξ = 1, n = 0, and δ ∈ {1/3, 2/3}

In each model, the stochastic parameter is assumed to be an ergodic process
which follows a two-state irreducible Markov chain with transition probabil-
ities p11 = 0.9, p12 = 0.1, p21 = 0.1, and p22 = 0.9. The stationary measure
assigns equal probability to both states.

Cobb–Douglas Production Function

f(k) = A kα with A > 0, and 0 < α < 1 (9)

It is obvious that assumption (v) follows from assumptions (i)–(iv). A simple
sufficient condition for (vi), which allows to check that our results apply in
the cases (a)–(d), can be derived as follows. First note that for all s > 0,

ks(ξmin, nmax, δmax) = ((δmax + nmax)/(sA ξmin))1/(α−1) (10)

and therefore f ′(ks(ξmin, nmax, δmax)) = α(δmax + nmax)/(s ξmin). As a
consequence one obtains for each s > 0

h′s(ω, ks(ξmin, nmax, δmax)) =
1− δ(ω) + α ξ(ω)

ξmin
(δmax + nmax)

1 + n(ω)

Since the right-hand side of the last equation is independent of s, and for
s = 0, k0(ξmin, nmax, δmax) = 0 and h′0(ω, 0) = 1−δ(ω)

1+n(ω) , condition (vi) turns
out to be equivalent to

E log
1− δ(ω) + α ξ(ω)

ξmin
(δmax + nmax)

1 + n(ω)
< 0 (11)

Increasing the right-hand side by interchanging E and log and replacing
n(ω) by nmin, we find a sufficient condition for (11):

α <
ξmin

Eξ

Eδ(ω) + nmin

δmax + nmax
(12)

In the deterministic case, i.e. if all ergodic processes are constants, (12) re-
duces to α < 1 (which is no additional restriction). It is noteworthy that
α ≤ [ξmin(Eδ(ω)+nmin)]/[Eξ(δmax +nmax)] implies (11) (and thus is a suf-
ficient condition for (vi)) if at least one ergodic process is non-degenerated.
This follows from the fact that in this case interchanging E and log strictly
increases the left-hand side of (11).

Summarizing, we obtain
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Lemma 6.1 The stochastic Solow model with Cobb–Douglas production
function satisfies condition (vi) for all α which fulfill (12).

Let us next determine the golden rule saving rate. For the deterministic
Solow model we find by (10) that

cs = (1− s) ξA
(
ks(ξ, n, δ)

)α = (1− s) s
α

1−α ξA

(
δ + n

Aξ

) α
α−1

(13)

Solving ∂
∂scs = 0, we readily obtain the well-known result that cs is maximal

for s = α. Note that the golden rule sgold = α is independent of the
parameters δ, n, and ξ.

The fact that the golden rule depends only on the production function
is a hint that Theorem 4.4 might apply, see Remark 4.5. (13) leads to the
“guess” g(s) = s

1
1−α . We need to check first that s f(g(s) k) = g(s) f(k) for

all k > 0, cf. condition (6). This is equivalent to

sA
(
s

1
1−α k

)α
= s

1
1−α A kα

which is obviously true for all k > 0. It is straightforward to check that
(∂/∂s)(1 − s)g(s)/s = 0 has a unique interior solution. Summarizing, we
obtain that the golden rules in both deterministic and stochastic case coin-
cide. We may state:

Corollary 6.2 Consider the stochastic Solow model with Cobb–Douglas
production function. Suppose conditions (i)–(vi) are satisfied and Eξf(k?

1) <
∞. Then the (unique) golden rule saving rate is given by sgold = α, i.e. Ec?

s

is maximal for s = α.

We now fix the parameters of the Cobb–Douglas production function;
let A = 10 and α = 3/4. It is straightforward to check that for these
parameter values conditions (i)–(v) and the sufficient condition (12) for (vi),
see Lemma 6.1, are satisfied in each case (a)–(d). Since δmin + nmin > 0
and 0 = limk→∞ f ′(k) < (δmin + nmin)/ξmax, Corollary 4.2(b) ensures that
Eξf(k?

1) < ∞. Summarizing, we have found that a non-trivial random fixed
point exists for all positive saving rates, Theorem 3.1, that Ec?

s(ω) < ∞ for
all s, and that sgold = α, Corollary 4.2.

Table 1 lists the average consumption at the golden rule saving rate in all
four cases. The approximation of average consumption per capita Ec?

s with
saving rate s = α = 0.75 has been carried out as follows. First, a sample-
path of the length 1, 000 is calculated to approximate the random fixed point
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k?
s(θ

tω). Second, a sample-path of the length 1, 000, 000 is calculated and
average consumption is calculated according to the convergence result (5).
The numerical procedure has been implemented in C, Schenk–Hoppé (2001).

case golden rule av. cons. av. cons. relative to (a)

(a) 0.75 8,437.5 100.0%
(b) 0.75 9,404.0 111.5%
(c) 0.75 8,883.4 105.3%
(d) 0.75 10,203.6 120.9%

Table 1: Golden rule saving rate, numerically approximated average con-

sumption per capita at the golden rule, and average consumption per capita

relative to the deterministic case (a).

Table 1 documents that average consumption at the golden rule is higher
in all stochastic cases (b)–(d) than in the deterministic case (a). If produc-
tion shocks occur, case (b), the average consumption is more than 11%
higher than in the deterministic case (a). Fluctuations of the depreciation
rate, case (d), increase average consumption by more than 20%. A stochas-
tic population growth rate, case (c), leads to a 5.3% increase of average
consumption.

Since the golden rule is the same in all four cases, the gain in average
consumption has to be due to the non-linearity of the Solow model or, in case
(c), to slower population growth. In case (c), the average population growth
rate is 0.9975 ≈ exp(0.5(log(0.93) + log(1.07))) < 1. Thus the population
size decreases in case (c) whereas it is constant in all other cases. However,
this has only a minor effect on the increase of average consumption, because
the difference in the population growth rates is approximately 0.25% and,
thus, accounts only for less than 5% of the increase in average consumption.
Therefore the increase in consumption is caused by the non-linearity of the
law of motion which is due to the strict concavity of the production function.
It is important to point out that for the same perturbation with transition
probability pij replaced by by 1 − pij , i, j = 1, 2, i.e. for a fast fluctuating
process, average consumption in the stochastic cases is lower than in the
deterministic case.

Summarizing, we may conclude that our numerical results provide ev-
idence on the importance to take into account stochastic parameter fluc-
tuations. Replacing a stochastic parameter by its expected value would
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lead to erroneous data on average consumption. Table 1 illustrates that a
non-neglectable error would be made.

Finally, we briefly discuss the applicability of the results on dynamic
efficiency given in Section 5. The task is to find conditions under which the
crucial assumption of Theorem 5.2, (8), is fulfilled. This assumption requires
E[δ(ω)+n(ω)−ξ(ω)f ′(k?

sgold(ω))] ≥ 0. We have to resort to numerical simu-
lations to check this condition, Schenk–Hoppé (2001). Our numerical results
indicate that condition (8) is satisfied in the following cases. Deterministic
case (a): for all 0 < α < 1; production shocks (b): for all α ≤ 0.4; and
stochastic population growth (c): for all 0 < α < 1. In case (d), stochastic
depreciation, the condition is not fulfilled for any α.

CES Production Function

f(k) = (1−A + Akα)1/α with 0 6= α < 1, and 0 < A < 1 (14)

We first derive a sufficient condition for the indispensable assumption (vi)
which ensures applicability of our results. Elementary calculations show
that ks(ξmin, nmax, δmax) = (1− A)1/α [((δmax + nmax)/(s ξmin))α − A]−1/α

and hence f ′(ks(ξmin, nmax, δmax)) = A((δmax + nmax)/(s ξmin))1−α. From
these expressions we find that h′s(ω, ks(ξmin, nmax, δmax)) = (1 − δ(ω) +
sαξ(ω)A ((δmax + nmax)/ξmin)1−α)/(1 + n(ω)) for all s > 0. Therefore,
condition (vi) is fulfilled if

E log
1− δ(ω) + ξ(ω)A

(
δmax+nmax

ξmin

)1−α

1 + n(ω)
< 0

Analogous to the Cobb–Douglas case, we get the sufficient condition for (vi)

A <
ξ1−α
min

Eξ

Eδ + nmin

(δmax + nmax)1−α
(15)

The Inada condition (v) limk→∞ f ′(k) = limk→∞A ((1−A)k−α + A)(1−α)/α

= A1/α is satisfied if A < ((δmax + nmax)/ξmin)α. No condition is needed at
the capital intensity zero because f(0) = (1−A)1/α > 0.

We now fix the parameters of the CES production function: A = 1/2
and α = 1/2. Analogous to the Cobb–Douglas case one can check that for
these parameter values conditions (i)–(v) and the sufficient condition (15)
for (vi) are satisfied in the cases (a)–(d). Further it holds Eξf(k?

1) < ∞.
From this we may conclude that a non-trivial random fixed point exists for
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all positive saving rates, that Ec?
s(ω) < ∞ for all s, and that a golden rule

exists.
Applying the same approximation procedure as in the preceding case,

we obtain the average consumption per capita Ec?
s for each fixed saving rate

s ∈ [0, 1] in the cases (a)–(d). The results are collected in Table 2.

case golden rule av. cons. av. cons. relative to (a)

(a) 0.5 0.5 100.0%
(b) 0.53 0.528 105.6%
(c) 0.52 0.51 102.0%
(d) 0.56 0.55 110.0%

Table 2: Stochastic Solow model with CES production function. Numeri-

cally approximated golden rule saving rate, average consumption per capita

in absolute values, and average consumption per capita relative to the de-

terministic case (a).

Average consumption is higher in the stochastic cases than in the deter-
ministic case. However, while the ranking of the cases according to maximal
average consumption is as in the Cobb–Douglas case, the relative gain is
only of about a half of that in the Cobb–Douglas case. The main difference
in the CES production function is that the golden rule saving rate depends
on the particular case.

The observations made in our case study for the CES production function
can be summarized as follows. The stochastic fluctuation of any parameter
of the Solow growth model (1) increases average consumption for any saving
rate. The golden rule saving rate is higher as well.

Let us close this section with a short remark on dynamic efficiency in the
cases (a)–(d). Numerical results indicate that condition (8) of Theorem 5.2
is satisfied in all cases (b)–(d). In the CES example we therefore derive the
strongest dynamic efficiency result which is possible by Theorem 5.2.

A Appendix

Proof of Theorem 3.1. Assertions (i), (ii), and (iv) correspond to Theo-
rem 3 of Schenk–Hoppé and Schmalfuss (in press). Assertion (iii) is imme-
diate from Theorem 2.2 of Schmalfuss (1996). Only the case s = 0 is not
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covered in these references. However, one has

ϕ0(t + 1, ω, k) =
1− δ(θtω)
1 + n(θtω)

ϕ0(t, ω, k) =
t∏

u=0

1− δ(θuω)
1 + n(θuω)

k

By condition (vi), this yields assertions (i)-(iv). Observe that k?
0(ω) ≡ 0.

In Schenk–Hoppé and Schmalfuss (in press) the authors apply a Banach
fixed point theorem for random maps to prove existence of a random fixed
point with the specified properties. This generalization of the well-known
Banach theorem for random dynamical systems is due to Schmalfuss (1996,
1998). The main idea of this theorem is to consider the space of all tempered
random variables with values in some set G(ω) which is forward invariant
in the sense that ϕ(t, ω,G(ω)) ⊂ G(θtω) for all t ≥ 0, cf. Lemma 2.1.
The operator x 7→ (limt→∞ ϕ(t, θ−tω, x(θ−tω)))ω∈Ω is a global contraction
on that space under a condition that ensures contraction on the average
(condition (vi) in the present paper is a particular version of this condition).
�
Proof of Proposition 3.2. We first prove that s 7→ k?

s(ω) is a strictly
increasing function. Since f is increasing and f(k) > 0 for all k > 0, one
has that for all s < s′, k ≤ k′

hs′(ω, k′)− hs(ω, k) =
(1− δ(ω))(k′ − k) + ξ(ω)(s′f(k′)− sf(k))

1 + n(ω)

≥ (s′ − s)ξ(ω)
1 + n(ω)

f(k) ≥ (s′ − s)ξmin

1 + nmax
f(k).

Fix any 0 < s < s′. Then the preceding estimate ensures existence of a
c(s, s′) > 0 (which is independent of k and ω) such that hs′(ω, k′)−hs(ω, k) ≥
c(s, s′) for all k ∈ G(s) and k′ ≥ k, see Lemma 2.1 for the definition of G(s).

Using that ϕs(t, θ−tω, k) = hs(θ−1ω) ◦ ... ◦ hs(θ−tω, k), one finds
ϕs′(t, θ−tω, k) − ϕs(t, θ−tω, k) ≥ c(s, s′) for all t ≥ 0. By the contraction
property of k?

s(ω) stated in Theorem 3.1, one finally obtains for s < s′ and
arbitrarily fixed k ∈ G(s)

k?
s(ω) = lim

t→∞
ϕs(t, θ−tω, k) < lim

t→∞
ϕs′(t, θ−tω, k) = k?

s′(ω)

which yields that k?
s(ω) is strictly increasing in s.

We next prove continuity of s 7→ k?
s(ω). Fix any ω and any k > 0.

k?
s(ω) = limt→∞ ϕs(t, θ−tω, k) for all s ∈ [0, 1] by Theorem 3.1. Since

ϕs(t, θ−tω, k) is continuous in s for each fixed t, it suffices to show that
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there exists a k > 0 such that this convergence is uniformly in s ∈ [0, 1].
Letting k := k1(ξmin, nmax, δmax), we find

sup
s∈[0,1]

|ϕs(t, θ−tω, k)− k?
s(ω)| = sup

s∈[0,1]
|ϕs(t, θ−tω, k)− ϕs(t, θ−tω, k?

s(θ
−tω))|

≤ sup
s∈[0,1]

|k?
s(θ

−tω)− k|
t∏

u=1

h′s(θ
−uω, ks(ξmin, nmax, δmax))

where we have used that min{k, k?
s(ω)} ≥ ks(ξmin, nmax, δmax) and h′s(ω, k)

is decreasing in k.
Assumption (vi) implies that for any ε > 0 there exists a T (ε) such that

t∏
u=1

h′s(θ
−uω, ks(ξmin, nmax, δmax)) ≤ exp(−(c− ε)t)

for all t ≥ T (ε), where the exponential rate is independent of s. Hence for
all ε < c and t ≥ T (ε)

sup
s∈[0,1]

|ϕs(t, θ−tω, k)− k?
s(ω)| ≤ sup

s∈[0,1]
(k?

s(θ
−tω) + k) exp(−(c− ε)t)

= (k?
1(θ

−tω) + k) exp(−(c− ε)t)

where the last equality follows from k?
s(ω) being strictly increasing.

Finally, temperedness of k?
1(ω), i.e. lim supt→∞ k?

1(θ
−tω) exp(−δt) = 0

for all δ > 0, yields that the convergence k?
s(ω) = limt→∞ ϕs(t, θ−tω, k) is

uniform in s ∈ [0, 1]. This finishes the proof. �
Proof of Theorem 4.1. We prove that s 7→ Ec?

s(ω) is a continuous func-
tion, this yields the assertion. By Proposition 3.2 and continuity of f , the
map s 7→ c?

s(ω) = (1−s)ξ(ω)f(k?
s(ω)) is continuous. Proposition 3.2 further

implies c?
s(ω) ≤ ξ(ω)f(k?

1(ω)) for all s. The condition Eξf(k?
1) < ∞ ensures

that Ec?
s(ω) exists and is uniformly bounded in s. Thus the dominated

convergence theorem applies and we are done. �
Proof of Corollary 4.2. Theorem 4.1 yields the result, if we can show
Eξf(k?

1) < ∞ under the respective assumption. (a) is immediate from as-
sumption (iii) which gives integrability of ξ(ω).

Let us turn to (b). Our assumption ensures existence of a non-trivial
fixed point k1(δmin, nmin, ξmax) of the deterministic model (2) with respec-
tive parameters. Further one has h1(ω, k) ≤ ((1− δmin)k + ξmaxf(k))/(1 +
nmin). Therefore k?

1(ω) ≤ k1(ξmax, nmin, δmin) is uniformly bounded. This
yields the result. �
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Proof of Corollary 4.3. By Theorem 4.1 it suffices to show that Eξf(k?
1) <

∞. Taking expected values on both sides of (1), one obtains (δ + n)Ek?
1 =

Eξf(k?
1). Observe that δ > 0, because for constant δ and n assumption

(vi) yields 1 − δ + ξminf ′(k1) ≤ exp(E log(1 − δ + ξ(ω)f ′(k))) < 1 + n and
assumption (iii) gives ξminf ′(k1) > 0, where k := k1(ξmin, nmax, δmax). It
therefore remains to prove Ek?

1 < ∞. It is

h1(ω, k) ≤ 1− δ + ξ(ω)f ′(y)
1 + n

k +
ξ(ω)f(y)

1 + n
(16)

because concavity of f implies f(k) ≤ f(y)+f ′(y)k for all k with an arbitrar-
ily fixed y > 0. Consider the associated affine random difference equation

xt+1 = a(θtω)xt + b(θtω) (17)

with

a(ω) :=
1− δ + ξ(ω)f ′(y)

1 + n
and b(ω) :=

ξ(ω)f(y)
1 + n

where y ≥ k1(ξmin, nmax, δmax) is arbitrarily fixed. The random dynamical
system generated by (17) possesses the unique globally attracting random
fixed point

x?(ω) := b(θ−1ω) +
∞∑
i=1

b(θ−(i+1)ω)
i∏

j=1

a(θ−jω)

which is an upper bound for the random fixed point of the stochastic Solow
model, i.e. k?

1(ω) ≤ x?(ω) for all ω, see Schenk–Hoppé and Schmalfuss (in
press), Proof of Theorem 3 part (d).

We will show that Ex?(ω) < ∞ which yields the assertion. By the
dominated convergence theorem, it suffices to show that for the sequence
of random variables xN (ω) := b(θ−1ω)+

∑N
i=1 b(θ−(i+1)ω)

∏i
j=1 a(θ−jω) the

expected value ExN is uniformly bounded. One has

ExN = Eb +
N∑

i=1

E
[
b(θ−(i+1)ω)

i∏
j=1

a(θ−jω)
]
≤ Eb +

f(y)
f ′(y)

N∑
i=1

E
i+1∏
j=1

a(θ−jω)

= Eb +
f(y)
f ′(y)

N∑
i=1

(Ea)i+1 = Eb +
f(y)
f ′(y)

(Ea)2
1− (Ea)N

1− Ea

where we have used that a(θ−iω) and a(θ−jω) are independent for all i 6= j
because ξ is an i.i.d. process by assumption.
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By the Inada condition limk→∞ f ′(k) < (n + δ)/Eξ there exists a y ≥ k
such that Ea = (1−δ+Eξ f ′(y))/(1+n) < 1. Hence for all sufficiently large
y we have

ExN ≤ Eb +
f(y)
f ′(y)

(Ea)2

1− Ea

for all N , which asserts that Ex? < ∞. This in turn yields Ek?
1 < ∞ and

finishes the proof. �
Proof of Theorem 4.4. Theorems 3.1 and 4.1 ensure existence of a
unique non-trivial random fixed point k?

s(ω) and finiteness of Ec?
s(ω) =

(1− s)Eξ(ω)f(k?
s(ω)) for all s ∈ [0, 1].

We first show that k?
s(ω) = g(s) k?

1(ω). k?
s(ω) is the unique random fixed

point solving (1). Replacing k?
s(ω) by g(s) k?

1(ω) in (1), we observe that

g(s) k?
1(θω) =

(1− δ(ω)) g(s) k?
1(ω) + s ξ(ω)f(g(s)k?

1(ω))
1 + n(ω)

= g(s)
(1− δ(ω))k?

1(ω) + ξ(ω)f(k?
1(ω))

1 + n(ω)

by assumption (6). Dividing both sides by g(s) gives an equation for k?
1(ω)

which is fulfilled by Theorem 3.1. Hence k?
s(ω) = g(s) k?

1(ω) by uniqueness
of the solution.

This result implies that average consumption is given by

Ec?
s(ω) = (1− s) E (ξ(ω) f(g(s) k?

1(ω))) =
1− s

s
g(s) E (ξ(ω) f(k?

1(ω)))

Since Ec?
s is continuously differentiable in s, any maximizer is an interior

point, and ∂
∂sEc?

s = 0 if and only if (7) holds, we obtain that (7) is a
necessary condition for the golden rule saving rate. If the solution to (7) is
unique then (7) is also a sufficient condition. �
Proof of Theorem 5.2. We have to show that E(c?

sgold(ω) − c(ω)) > 0
where c(ω) := (1− δ(ω))(k?

sgold(ω) + ε(ω)) + ξ(ω)f(k?
sgold(ω) + ε(ω))− (1 +

n(ω))(k?
sgold(θω) + ε(θω)).

It is straightforward to check that E
(
c?
sgold(ω)− c(ω)

)
=

E
[
δ(ω) ε(ω) + n(ω) ε(θω)− ξ(ω)

(
f(k?

sgold(ω) + ε(ω))− f(k?
sgold(ω))

)]
.

By condition (vi), f(y) − f(x) ≤ f ′(x) (y − x) with strict inequality if
y 6= x. The condition Eε > 0 implies that ε(ω) > 0 with positive probability.
We therefore obtain, recalling that ξ(ω) > 0 for all ω by condition (iii),

E
(
c?
sgold(ω)− c(ω)

)
> E

[
δ(ω) ε(ω) + n(ω) ε(θω)− ξ(ω) f ′(k?

sgold(ω)) ε(ω)
]
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Finally, rewriting the right-hand side of this expression and employing as-
sumption (b) yields

E
(
c?
sgold(ω)− c(ω)

)
> E

[(
δ(ω) + n(θ−1ω)− ξ(ω) f ′(k?

sgold(ω))
)

ε(ω)
]

≥ E
[(

δ(ω) + n(θ−1ω)− ξ(ω) f ′(k?
sgold(ω))

) ]
Eε(ω) ≥ 0

where the last step uses assumption (8). We are done. �
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