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Abstract

The aim of our studywas to use functional magnetic resonance imaging to investigate how spontaneous activity interacts with
evoked activity, as well as how the temporal structure of spontaneous activity, that is, long-range temporal correlations,
relate to this interaction. Using an extremely sparse event-related design (intertrial intervals: 52–60 s), a novel blood oxygen
level-dependent signal correction approach (accounting for spontaneous fluctuations using pseudotrials) and phase analysis,
we provided direct evidence for a nonadditive interaction between spontaneous and evoked activity. We demonstrated the
discrepancy between the present and previous observations on why a linear superposition between spontaneous and evoked
activity can be seen by using co-occurring signals from homologous brain regions. Importantly, we further demonstrated
that the nonadditive interaction can be characterized by phase-dependent effects of spontaneous activity, which is closely
related to the degree of long-range temporal correlations in spontaneous activity as indexed by both power-law exponent
and phase–amplitude coupling. Our findings not only contribute to the understanding of spontaneous brain activity and its
scale-free properties, but also bear important implications for our understanding of neural activity in general.
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Introduction

Imagine you are surfing on a rough ocean; you have to adjust your
surfboard according to the constant motion of the waves. Our
spontaneous brain activity is similar to this rough ocean, fluctu-
ating all the time, and further, we can think of the surfboard as
incoming evoked activity. In this surfing scenario, your surfboard
and you are interacting dynamically with the ocean rather than
merely “standing” on it. Similarly in the fluctuating brain, it
seems intuitive that evoked activitymight also interact dynamic-
ally with the ongoing spontaneous activity, rather than simply
being added or “standing” on it. However, it remains unclear
whether spontaneous and evoked activity are linearly superim-
posed (Arieli et al. 1996; Azouz and Gray 1999; Fox et al. 2006;
Becker et al. 2011), the view which predominates in the neuros-
cientific literature, or interact in a nonadditive way as suggested
in several studies (Hesselmann, Kell and Eger et al. 2008; Hessel-
mann, Kell and Kleinschmidt 2008; Sadaghiani et al. 2009, 2010;
Northoff et al. 2010; He 2013). Recently, an elegant functional
magnetic resonance imaging (fMRI) study has shed doubt on
the linear assumption and proposed a nonadditive, namely,
negative interaction between spontaneous and evoked activity
(He 2013). That is, stimuli presented at a lower magnitude of
the preceding spontaneous activity fluctuations will produce a
stronger response than stimuli presented at a higher magnitude.
However, more direct evidence for such nonadditive interaction
as well as a comprehensive demonstration of the apparent dis-
crepancies reported in the literature (e.g., Fox et al. 2006; He
2013) has to be achieved.

Furthermore, focusing on the influence of the magnitude of
the prestimulus spontaneous activity on evoked activity may
not provide the complete picture, as it overlooks the fact that
activity of the same magnitude can be at different points on the
activity’s wave progression (i.e., on the up- or down-stroke); the
wave phase of the prestimulus spontaneous activity might
have an influence on the evoked activity. To take this factor
into account, one needs to study the exact phase of the spontan-
eous activity, and not just its magnitude (Nir et al. 2007; Yang
et al. 2012), although this is often neglected in fMRI studies
(Laird et al. 2002; Saad et al. 2003). By doing so, it would be pos-
sible to ascertain if a particular point in the phase cycle of spon-
taneous activity has an effect on the evoked response. This
approach, however, has not yet been attempted, and the question
as to whether different points in the phase cycle of infraslow
spontaneous fluctuations (<0.5 Hz), measured by fMRI (He and
Raichle 2009), confer different levels of temporal excitability for
incoming stimuli remains unanswered.

To further understand the interaction between spontaneous
and evoked brain activity, onemay also consider how the regular-
ities, or temporal structure, of spontaneous activity in the resting-
state are related to this interaction. Interestingly, the temporal
structure of spontaneous brain activity, aswell asmanyother nat-
ural phenomena, can be characterized by scale-free dynamics, or
long-range temporal correlations (LRTCs) (Linkenkaer-Hansen
et al. 2001; Manning et al. 2009; Miller et al. 2009; Chialvo 2010;
He et al. 2010; Palva et al. 2013). Most importantly, recent fMRI
studies show that infraslow spontaneous fluctuations observed
in the resting-state conform to a power-law distribution and
hence show LRTCs (He et al. 2010; He 2011, 2014). Higher LRTCs,
with a larger power-law exponent, are related to a higher time-
lagged autocorrelation, indicating that thepast pattern of a system
has a stronger influence on its future dynamics (Linkenkaer-
Hansen et al. 2001). Furthermore, the LRTCs can be characterized
by nested frequencies with phase–amplitude coupling (PAC),

where the phase of lower frequencies modulates the amplitude
of higher ones (Vanhatalo et al. 2004; Canolty et al. 2006; Lakatos
et al. 2008; Monto et al. 2008; Tort et al. 2008; He et al. 2010). How-
ever, the functional significance of LRTCs (e.g., power-lawdistribu-
tion and phase–amplitude coupling) in spontaneous activity and
their possible relationship to the interaction between spontan-
eous and evoked activity require further study.

The aim of our studywas to use fMRI to investigate how spon-
taneous brain activity interacts with evoked activity, and to
ascertain how the temporal structure of spontaneous activity in
the resting-state relates to this interaction. More specifically, we
organized our questions into 4 lines of investigation: 1) to provide
direct evidence for a nonadditive interaction between spontan-
eous and evoked activity, 2) to investigate the discrepancies
reported in the literature in terms of linear superposition (e.g.,
Fox et al. 2006) and nonadditive interaction (e.g., He 2013); 3) to
examine the possible underlying mechanism by considering if
the nonadditive interaction can be characterized by the phase
of oscillations of spontaneous activity (more specifically, a
phase-dependent effect); 4) to understand the neural context of
this mechanism by linking phase-dependence to the power-law
distribution and PAC of LRTCs in the resting-state.

To this end, we applied a sparse event-related fMRI design
with extremely long intertrial intervals (ITIs, 52–60 s) to make
sure that the blood–oxygen level-dependent (BOLD) undershoot
is terminated, and to obtain a clean baseline of prestimulus spon-
taneous activity without potential nonlinearities associatedwith
overlapping hemodynamic responses between preceding and
subsequent trials (Fox et al. 2006; Yacoub et al. 2006). We used a
novel correction method accounting for spontaneous fluctua-
tions using pseudotrials without the application of a stimulus.
We introduced Hilbert phase analysis in fMRI signals which
was validated, confirmed, and extended in various ways. We
then calculated indices for the nonadditive interaction between
spontaneous and task-evoked activity as well as the effect
of phase-dependence. Finally, we related these indices to the
LRTCs of spontaneous activity in the resting-state (acquired dur-
ing an independent 6-min task-free fMRI scan before any task), as
indexed by both power-law exponent (PLE) and PAC.

Materials and Methods

Subjects

Twenty-five right-handed volunteers (12 female; age 20–29 years)
participated in this fMRI study. Subjects were all university stu-
dents with no history of psychiatric or neurological disorders
(confirmed using a standard MRI safety screening questionnaire
before scanning). They reported understanding verbal experi-
mental instructions and none reported wearing hearing-aids,
thus it was assumed that all participants had normal hearing.
Written informed consent was obtained from each subject prior
to the experiment. The study was approved by the ethics com-
mittee of the Center for Cognition and Brain Disorders (CCBD),
Hangzhou Normal University. Two subjects were excluded from
the analyses because of anxiety and excessive movement during
scanning.

Task with Long ITIs

The current experimental design was developed from our previ-
ous study (Huang and Dai et al. 2014). Subjects were instructed
to fill out a questionnaire with 360 questions about hobbies,
birthdays, places visited, and simple facts. All of the questions
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contained 6–12 Chinese syllables. Five-point rating scale (1 de-
noting easiest, 5 denoting hardest) was used to estimate the dif-
ficulty of each question. To minimize task difficulty, questions
with a score of 3 or above were considered difficult questions
and excluded. One hundred twenty questions from these were
then selected randomly (after excluding difficult questions) for
each subject. As difficult questions made up a very small propor-
tion across all subjects, there was a sufficient number of ques-
tions with a score of <3 for each subject. Half of the questions
required a “Yes” response and the other half a “No”. Each of the
questions was digitally recorded into an audio clip lasting 2 s by
the same experimenter, and was presented once during the
whole fMRI scan session.

An extremely sparse event-related fMRI design was adopted
with 120 trials separated by ITIs ranging unpredictably from 52
to 60 s (2 s steps). The benefit of such long ITIs is that they pro-
vided sufficient time to include the evoked positive blood–oxygen
level-dependent (BOLD) response, as well as the undershoot
(Boynton et al. 1996; Yacoub et al. 2006; Hua et al. 2011), and
then return to the ongoing “baseline” level. These also avoided
potential nonlinearities associated with overlapping hemo-
dynamic responses between preceding and subsequent trials
(Fox et al. 2006). These ITIs also enable us to model spontaneous
ongoing activity through pseudotrials without the application of
a stimulus (from prestimulus 10–1 s, see below). Six fMRI runs
were recordedwith this paradigm. For each run, 20 trials were as-
signed pseudorandomly. Each trial was presented for 2 s. The
participants were instructed to use their right hands to press
left/right buttons on a response box to indicate a yes/no answer
(left = yes and right = no) as quickly as possible after question
presentation. The button response was monitored during the
whole experiment to ensure participant cooperation and
alertness.

fMRI Data Acquisition

A GE 3T (Discovery MR750) scanner with a standard head coil
(8-channel) was used to acquire gradient-echo EPI images of
thewhole brain (time repetition, 1.0 s; time echo, 25 ms; 21 slices;
slice thickness = 6 mm; spacing = 0; field of view = 210 mm; flip
angle = 76°; image matrix: 64 × 64). Task-free “resting-state” data
were acquired at the beginning of the whole fMRI experiment
with 360 frames (6 min). Each run of the task (6 runs in total)
had 1184 frames (19 min 44′). High-resolution anatomical images
were acquired at the end of the experiment. During each EPI scan,
subjects were instructed to relax, stay awake, and keep their eyes
closed. Eye-tracking during fMRI was not available, but off-line
post-scan recordings ensured that subjects complied with this
instruction. Time-locked cardiac and respiratory signals were re-
corded. All stimuli were programmed using E-Prime (Psychology
Software Tools, Pittsburgh, PA) and delivered via an audiovisual
stimulus presentation system designed for an MRI environment.
The volume of the headphones was adjusted to the comfort level
of each subject.

fMRI Data Preprocessing and Definition of Regions of
Interest

Preprocessing steps were implemented in AFNI (http://afni.
nimh.nih.gov/afni) including: 1) discarding the first 4 frames of
each fMRI run; 2) physiological noise correction through re-
moval of time-locked cardiac and respiratory artifacts using
RETROICOR (Glover et al. 2000); 3) slice timing correction; 4)
rigid body correction/realignment within and across runs.

Head motion parameters were estimated and frame-wise re-
alignment was performed using AFNI’s 3dvolreg command.
After the estimatedmotion parameters were visually inspected,
subjects with head motion larger than ±2 mm translation or
±2.5° rotation were eliminated (Johnstone et al. 2006); 5) co-
registration with high-resolution anatomical images; 6) spatial
normalization into Talaraich stereotactic space; 7) resampling
to 3 × 3 × 3 mm3 voxels; 8) regressing out linear and nonlinear
drift (equivalent to a high-pass filtering of 0.0067 Hz), head mo-
tion and its temporal derivative, and mean time series from the
white matter (WM) and cerebrospinal fluid (CSF) to control for
non-neural noise (Fox et al. 2005). The WM and CSF masks
were eroded by one voxel (Chai et al. 2012) to minimize partial
voluming with gray matter; 9) spatial smoothing with a 6 mm
full-width at half-maximum isotropic Gaussian kernel; 10) the
time-course per voxel of each run was normalized to zero
mean and unit variance (z-value), accounting for differences
in variance of non-neural origin (e.g., distance from head coil)
(He 2011; Stephens et al. 2013).

All the following analyses were based on regions of interest
(ROI) analysis. We adopted a well-established node template
from a previous study (Power et al. 2011; Cole et al. 2014), contain-
ing 264 putative functional areas (10 mm diameter spheres, 32
voxels per sphere) across the whole brain.

Definition of Real Trials, Pseudotrials, Raw-BOLD and
Corrected-BOLD

One of the aims of our study was to measure the nonadditive
interaction between spontaneous and evoked activity. We did
not assume that evoked activity is linearly superimposed on
the spontaneous activity as, for instance, in the general linear
model (GLM) (Poline and Brett 2012). Because of this, we chose a
simple trial-averaging approach (Gonzalez-Castillo et al. 2012).
Two questions were first addressed: 1) How long does it take for
the evoked hemodynamic response to reach its peak, and how
long does it take for the subsequent undershoot to return to base-
line level? 2) How can we obtain a relative BOLD signal change in
reference to the prestimulus spontaneous activity levels?

For the first question, the time-courses of the BOLD signal for
each of the 264 ROIs were extracted and then averaged across
subjects and ROIs, yielding a mean response curve from presti-
mulus 10 s to poststimulus 43 s (Fig. 1A). This 54-s time window
was our maximal time range that could apply to all the trials
without any overlapping. From the mean response curve, we
observed that the evoked response reached its peak at 6 s after
stimulus onset (0 s) and returned to an ongoing baseline level
at 43 s after stimulus onset. This is consistentwith previous stud-
ies (Logothetis et al. 2001; Yacoub et al. 2006; Dechent et al. 2011;
Hua et al. 2011). Therefore, the long ITIs (52–60 s) in our study pro-
vided a relatively “clean” baseline from 10 to 1 s of prestimulus
activity.

To address the second question, we applied pseudotrials
(onset: prestimulus 10 s) during the task-free period to model
approximate spontaneous activity time-courses as the baseline
for the recorded activity (raw-BOLD) (Fig. 1A). By subtracting the
averaged raw-BOLD time-course of pseudotrials from that of
the real-trials, evoked activity (corrected-BOLD) was recovered.
This corrected-BOLD signal was calculated at a resolution of 1 s
(one value per TR) in a time range starting from prestimulus 0 s
(stimulus onset) and ending 9 s poststimulus (10 time points in
total). An example region (ROI-177) in the left inferior parietal
lobule (LIPL) within the fronto-parietal task control network
(Cole et al. 2014) was used to help demonstrate our analysis
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and results (Fig. 1B). Next, we used the “area under the curve”
(AUC) around the peak of the corrected-BOLD (from poststimulus
4 s to 8 s) as an “activation index” to quantify the signal changes
(Fig. 1B). One sample t-tests against zero at the group level were
used to examine the significance of activation for each region;
multiple-comparison errors were controlled using Bonferroni
correction across 264 areas, for a corrected threshold of P < 0.05
(corresponding to uncorrected P < 1.89e−4). We restricted our fol-
lowing analysis to those regions showing significant activation
and thus which were assumed to be involved in the task (active
ROIs) (Fig. 2A). Besides these ROIs, we also included several
other ROIs (see below for details) to compare our results with a
previous study that suggested a linear superposition between
spontaneous and evoked activity (Fox et al. 2006).

Trial-To-Trial Variability Analysis

According to the linear superposition model of spontaneous and
evoked activity (Arieli et al. 1996; Azouz and Gray 1999; Fox et al.
2006; Becker et al. 2011), the variance of the activities should sum
up, a direct consequence of the Law of Total Variance. If this is
true, one would expect to find an increase of variability after
stimulus onset. However, a recent fMRI study reported a decrease

in trial-to-trial variability after stimulus-onset acrosswidespread
cortical regions (He 2013). Given the Law of Total Variance, this
finding suggests that evoked and spontaneous brain activities
are not independent but rather interact nonadditively, and fur-
ther, since the variability decreases, the interaction can be char-
acterized as a negative interaction (He 2013). Using a similar
approach, we also examined the standard deviation (SD) at
each time point across trials within the time window (0–9 s as
above). The SD time-course of each ROI of each subject was nor-
malized by subtracting and dividing by the SD at stimulus onset
(0 s) (He 2013). The AUC (4–8 s) of the normalized SD time-course
across trials (real trials only) was defined as the trial-to-trial vari-
ability (TTV) index to quantify the gain of TTV changes (Fig. 2B).
One sample t-tests against zero at the group level were used to
examine the significance of the TTV index for each region.

Magnitude-Based Analysis

To examinewhether the level of evoked activity (corrected-BOLD)
depends on whether the stimulus coincides with a high, as op-
posed to a low, magnitude of the prestimulus activity, all trials
for each subject were sorted into 2 equal-sized bins (median
split) based on the BOLDmagnitude (high and low) at prestimulus

Figure 1.Definition of real trials, pseudotrials, raw-BOLD, corrected-BOLD and activation index. (A) Averaged BOLD response across all trials, 264 putative functional areas

(Power et al. 2011) and subjects. The time period of task-free activity fromprestimulus 10 s (−10 s) to 1 s (−1 s) was used as a relatively “clean” baseline. Pseudotrials (onset:

prestimulus 10 s)were applied during this period tomodel approximate spontaneous activity time-courses as a baseline for the recordedactivity (raw-BOLD). Gray shadow

zone indicates the ±SD across ROIs. (B) Averaged raw-BOLD time-courses (across all trials and subjects) of real and pseudotrials for a representative region (ROI-177 in the

LIPL)within the timewindow fromprestimulus 0 s (stimulus-onset) to poststimulus 9 s (sameas follows). (C) Evoked activity (corrected-BOLD)was obtained bysubtracting

the raw-BOLD time-course of pseudotrials from that of the real-trials. The “AUC” around the peak of the corrected-BOLD (from poststimulus 4–8 s) was defined as the

“activation index”. This index was used to detect active regions involved during the fMRI task. Error bars indicate ±SEM.
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0 s (see Fig. 3A for an illustration; Supplementary Fig. 1 and Sup-
plementary Table 4 for a confirmative analysis using a different
trial sorting criterion: third split, contrasting top 33% vs. low
33%). The present analyses were based on comparing trials
with prestimulus-high magnitude to trials with prestimulus-
low magnitude using median split. The averaged raw-BOLD
time-courses for prestimulus-high and prestimulus-low trials
were extracted for each active ROI and each subject.

In a next step, we sought to obtain corrected-BOLD for both
prestimulus-high and prestimulus-low trials. We applied pseu-
dotrials (as above mentioned) to model approximate spontan-
eous activity for prestimulus-high and prestimulus-low trials,
accounting for the intrinsic or nonstimulus-driven autocorrela-
tions (Arieli et al. 1996; Azouz and Gray 1999; Bullmore et al.
2001; Sylvester et al. 2009; He 2011, 2013). To this end, the same
median split approach was performed in the pseudotrials. Sub-
tracting the averaged raw-BOLD of pseudotrials from that of the
real-trials, corrected-BOLD was obtained for prestimulus-high
and prestimulus-low trials, respectively. Next, similarly to the
definition of the activation index, the magnitude-based in-
teraction index, low–high (LH) index, was defined by the AUC
(4–8 s) differences of the corrected-BOLD between trials with
prestimulus-low and prestimulus-high magnitude (Fig. 3B). One
sample t-tests against zero at the group level were used to
examine the significance of the LH index for each region.

Comparing Our BOLD Signal Correction Approach with
a Previous One

We sought to compare our approach with a previously adopted
method achieved by using co-occurring signals from homologous

brain regions (Fox et al. 2006). Specifically, Fox et al. (2006) used the
activity in the homologous brain region as a substitute for the on-
going activity in the activated brain region. For instance, the right
somatomotor cortex (RMC) was used as a substitute for ongoing
activity in the left somatomotor cortex (LMC) during a right-
hand motor task (Fox et al. 2006). We thereby examined 3 pairs
of regions, including bilateral inferior parietal lobule (ROI-177
and ROI-194), somatomotor cortex and primary auditory cortex.
For the first pair, besides our example region, LIPL (ROI-177), we
sought to find its homologous brain region, from which the on-
going activity could be used as a substitute. This region was
defined as homologous if it was: 1) not significantly involved in
the task; 2) from the same resting-state network; and 3) from the
contralateral hemisphere of the brain (Fox et al. 2006). Following
these criterions, a region (ROI-194) located in the right inferior par-
ietal lobule (RIPL) comprising the same resting-state networkwith
LIPL (i.e., fronto-parietal task control [Power et al. 2011; Cole et al.
2014])was identified. Importantly, this regionwasnot significantly
involved in the task (P = 0.313 for activation index).

For the second pair, bilateral somatomotor cortex, we adopted
10-mmdiameter spheres centered on the Talairach coordinates of
previously published foci by Fox et al. (2006): LMC [−39, −26, 51]
and RMC [38, −26, 48] (see Supplementary Table 1 in Fox et al.
2006). Considering that we used a similar task structure (sparse
event-related design with a right-handed button press) and the
same regions in the somatomotor cortex, our results could be dir-
ectly compared with the ones reported by Fox et al. 2006.

As our task also strongly involved auditory processing, we de-
fined the third pair of regions—bilateral primary auditory cortex.
Specifically, voxels responding to the stimulus were defined by
the contrast of stimuli > baseline at group level using a standard

Figure 2. Definition of ROIs, TTV index, and LH index. (A) Significant activations were observed in 111 functional areas. These areas were defined as ROIs showing in a

surface view of the brain (left), as well as their BOLD time-courses (0–9 s) (right). (B) The SD across trials at each time point is shown. For each ROI, the SD time-course

(0–9 s) was normalized by subtracting and dividing the SD at prestimulus 0 s, and then averaged across subjects (left). The AUC (4–8 s) of the normalized SD time-

course was defined as the TTV index to quantify the gain of TTV changes (LIPL as an example) (right). LIPL, left inferior parietal lobule.
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Figure 3. Illustration of magnitude-based analysis andmagnitude-based interaction in bilateral inferior parietal lobule (LIPL and RIPL). (A) All trials for each subject were

sorted into two equal-sized bins (median split) based on the BOLD magnitude (high and low) at prestimulus 0 s. This approach was performed on real and pseudotrials

independently. (B) Averaged raw-BOLD time-courses of real and pseudotrials for high and low prestimulus BOLD magnitude in the LIPL and RILP (left). Corrected-BOLD

time-courses of prestimulus-high and prestimulus-low trialswere obtained by subtracting the raw-BOLDof pseudotrials from that of the real-trials (right). TheAUC (4–8 s)

difference of the corrected-BOLD between trials with prestimulus-low and prestimulus-highmagnitudewas defined as LH index. Significant interaction was seen in both

LIPL and RIPL (P < 0.001). Error bars indicate ±SEM.
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GLM analysis. The activation map was thresholded at P < 0.0001,
uncorrected, and cluster extent >100 voxels. This activation map
was further masked by anatomically defined masks of BA 41&42
from TT_N27 template in AFNI (Eickhoff et al. 2005) to delineate
primary auditory cortices. Finally, the left (LPAC) and right
(RPAC) primary auditory cortices were defined by 10-mm diam-
eter spheres centered on the peak voxels of bilateral primary
auditory cortex, respectively. The Talairach coordinates of LPAC
[−51,−17, 9] and RPAC [51,−15, 6] are in good agreementwith pre-
vious studies (Morosan et al. 2001; Scott and Johnsrude 2003;
Sadaghiani et al. 2009).

The above 3 pairs of regions were then submitted to our mag-
nitude-based analysis. This was followed by submitting LIPL ver-
sus RILP and LMC versus RMC to the analysis using co-occurring
signals (Fox et al. 2006). As both LPAC andRPACwere significantly
activated during the task, they were excluded from the latter ap-
proach. We followed the steps reported by Fox et al. (2006) to ob-
tain the corrected-BOLD signal of LIPL and LMCby subtracting the
signal of RILP and RMC, respectively. The BOLD signal from RIPL
(and RMC) was further scaled by a regression coefficient calcu-
lated using the resting-state data and subtracted from the LIPL
(and LMC) signal during the task (see Supplementary Methods
in Fox et al. 2006 for more details). For each subject, trials were
sorted into either a poststimulus-low or poststimulus-high
magnitude at the peak time point (6 s after stimulus onset)
based on the median magnitude of activity in the RIPL and
RMC, respectively.We then computed the AUC (4–8 s) differences
of the corrected-BOLD in the LIPL (and LMC) between trials with
poststimulus-low and poststimulus-high magnitude. One sam-
ple t-tests against zero at the group level were used to examine
the significance of the AUC difference.

Validation of Phase Analysis in BOLD Signal

Another aim of this study was to examine whether the nonaddi-
tive interaction can be characterized by the phase of the spontan-
eous BOLD signal. Before doing so, we sought to first validate the
phase analysis. We addressed this issue on the basis of tradition-
al functional connectivity (Pearson correlations) analysis of the
BOLD signal. We asked whether the whole-brain functional con-
nectivity matrices/pattern (Power et al. 2011; Cole et al. 2014) can
be replicated using Hilbert phase and amplitude. In other words,
if the phase analysis is producing meaningful information from
the fMRI data, then it should produce results that are comparable
to those from methods that have previously been assumed to be
valid, such as functional connectivity analysis.

We applied the predefined node template (Power et al. 2011;
Cole et al. 2014) onto the 6-min resting-state data. The time series
of each node was first extracted, and after which the instantan-
eous phase and amplitude traces were calculated using Hilbert
transform (Matlab function “Hilbert”) (see Fig. 6A for an illustra-
tion). Specifically, this approach treats the BOLD signal f(t) as
the real part of a complex signal, called the analytic signal z(t).
The imaginary part of z(t) is the Hilbert transform of f(t), and z

(t) = f(t) + iH[f(t)]. The phase is calculated as the inverse tangent
of the ratio of the imaginary and real signals:

θðtÞ ¼ arctan
lmðzðtÞÞ

ReðzðtÞÞ
¼ arctan

H½ f ðtÞ�

f ðtÞ

This method allows calculating instantaneous phase of an
ongoing time series even if it is not precisely sinusoidal (Haslin-
ger et al. 2006) which has been used extensively in EEG data ana-
lysis (Le Van Quyen et al. 2001; Le Van Quyen and Bragin 2007;

Monto et al. 2008; Yang et al. 2012). The phase was “wrapped”
so that it was always between −π and π, and the instantaneous
phase θ(t) was related to zero crossings and peaks/troughs of
the BOLD signal. The amplitude is calculated as the square root
of the sum of squares of imaginary and real signals:

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lmðzðtÞÞ2 þ ReðzðtÞÞ2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H½ f ðtÞ�2 þ ½ f ðtÞ�2
q

In a next step, besides traditional functional connectivity
(TFC), we computed 3 other FCs: Kuramoto FC (KFC), Hilbert
phase-based FC (PFC), and Hilbert amplitude-based FC (AFC).
For the KFC, we measured the averaged phase synchrony across
time between a given pair of phase series from 2 nodes. The
phase synchrony as a function of timewas quantified by the Kur-
amoto order parameter, r(t), defined by:

rðtÞ ¼
1
n
j
X

n

j¼1

eiθjðtÞj;

where n = 2, as the calculation was performed for each pair of
nodes. The KFC was then defined by themean value of r(t) across
time:

KFC ¼
1
m

j
X

m

t¼1

rðtÞj;

where m = 356 is the number of time points in the time series of
6 min resting state (after discarding the first 4 frames). Note that
the Kuramoto parameter was originally introduced to measure
the degree of synchrony among identical interacting oscillators.
Here we used the Kuramoto parameter following Lachaux et al.
(1999) for a measure of phase-locking value between brain re-
gions. Afterward, a KFCmatrix between all pairs of nodeswas ob-
tained for each subject and then averaged across subjects. For the
PFC, similarly to the TFC analysis, which uses Pearson correl-
ation, the PFC matrix was computed based on the Hilbert phase
series instead of the BOLD signal itself. In a similar way, the
AFC matrix was computed based on the Hilbert amplitude series
using Pearson correlation.

To this end, we calculated 4 FC matrices: TFC, KFC, PFC, and
AFC (Fig. 6B). The 4 matrices (after transforming into Fisher’s
standardized Z variable for TFC, PFC, and AFC) were correlated
with each other (linear correlation for the upper triangle) in
order to examine how much they could explain of each other’s
variance. All above analysis was performed in 2 frequency
bands: the frequency band after preprocessing (0.0067–0.5 Hz)
where a low-pass temporal filter was not applied given the pos-
sible presence of meaningful signals at higher frequencies (Cole
et al. 2014); and a narrower one 0.01–0.08 Hz, which has been
commonly used in resting-state functional connectivity analysis
(Biswal et al. 1995; Zou et al. 2008; Buckner et al. 2009).

Phase-Based Analysis

To examine whether the level of evoked activity depends on the
phase of the prestimulus activity,we extracted the instantaneous
phase of the BOLD signal for each ROI and each subject. This cal-
culation was first applied to each task-run separately, and then
the time-course of the instantaneous phase of each run was
concatenated across the 6 task-runs.

The purposes of this phase analysis were: 1) to confirmmagni-
tude-based analysis by comparing trials with prestimulus-trough
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phase (0.5π to −0.5π) to prestimulus-peak phase (−0.5π to 0.5π),
corresponding to prestimulus-lowand -highmagnitude, respect-
ively; 2) to examine whether the level of evoked activity depends
onwhether the stimulus coincideswith a rise (−π to 0) as opposed
to a fall (0 to π) of the prestimulus phases; and 3) to measure
the more specific phase-dependent effect by comparing trials
with prestimulus phases among 4 phase bins (Saka et al. 2010;
Scheeringa et al. 2011; Yang et al. 2012): trough-fall (0.5π to π),
trough-rise (−π to −0.5π), peak-rise (−0.5π to 0) and peak-fall
(0 to 0.5π). Real and pseudotrials were then grouped according
to the above-defined phase ranges of prestimulus activity, re-
spectively (Fig. 8A). The averaged raw-BOLD time-courses for
these trial-groups were extracted for each ROI and each subject.
Similarly to the definition of the LH index, the AUC (4–8 s)
difference of the corrected-BOLD between trials with prestimu-
lus-trough and prestimulus-peak phases (in accordance with
prestimulus-low vs. -high magnitude) was defined as the Trough–
Peak (TP) index. Similarly, Fall–Rise (FR) index, and Trough-Fall–
Trough-Rise (TFTR) index were defined by the contrast of presti-
mulus-fall versus rise, and prestimulus-trough-fall versus
trough-rise, respectively (Fig. 8B,C,D). Note that the TFTR index,
was a confirmative measure by controlling peak and trough
phases. One sample t-tests against zero at the group level were
used to examine the significance of the TP, FR, and TFTR indices
for each region.

As evoked activity may contaminate the phase estimate
(Scheeringa et al. 2011), an additional control analysis was per-
formed using the “background activity”, that is, time-courses
without evoked activity. First, the preprocessed data of each sub-
ject was inputted into a regression analysis using a customized
HRF model. Specifically, we tailored our HRF model according to
the observedmean BOLD response curve (Fig. 1A) to give a best fit
of the evoked activity. Using AFNI function: “waver,” we set the
shape and duration parameters as follows: delay time (2 s), rise
time (4 s), fall time (6 s), undershoot fraction (0.4), undershoot
restore time (30 s), and stimulus duration (2 s). The impulse
response function from waver was convolved with a square
wave of the duration to make the HRF. Second, the background
activity (residual data) from the regression analysis was inputted
into the same phase analysis procedure as above. Third, we
grouped the trials for the original time series according to the
phase makers calculated from the time series of background
activity (0.0067–0.5 Hz). In this way, the potential contamination
of the evoked activity on phase estimateswasminimized. Fourth,
we recalculated all the phase-based interaction indices (TP, FR,
and TFTR). Another confirmative analysis was conducted by
computing all the phase-based interaction indices according to
the phase makers calculated from the time series of background
activity in a narrower frequency band (0.01–0.08 Hz).

Power-Law Exponent Calculation of the Spontaneous
Activity

Scale-free dynamics are an intrinsic feature of many complex
processes in nature, having a power spectrum following the for-
mula P∝1/fβ, where P is power, f is frequency, and β is called the
PLE indexing the degree of LRTCs (Bullmore et al. 2001; He et al.
2010). Since the variance is equal across all voxels after prepro-
cessing, all spectra have the same integrated area. Using meth-
ods previously optimized for fMRI (Rubin et al. 2013), the
resting-state data (acquired during an independent 6-min task-
free fMRI scan using the same acquisition parameters) for each
subject was split up into 2 halves without overlap. First, we com-
puted the normalized power spectrum for each voxel using the

AFNI program: 3dPeriodogram, with additional smoothing in the
frequency direction by 3-point linear filter (0.15a + 0.70b + 0.15c).
Second, the power spectra of the 2 half datasets were averaged.
Similar to Welch’s method, this approach could reduce noise
caused by imperfect and finite data, in exchange for reducing
the frequency resolution. Third, the power spectrawere averaged
across subjects and across the 32 voxels for each ROI. In the next
step, the mean power spectrum of each ROI was fitted with a
power-law function P∝1/fβ using least-square estimation in the
frequency range of 0.01–0.5 Hz. The lower-frequency limit was
chosen to avoid signal contributions from scanner drift (Frans-
son et al. 2013), whereas the higher limit on the frequency
range was constrained by the sampling rate (Nyquist frequency).
Lastly, the PLE of each ROI was defined as the slope of the linear
regression of log-power on log-frequency corresponding to the
straight-line regime (Fig. 9B). To confirm that the possible rela-
tionship between PLE and other measures was not due to any
bias from frequency range selection for calculating the PLE,we re-
peated our calculation of the PLE from the 0.01–0.5 Hz with a
lower-frequency range (0.01–0.1 Hz) (He 2011), and then per-
formed all correlation analyses again (see below).

Phase–Amplitude Coupling of the Spontaneous Activity

Scale-free dynamics in human brain were shown to contain ex-
tensive nested frequencies in spontaneous electroencephalog-
raphy (EEG or ECoG) data (Vanhatalo et al. 2004; Canolty et al.
2006; Lakatos et al. 2008; Monto et al. 2008; Tort et al. 2008; He
et al. 2010). Nested frequencies refer to a systematic relationship
between frequencies where the phase of lower frequencies
modulates the amplitude of higher ones in an upward progres-
sion, for example, phase–amplitude coupling (PAC) (He et al.
2010).

We adopted a definition of subfrequency bands in BOLD sig-
nal (Buzsaki and Draguhn 2004; Zuo et al. 2010; Huang and Dai
et al. 2014; Huang and Wang et al. 2014) including Slow5 (0.01–
0.027 Hz), Slow4 (0.027–0.073 Hz), Slow3 (0.073–0.198 Hz), and
Slow2 (0.198–0.5 Hz) (Fig. 9A). We applied an analogous method
as in He et al. (2010) but a simplified approach for phase–ampli-
tude coupling (PAC) in BOLD signal. Specifically, for a pair of fre-
quencies, instantaneous phase and amplitude were extracted
from the lower and higher frequencies, respectively. The lower-
frequency phase across all the time points was sorted into 4
bins: trough phase (0.5π to −0.5π), peak phase (−0.5π to 0.5π), fall
phase (0 to π), and rise phase (−π to 0), which is in accordance
with the above phase-based analysis during the task. Next, the
concurrent higher-frequency amplitude was averaged within
each bin. By comparing the higher-frequency amplitude on
lower-frequency phase, the potential phase–amplitude depend-
ence (or coupling) can be revealed. We quantified the amplitude
differences of higher frequencies by contrasting TP and FR
phases of lower frequencies (see Fig. 9C for an example of
Slow4 and Slow3). This yielded a simplified modulation index
(MI) (Tort et al. 2008; He et al. 2010) for both TP and FR, respective-
ly. One sample t-tests against zero at the group level were used to
examine the significance of MI for each region. Finally, a PAC
index was defined by averaging the MI of FR in Slow5–Slow3
and Slow4–Slow3 (see Table 1 for details).

Region-Based Correlation Analyses

We sought to link trial-to-trial variability, nonadditive inter-
action and temporal structure of spontaneous activity. For this
purpose, we first associate TTV (TTV index) and magnitude-
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based interaction (LH index) using Spearman’s correlation ana-
lyses across all active ROIs, with a 95% confidence interval (CI)
based on 1000 bootstrap samples (same for the following correl-
ation analyses). This region-based approach also helps counter
between-subject measurement noise (He 2011, 2013). In the se-
cond step, as a proof-of-principle, to examine whether the
phase-based analysis of comparing prestimulus-trough to
-peak phases (TP index) has the same performance as themagni-
tude-based analysis (low vs. high prestimulus magnitude, LH
index), TP and LH indices were correlated. Third, we correlated
the TTV index with all phase-based interaction indices (TP, FR,
and TFTR) to test whether the phase-dependent effect could ex-
plain the TTV reduction. Finally, we correlated all the interaction
indices (LH, TP, FR, and TFTR) with the temporal structure of
spontaneous activity measured by both PLE and PAC index. In
addition, the TTV index and PLE, and TTV and PAC Indices,
were also correlated with each other to further confirm the
observed relationship. A Bonferroni correction for multiple com-
parisons was performed across the above correlations.

Results

The response in 95.5% (SD = 4.5%) of the trials agreed with the a
prescan questionnaire averaged across the 23 subjects. Invalid
trials with unexpected responses were excluded from further
analysis. Average reaction time was 590 ms (timing from ques-
tions’ offset) with a SD across subjects of 363 ms.

Definition of ROIs

The activation index in 111 of the 264 putative functional areas
(Power et al. 2011) was significantly above zero (P < 0.05, Bonferro-
ni corrected). These active areas were defined as ROIs for the
following results (Fig. 2A).

TTV Decreases Following Stimulus Onset

As expected, we observed TTV reduction following stimulus
onset in widespread cortical regions (Fig. 2B). The TTV index in
40 out of 111 active ROIs was significantly below zero (P < 0.05,
uncorrected; one sample t-tests across 23 subjects). According
to binomial statistics, the chance that 11, or more than 11, of
111 ROIs are individually significant at a P < 0.05 level is equal to
0.023. Thus, the above results were significant at the population
level (P < 1e-12, binomial statistics). Our observation was well in
line with previous observations (He 2013).

Magnitude-Based Interaction AcrossWidespread Cortical
Regions

To examine if the level of evoked activity (corrected-BOLD) de-
pends on the magnitude of the prestimulus activity (Fig. 3A),
we defined the magnitude-based interaction index, LH index. In
the example region, LIPL, significant interaction was seen (LH
index: P < 0.001). Interestingly, although not significantly in-
volved in the task (P = 0.313 for activation index), the RIPL (com-
prising the same resting-state network with LIPL) also showed
significant interaction (LH index: P < 0.001) (Fig. 3B). The LH
index in 85 of 111 ROIs was significantly above zero (P < 0.05),
which is highly significant at the population level (P < 1e-12, bino-
mial statistics). This showed a negative interaction (He 2013) be-
tween spontaneous and evoked activity that exists inwidespread
cortical regions: stimuli presented at a lower magnitude of pre-
ceding spontaneous BOLD activity fluctuations produce a stron-
ger response than stimuli presented at higher magnitude. In
addition, the above results were robust, withstanding different
trial sorting criteria (see Supplementary Fig. 1 for a third split
approach contrasting top 33% vs. low 33%).

Comparing Our Results with the Ones by Fox et al. (2006)

Using our magnitude-based interaction analysis, we examined 4
other regions including LMC, RMC, LPAC, and RPAC. After obtain-
ing the corrected-BOLD signal for each region, the 2 time series of
prestimulus-high and prestimulus-low showed similar ampli-
tudes, which thus seems to approximately support a linear
superposition between spontaneous and evoked activity as
reported previously (Fox et al. 2006). In order to go beyond mere
visual inspection, we applied statistical analysis using the LH
index (see above); the LH index was significant in LMC (P = 0.006),
LPAC (P = 0.001) andRPAC (P = 0.009), andmarginally significant in
RMC (P = 0.070) which speaks in favor of a nonadditive (rather
than additive) interaction (though to a modest degree) (Fig. 4).

Moreover, in order to replicate Fox et al.’s (2006) results, we
used their analysis relying on co-occurring signals from homolo-
gous brain regions, that is, the activity in the homologous brain
region serves as a substitute for the ongoing activity in the acti-
vated brain region. Indeed, following their method, we were
unable to observe any evidence of a nonadditive interaction
(as measured with LH index) either in LMC (P = 0.780) or LIPL
(P = 0.343) (Fig. 5; see Supplementary Fig. 2 for a confirmation by
third split). Taken together, using co-occurring signals from
homologous brain regions such as RMC (Fig. 4) and RIPL (Fig. 3B)
leads to different corrected-BOLD signals in LMC and LIPL in

Table 1 Statistics of PAC in spontaneous fMRI signals

MI Hilbert amplitude

Slow2 (0.198–0.5 Hz) Slow3 (0.073–0.198 Hz) Slow4 (0.027–0.073 Hz) Slow5 (0.01–0.027 Hz)

Hilbert phase
Slow2 — — — —

Slow3 11 | 2 — — —

Slow4 3 | 6 13 | 56PLE — —

Slow5 13 | 18 19 | 16PLE 9 | 27 —

Note: In each cell: number of ROIs showing significant MI for trough versus peak phases | number of ROIs showing significant MI for fall versus rise phases. According to

binomial statistics, the chance that 13, or more than 13, of 111 ROIs are individually significant at a P < 0.05 level is equal to P = 0.0037 at the population level, which is also

significant after Bonferroni corrections for multiple comparisons across the 12 tests (P = 0.044, corrected). Numbers with superscript PLE denote significant correlation

between MI and power-law exponent (PLE) across 111 ROIs. The P values of the two significant ones (MIs of FR in Slow5–Slow3 and Slow4–Slow3) are both P < 0.001

(also see Supplementary Table 2 for statistics). The PAC index is defined by averaging the two MIs.
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comparison with our approach (subtracting signals of pseudo-
trials in the ITI).

Validation of Phase Analysis in BOLD Signal

To test whether the whole-brain functional connectivity (FC)
matrices/pattern (Power et al. 2011; Cole et al. 2014) can be repli-
cated by using Hilbert phase and amplitude, we compared
4 FC matrices (TFC, KFC, PFC, and AFC) in the resting-state

data (Fig. 6). We found that all FC matrices shared a very similar
pattern (Fig. 7). The correlations between TFC and all other FCs
including KFC, PFC, and AFC were all significant (P < 0.001) in
both wider (0.0067–0.5 Hz) and narrower (0.01–0.08 Hz) fre-
quency ranges. The correlation between TFC and KFC showed
the highest r values (r = 0.992 in 0.0067–0.5 Hz; r = 0.986 in 0.01–
0.08 Hz), suggesting that phase synchronization analysis can
replicate standard FC analysis; this validates our method of
phase analysis.

Figure 4.Magnitude-based interaction in bilateral somatomotor cortex (LMC and RMC) and primary auditory cortex (LPAC and RPAC). Although the corrected-BOLD signal

of prestimulus-high andprestimulus-low showed similar amplitudes in these regions, the LH indexwas significant in LMC (P = 0.006), LPAC (P = 0.001), and RPAC (P = 0.009),

and marginally significant in RMC (P = 0.070). Error bars indicate ±SEM.
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Phase-Based Interaction and Phase-Dependence

After validating the phase analysis on independent grounds (i.e.,
resting-state FC), we then examined whether the level of evoked
activity depends on the phase of the prestimulus activity
(Fig. 8A). We defined the TP, FR, and TFTR indices. First, using
TP index, we compared trials with prestimulus-trough phase
(0.5π to −0.5π) to prestimulus-peak phase (−0.5π to 0.5π), corre-
sponding to prestimulus low and high magnitude, respectively
(Fig. 8B). Therefore, the TP index was used to confirm the results
of LH index. As expected, very similar results were observed be-
tween the TP and LH indices (Figs 8B and 3B, respectively), and
the 2 indices were highly correlated (r = 0.928, P < 0.001) (Supple-
mentary Fig. 4). This suggests the 2 indices, calculated independ-
ently, correspond to each other in terms of prestimulus low
versus high magnitude and trough versus peak phases. The TP
index in 82 of 111 ROIs was significantly above zero (P < 0.05),
and was also highly significant at the population level (P < 1e
−12, binomial statistics).

In a second step, we tested whether the level of evoked activ-
ity depends on thewave’s progression (falling or rising) of presti-
mulus activity. We compared trials with prestimulus-fall phase
(0 to π) to prestimulus-rise phase (−π to 0), as well as prestimu-
lus-trough-fall phase (0.5π to π) to prestimulus-trough-rise
phase (−π to −0.5π) (Fig. 8C,D; see Supplementary Fig. 3 for other
regions including RIPL, LMC, RMC, LPAC, and RPAC). Interestingly,
we found phase-dependent effects: the FR and TFTR indices in
26 and 12 of 111 ROIs, respectively, were significantly above
zero (P < 0.05), and these results were also highly significant
at the population level (binomial statistics, P = 3.5e−11 and
P = 0.0097, respectively).

As evoked activity may contaminate the phase estimate
(Scheeringa et al. 2011), an additional control analysis was

performed using the “background activity” (0.0067–0.5 Hz). Our
results showed that the potential contamination of evoked activ-
ity on phase estimate is negligible and all the results given above
remain significant (Supplementary Fig. 5). Specifically, the TP, FR,
and TFTR indices in 85, 38, and 19 of 111 ROIs, respectively, were
significantly above zero (P < 0.05). They were also highly signifi-
cant at the population level (binomial statistics, P < 1e−12, P < 1e
−12, and P = 2.6e−6, respectively). Similar results were seen in a
narrower frequency band (0.01–0.08 Hz) (Supplementary Fig. 6).
In addition, no evidencewas found that age or gender had an im-
pact on these interaction indices (see Supplementary Table 1).

Taken together, these results suggest that the nonadditive
interaction between spontaneous and evoked activity can be
characterized by phase-dependent excitability (trough vs. peak,
fall vs. rise) of spontaneous activity, with trough-fall phases
showing the highest excitability.

PLE of Spontaneous Activity

The mean PLE across the ROIs was 0.92 (SD = 0.20) (Fig. 9A,B for
LIPLwith a PLE of 1.29). The power spectra of resting-state activity
showed a linear decrease as a function of frequency, suggesting a
power-law behavior for brain dynamics (He et al. 2010; He 2011).

Phase–Amplitude Coupling of the Spontaneous Activity

We examined the PAC using a simplified MI (Tort et al. 2008; He
et al. 2010) in 4 subfrequency bands: Slow5 (0.01–0.027 Hz), Slow4
(0.027–0.073 Hz), Slow3 (0.073–0.198 Hz), and Slow2 (0.198–0.5 Hz)
(see Fig. 9C). For the contrast of trough versus peak phases, signifi-
cant MIs in Slow5–Slow3, Slow5–Slow2, and Slow4–Slow3 were
found; and for the contrast of fall versus rise, significant MIs in
Slow5–Slow4, Slow5–Slow3, Slow5–Slow2, and Slow4–Slow3 were

Figure 5. Replication of Fox et al.’s (2006) results. Using their method of using co-occurring signals from homologous brain regions (the activity in the homologous brain

region servers as a substitute for the ongoing activity in the activated brain region), no evidence of a nonadditive interaction is found in either LMC (P = 0.780) or LIPL

(P = 0.343). Error bars indicate ±SEM.
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seen (Table 1). Additionally, the MIs of Slow5–Slow3 and Slow4–
Slow3 in fall versus rise showed significant correlations with PLE
across 111 ROIs (P < 0.001; see Supplementary Table 2). The MIs
of Slow5–Slow3 and Slow4–Slow3 in fall versus rise were also cor-
related with each other (r = 0.28, P = 0.003). For that reason, we col-
lapsedbothMIs yielding a PAC index foreachROI in all subsequent
correlation analyses (see below).

The Relationship Between TTV Index, Interaction
Indices, PLE, and PAC Index

Linking trial-to-trial variability, nonadditive interaction and tem-

poral structure of spontaneous activity, we first visualized all

indices according to their value ranking across the 111 active

ROIs in the brain (Fig. 10). We found that the magnitude-based

Figure 6. Illustration of Hilbert phase analysis and its validation in spontaneous fMRI signals (acquired during an independent 6 min task-free fMRI scan). (A) The power

spectrum of an example time series in LIPL from Subject 08. The BOLD time series in two frequencies (0.0067–0.5 Hz and 0.01–0.08 Hz) and their instantaneous phase and

amplitude traces (by Hilbert transform) are shown in the upper-right. (B) Four FC matrices were calculated: TFC, KFC, PFC, and AFC. For the TFC, Pearson correlation

analysis was performed for a given pair of BOLD time series from two nodes. For the KFC, the averaged phase synchrony across time was calculated between a given

pair of phase series from two nodes (see Materials and Methods for details). For the PFC, similarly to the TFC analysis which uses Pearson correlation, the PFC matrix

was computed based on the Hilbert phase series instead of the BOLD signal itself. In a similar way, the AFC matrix was computed based on the Hilbert amplitude

series using Pearson correlation.
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interaction index (LH), phase-based interaction indices (TP, FR,
and TFTR), PLE and PAC index shared a similar spatial distribu-
tion pattern, and the TTV index showed the opposite. Moreover,
we observed concordant gradient changes in relation to the LH
index in all 3 phase-based interaction indices, PLE and PAC
index, along with an opposite gradient change in the TTV index
(Fig. 11).

The above relationship was further examined by correlating
the TTV index, PLE, and PAC index with all interaction indices
(LH, TP, FR, and TFTR), as well as correlating between TTV
index, PLE, and PAC index. The analyses were performed using
Spearman’s correlations across 111 ROIs. The results showed
that the TTV index and all interaction indices were negatively
correlated (TTV-LH: r =−0.60; TTV-TP: r =−0.53; TTV-FR: r =−0.67;

TTV-TFTR: r = −0.49), while all interaction indices and the PLE
were positively correlated (LH-PLE: r = 0.70; TP-PLE: r = 0.66; FR-
PLE: r = 0.38; TFTR-PLE: r = 0.31). All interaction indices and PAC
index were also positively correlated (LH-PAC: r = 0.48; TP-PAC: r
= 0.44; FR-PAC: r = 0.42; TFTR-PAC: r = 0.32). As expected from
the above observations, the TTV index and PLE were negatively
correlated (r = −0.56), the TTV index and PAC index were nega-
tively correlated (r = −0.43), and the PLE and PAC index were
positively correlated (r = 0.53) (see Fig. 12 for a summary; Supple-
mentary Table 3 for all statistics). The significance for all above
correlations was P < 0.001, which was significant enough to sur-
vive a Bonferroni correction for multiple comparisons.

Several additional correlation analyses were used to confirm
the above results. First, for the magnitude-based interaction

Figure 7. The validation of Hilbert phase analysis in BOLD signal with a predefined node template (Power et al. 2011; Cole et al. 2014). (A) The node template is visualized in

an inflated brain with eleven distinct networks plus uncertain regions (Cole et al. 2014). (B) Four FC matrices of spontaneous fMRI signals (6 min task-free fMRI scan) are

presented: TFC, KFC, PFC, and AFC. These FC matrices shared a very similar pattern, where the correlations between TFC and all other FCs including KFC, PFC, and AFC

were all significant (P < 0.001) in both wider (0.0067–0.5 Hz) and narrower (0.01–0.08 Hz) frequency ranges. This serves as validation of phase analysis on the basis of

traditional functional connectivity.
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index (LH), we confirmed that the above correlations were robust
to different trial sorting criterions (see Supplementary Table 4:
third split contrasting top 33% vs. low 33%). Second, we repeated
our calculation of the phase-based indices (TP, FR, and TFTR)
using the “background activity” in both wider (0.0067–0.5 Hz)
and narrower (0.01–0.08 Hz) frequency bands. The above correl-
ation remains significant (see Supplementary Table 5). Third, to

avoid any bias from frequency range selection for calculating
the PLE, we repeated our calculation of the PLE from 0.01–0.5 Hz
with a narrower frequency range (0.01–0.1 Hz) as suggested in a
previous study (He 2011). Again, the above correlations remain
significant (see Supplementary Table 6). Lastly, the temporal
variance (TV) was reported to have a close relationship with the
PLE (He 2011); we also examined the correlations between the

Figure 8. Illustration of phase-based analysis and phase-dependent effect of fMRI signal (LIPL as an example). (A) All trials for each subject were grouped according to the

phase markers of prestimulus activity. This approach was performed on real and pseudotrials independently. (B) Confirming the magnitude-based analysis (LH index),

very similar results were seenwhen comparing trials with prestimulus-trough phase (0.5π to−0.5π) to prestimulus-peak phase (−0.5π to 0.5π) by TP index (AUC 4–8 s, same

as follows). (C) Comparing trials with prestimulus-fall phase (0 to π) to prestimulus-rise phase (−π to 0) by FR index, the level of evoked activity was shown to be dependent

on the wave’s progression (falling or rising) of prestimulus activity. (D) The phase-dependent effect was further confirmed (controlling peak and trough phases) by

comparing trials with prestimulus-trough-fall phase (0.5π to π) to trough-rise phase (−π to −0.5π) as measured by TFTR index. Error bars indicate ±SEM.
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temporal variance—in both resting state and ITI—and all
other indices. As expected, significant correlation was found be-
tween TV and PLE. In addition, the TV also correlated with other
indices (TTV, LH, TP, FR, and TFTR) but not the PAC index (see
Supplementary Table 7).

Discussion

Using an extremely sparse event-related design (ITIs from 52 to
60 s), a novel correction approach, and phase analysis of fMRI sig-
nals, we demonstrate that 1) stimuli presented at a lower magni-
tude of preceding spontaneous BOLD activity fluctuations

Figure 9. Power spectra, PLE and PAC. (A) Power spectra of spontaneous fMRI signals (6 min task-free fMRI scan) for all ROIs. Subfrequency bands in BOLD signal, including

Slow5 (0.01–0.027 Hz), Slow4 (0.027–0.073 Hz), Slow3 (0.073–0.198 Hz), and Slow2 (0.198–0.5 Hz) are shown (Zuo et al. 2010). (B) The power-lawexponent (PLE), β, was defined

as the slope of a linear regression of log-power on log-frequency corresponding to the straight-line regime (LIPL as an example). (C) For a pair of frequencies (Slow4 and

Slow3 for this example; BOLD signal from LIPL of subject 10), instantaneous phase and amplitude were extracted for the lower (Slow4) and higher (Slow3) frequencies,

respectively. The amplitude differences of higher frequencies were calculated by contrasting trough versus peak (TP) and rise versus fall (FR) phases of lower

frequencies (FR for this example). This yielded a simplified MI (Tort et al. 2008; He et al. 2010) for both TP and FR, respectively. One sample t-tests against zero at the

group level were used to examine the significance of MI for each region. Significant MI of Slow4–Slow3 FR at the group level was seen in the LIPL for this example.
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produce a stronger response than stimuli presented at a higher
magnitude, which explains trial-to-trial variability reduction
after stimulus-onset; 2) the discrepancy between the results pre-
sented here (nonadditive interaction) and previous observations
(linear superposition) (e.g., Fox et al. 2006) is due to different as-
sumptions about spontaneous activity and methods of analysis
in obtaining corrected-BOLD signal; 3) the nonadditive inter-
action can be characterized by phase-dependent excitability of
spontaneous activity. That is, different levels of excitability can
be seen in trough versus peak and fall versus rise phases,
where trough–fall phases show the highest excitability; 4) the
degree of the phase-dependent excitability is related to the de-
gree of the LRTCs in spontaneous activity, as indexed by both
power-law exponent and phase–amplitude coupling.

Nonadditive Interaction

Several studies reported that prestimulus spontaneous activity
has an impact on behavioral performance (Boly et al. 2007; Fox
and Raichle 2007; Hesselmann, Kell and Eger et al. 2008; Hessel-
mann, Kell and Kleinschmidt 2008; Sadaghiani et al. 2009, 2010;
Northoff et al. 2010). However, these studies did not quantitative-
ly demonstrate an interaction between spontaneous and evoked
activity. Recently, a negative interaction between the 2 activities
was proposed based on an indirect observation, namely, a de-
creased TTV after stimulus-onset, which is considered a conse-
quence of the negative interaction (He 2013). The phenomenon
of TTV reduction was also reported in ECoG (He and Zempel
2013) and neuronal firing on the cellular level (Churchland et al.

Figure 10. Visualization of all indices according their value ranking across the 111 ROIs from low to high. The magnitude-based interaction index (LH), phase-based

interaction indices (TP, FR, and TFTR), PLE and PAC index all shared a similar spatial distribution pattern, and the TTV showed the opposite. TTV, trial-to-trial

variability; LH, low–high; TP, trough–peak; FR, fall–rise; TFTR, trough-fall–trough-rise; PLE, power-law exponent; PAC, phase–amplitude coupling.
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2010; Chang et al. 2012; White et al. 2012). In addition, the behav-
ioral relevance of TTVhas also been shown in EEG-MEG (Schurger
et al. 2015), EEG-fMRI (Mayhew et al. 2013), fMRI (He 2013), ECoG
(He and Zempel 2013), and intracellular recoding (Carandini
2004; Marcos et al. 2013; Churchland et al. 2010; Scaglione et al.
2011). The TTV inmembrane potentials of visual cortical cells de-
creases in response to high contrast stimuli, which is suggested
to be a key mechanism that allows the nervous system to disam-
biguate stimulus strength from attribute (Finn et al. 2007). Never-
theless, future validations of the TTV method across different
modalities (intracellular recoding, EEG, MEG, and fMRI), as well
as revealing its underlying physiological mechanism, remain to
be addressed.

Importantly, extending these observations, our findings pro-
vide direct evidence and straightforwardmeasures of the nonad-
ditive interaction between spontaneous and evoked activity.
Using amagnitude-based interaction index (LH) to compare trials
with prestimulus-highmagnitude to thosewith prestimulus-low
magnitude (after BOLD correction), we observed a relatively
stronger evoked BOLD response when the stimulus was

presented at lower prestimulusmagnitude of spontaneous activ-
ity in almost all the active regions. As expected, the LH index cor-
relatedwith the TTV index,whichhelps confirm the prediction of
the negative interaction (He 2013). Despite the fact that different
tasks were used and thus different sensory modalities were re-
cruited, our current study (auditory semantic-judgment task) to-
gether with He’s study (He 2013) (visual detection) strongly
contradict the linear superposition model proposed and elabo-
rated in the past 2 decades (Arieli et al. 1996; Azouz and Gray
1999; Fox et al. 2006; Becker et al. 2011).

Methodologically, our long ITI’s experimental design and
fMRI signal correction approach (accounting for spontaneous
fluctuations using pseudotrials) allowed us to provide the afore-
mentioned evidence. It is important to note that we did not as-
sume that the spontaneous activity modeled by pseudotrials
was identical to thatwhich underlies real trials. First, theoretical-
ly, it is impossible to directly dissociate spontaneous and evoked
activity from the recorded signal, as the spontaneous activity
may continue to vary after stimulus onset. Second, the distinc-
tion itself must be put into doubt once linear superposition no

Figure 11.Visualization of the LH index across ROIs in relation to the TTV index, phase-based interaction indices (TP, FR, and TFTR), PLE and PAC index. The 111 ROIs were

sorted based on the value of the LH index into 3 groups: high, medium and low (37 ROIs for each group). Other indices as well as the PLEwere presented in the same order.

By averaging thesemeasurements in corresponding ROIs’ groups (bars on the right withmean and SEM across regions), concordant gradient changes in relation to the LH

index were seen in all 3 phase-based interaction indices (TP, FR, and TFTR), PLE and PAC index, along with an opposite gradient changewas found in the TTV index. TTV,

trial-to-trial variability; LH, low–high; TP, trough–peak; FR, fall–rise; TFTR, trough-fall–trough-rise; PLE, power-law exponent; PAC, phase–amplitude coupling.
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longer holds. Lastly, in taking the view that the brain is a dynamic
system that selects its trajectory based on the context and adjusts
that trajectory when performing a task (He 2013), the spontan-
eous activity modeled by the pseudotrials in our study should
represent what would have been the spontaneous activity if the
task was not performed. In this sense, the interaction indices
defined in our study, based on the contrast of real- versus pseu-
dotrials, can be considered to indicate how the incoming stimuli
modulate the brain’s spontaneous activity in a manner that de-
pends on the brain’s initial state (at stimulus onset).

We alsovalidated our results in a few regions involved andnot
involved in the task, including bilateral inferior parietal lobule
(LIPL and RIPL), somatomotor cortex (LMC and RMC) and primary
auditory cortex (LPAC and RPAC). Using our approach, obtaining
corrected-BOLD signals by subtracting pseudotrials during the
ITI, all regions showed significant nonadditive interaction (ex-
cept for RMC that showed marginal significance). Note that the
corrected-BOLD signals of prestimulus-high versus prestimu-
lus-low in LMC, RMC, LPAC and RPAC indeed showed similar am-
plitudes. These sensory cortical regions (e.g., somatomotor and
auditory) thus seem to show a rather modest degree of nonaddi-
tive interaction, which visually accords with an “approximately”

linear superposition between spontaneous and evoked activity
as observed previously (Fox et al. 2006).

Why then is there a discrepancy between our findings of non-
additive interaction and the earlier report (Fox et al. 2006), which
suggested a linear superposition between spontaneous and
evoked activity? We replicated Fox et al.’s (2006) results using
their approach achieved by co-occurring signals from homolo-
gous brain regions assuming that they are not influenced by
the task. Following their method, wewere also unable to observe
any evidence of a nonadditive interaction. However, as shown
above, the homologous brain regions (RIPL and RMC) neverthe-
less exhibit an observable nonadditive interaction effect (Figs 3B
and 4). This suggests that these regionswere in fact influenced by
the task, so that they may not represent proper ongoing activity
that is unaffected by the task, which Fox et al. (2006) assumed
(see a similar argument based on the TTV reduction in RMC in
He 2013). Therefore, we conclude that by subtracting the co-oc-
curring signals from the homologous regions (e.g., RIPL and
RMC), one cancels out the nonadditive interaction effect in the
active regions (e.g., LIPL and LMC), which leads to the observation
of a linear superposition between spontaneous and evoked
activity.

Figure 12. The relationship between the TTV index, interaction indices (LH, TP, FR, and TFTR), PLE and PAC index. The correlation analyses were performed using

Spearman’s correlations across 111 ROIs, with a 95% CI based on 1000 bootstrap samples. The significance for all above correlations is P < 0.001 (denoted by ***), which

is significant enough to survive a Bonferroni correction for multiple comparisons. TTV, trial-to-trial variability; LH, low–high; TP, trough–peak; FR, fall–rise; TFTR,

trough-fall–trough-rise; PLE, power-law exponent; PAC, phase–amplitude coupling.
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Phase-Dependent Excitability

What is themechanism underlying this nonadditive interaction?
Here we propose a candidate mechanism, phase-dependent ex-
citability, observed in our phase-based interaction indices (TP,
FR, and TFTR) as well as their relationship to the TTV index. As
is known, the dominant oscillatory spontaneous brain activity
in fMRI during resting wakefulness is observed in frequencies
lower than 0.5 Hz and it is commonly referred to as the slow cor-
tical potential or infraslow fluctuation (He and Raichle 2009).
These fluctuations have been suggested to be crucial for normal
brain functioning (Raichle and Mintun 2006; Fox and Raichle
2007; He et al. 2007; Luczak et al. 2009; Berkes et al. 2011; He
2013) but their exact functional role remains unknown. Our ob-
servations suggest that the phase cycle of the infraslow fluctua-
tions contains different levels of “temporal excitability” for
subsequent stimuli (Palva and Palva 2012). Stimulus responses
at time points of reduced excitability would be expected to be
lower than responses at points in the cycle of increased excitabil-
ity. In other words, the spontaneous activity’s ongoing phase cy-
cles modulate the effectiveness of the external stimulus/task,
which in turn yield different levels of evoked activity and behav-
ioral outcomes, and explain the observed trial-to-trial variability
reduction of evoked activity after stimulus-onset. Our proposed
phase-dependent excitability is in linewith the “state-dependent
network model”; based on computational modeling, ongoing ac-
tivity and its temporal excitability can be regarded as a state-de-
pendent spatiotemporal property that impacts the processing of
stimuli (Buonomano and Maass 2009).

Alternatively, since our data were based on fMRI signals, the
nonadditive interaction may be seen in the context of another
phenomenon called the BOLD saturation or ceiling effect (Haller
et al. 2006; Goebel and Van Atteveldt 2009). However, we deem
this effect an unlikely explanation for 2 reasons: 1) if the inter-
action between spontaneous and evoked activity is just due to
BOLD saturation effect at prestimulus, one would expect to see
identical evoked activity for an identical saturation level (identi-
cal magnitude) of prestimulus activity. However, this was not the
case in our datawhen comparing trials with prestimulus rise and
fall phases (Fig. 8C and Supplementary Fig. 7); 2) if the interaction
is just due to BOLD saturation effect during the peak period, one
would expect to see higher evoked activity for a lower saturation
level (lower magnitude) during the peak period. However, our
data showed the opposite when comparing trials with prestimu-
lus-trough-rise to trials with prestimulus-peak-fall phases
(Fig. 8D and Supplementary Fig. 7).

Nonadditive Interaction and the Temporal Structure
of Spontaneous Activity

Consistent with previous studies, our results showed that spon-
taneous fMRI signals during resting-state display rich temporal
organization (LRTCs) across widespread cortical regions as in-
dexed by their scale-free 1/fβ power spectra (Bullmore et al.
2001; Linkenkaer-Hansen et al. 2001; He et al. 2010; He 2011;
Palva et al. 2013). Such LRTCs are shared by many systems
found in nature (Chialvo 2010; He et al. 2010) and, most import-
antly, have also been observed in neural activity acrossmany dif-
ferent spatiotemporal scales: from neurotransmitter release
(Lowen et al. 1997), neuronal spike trains (Lowen et al. 2001),
network firing rates (Garcia-perez et al. 2007), field potentials
(Linkenkaer-Hansen et al. 2001; Manning et al. 2009; Miller et al.
2009; He et al. 2010; Palva et al. 2013), to fMRI signals (He et al.
2010; He 2011).

Our results extend the current literature by showing that the
degree of LRTCs, as indexed by the power-law exponent, in spon-
taneous brain activity of the resting-state (independently to the
performed task) is related to the degree of the phase-dependent
effect between spontaneous and evoked activity during the task;
the higher the degree of LRTCs (larger power-law exponent) in
spontaneous activity, the larger the degree of the phase-depend-
ence effect and the subsequent TTV reduction. This suggests that
LRTCs in spontaneous activity have an impact on the degree to
which the spontaneous activity interacts with the stimuli or
task. In otherwords, a change in the power-lawexponent implies
a change in the nonadditive interaction. If the spontaneous brain
activity were only white noise (power-law exponent = 0), then
one would get a pure additive activity. Once the internal activity
starts being auto-correlated (begins to form memory of the past)
then the interaction turns to be nonadditive or nonlinear (see
below for further discussion between “nonadditive” and “non-
linear”). Finally, although we obtained our data based on BOLD-
fMRI, our findings potentially have important implications for
activation properties at a cellular level, where LRTCs and TTV
reduction have also been observed (Lowen et al. 2001; Garcia-
perez et al. 2007; Churchland et al. 2010; White et al. 2012).

How could LRTCs within spontaneous activity modulate
the phase-dependent excitability? As suggested in a previous
study, scale-free dynamics can be characterized by nested
frequencies in which a particular phase of the lower-frequency
fluctuation could modulate the activity of higher frequencies
(He et al. 2010). For instance, the trough of surface-recorded
slow cortical potentials (SCPs), which constitute the low-
frequency end of the 1/fβ power spectrum (Monto et al. 2008;
He and Raichle 2009), is associated with increased cortical excit-
ability and an increased amount of higher-frequency activities
(Vanhatalo et al. 2004; He and Raichle 2009).

Nested frequencies have been observed in spontaneous EEG
(or ECoG) data (Vanhatalo et al. 2004; Canolty et al. 2006; Lakatos
et al. 2008; Monto et al. 2008; Tort et al. 2008; He et al. 2010),
whereas they remain poorly investigated in fMRI data. This
may be partly due to the relatively low temporal resolution in
fMRI on the one hand, and less consensus in the literature on
the definition of sub-frequencies in BOLD signals on the other
hand. However, as an exploratory investigation, we have ex-
tended previous observations from EEG/ECoG to fMRI signals
by showing widespread nested frequencies across brain regions
in Slow5 (0.01–0.027 Hz), Slow4 (0.027–0.073 Hz), Slow3 (0.073–
0.198 Hz), and Slow2 (0.198–0.5 Hz), measured by a simplified
MI (Tort et al. 2008; He et al. 2010). The links between nested fre-
quencies and scale-free properties were found in the MIs of
Slow5–Slow3 and Slow4–Slow3 in fall versus rise, where the
MIs showed significant correlations with the PLE. Furthermore,
the PAC index (collapsing the MIs of Slow5–Slow3 and Slow4–
Slow3 in fall vs. rise) was also highly correlated with all the
interaction indices.

Taken together, we tentatively propose that the LRTCs within
spontaneous activity may impact the phase-dependent excit-
ability via intrinsic phase–amplitude coupling. We acknowledge
that our choice of phase bins (π/2) for phase–amplitude coupling
analysis may be somewhat arbitrary and coarse-grained, since it
may not capture the fine-grained temporal organization as
shown in EEG and ECoG studies (e.g., He et al. 2010). In addition,
we found the PAC in rise versus fall phases shows the strongest
correlation with the scale-free properties (e.g., PLE); however
that leaves open the question of why we did not obtain such
correlations in peak versus trough phases. Future studies com-
bining EEG, MEG, and fMRI to target both higher-frequency and
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infraslow-frequency bands are required to confirm and expand
upon the observation.

Limitations and Methodology Issues

We demonstrated that spontaneous and evoked activity interact
in a nonadditive, rather than additive or linear superimposed,
way. Under the umbrella term “nonadditive,” 2 possible scenarios
can be taken into account for the relationship of spontaneous
and evoked activity. That is, the evoked activity (corrected-
BOLD signal) may change as a function of prestimulus spontan-
eous activity in 1) a linear way or 2) a nonlinear way. If the former
is true, one would expect that trials with different levels of pres-
timulus activity should correspond to different levels of evoked
activity. However, the phase-dependence effect revealed by our
data invalidates this assumption, as the evoked activity can be
different when the prestimulus activity is the same (e.g., compar-
ing trials with prestimulus-rise to trials with prestimulus-fall
phases; Fig. 8C). Another counter-example for the linear scenario
was provided by an analysis using 8-split of trials based on both
prestimulusmagnitude and prestimulus phases in the LIPL (Sup-
plementary Fig. 8). Our results remain in favor of a nonlinear re-
lationship. Nevertheless, we are unable to provide an exact
nonlinear relationship between spontaneous and evoked activ-
ity, as phase-dependence of the fMRI signal may pertain to as
of yet unclear nonlinear mechanisms, especially considering
the complex relationship from neural activity on the cellular
level to hemodynamic response on the regional level. Thus, at
this point, we chose to use the broader term “nonadditive” in-
stead of “nonlinear” to describe the above relationship. This
issue of nonlinear mechanisms may be potentially addressed
by future studies combining neural modeling, neuroimaging
and electrophysiology.

Our results argue for a refining of traditional general linear
models (GLM) as well as experimental designs that take spontan-
eous fluctuations of brain activity, including its ongoing phases,
more accurately into account. For example, one may want to
compare different event categories presented using a (pseudo)
randomized event-related fMRI design. If the number of trials is
not sufficient, and by coincidence the stimuli of the different
event categories fall into different prestimulus ongoing phases,
one may obtain different estimated activations using GLM ana-
lysis for the different event categories. However, this may simply
be due to the differences in prestimulus phases rather than the
different event categories themselves. In an extreme example,
this could be true even for presenting pseudotrials without actual
stimuli (see Supplementary Fig. 9 for an illustration). Collectively,
insufficient number of trialsmay give rise to false-positive results
deriving from unbalanced prestimulus phases. Stepping back
from this extreme example, one may assume that the number
of trials for different event categories is sufficient. This, to
some extent, could minimize the potential confound of presti-
mulus phases, albeit not fully exclude it. There is at least one
scenariowhich has not been taken into account in the traditional
GLM analysis: while different event categories have the same es-
timated activation, they may have different degrees of phase-de-
pendent interaction and hence different TTV after stimulus-
onset as shown previously (Fig. 4B in He 2013). Taken together,
however, it remains to be determined 1) how to optimize an
fMRI design to reduce the potential confound of prestimulus
phases; 2) how an interaction effect between spontaneous and
evoked activity could be integrated within a GLM framework.

While phase analysis (e.g., Hilbert transform in our study) is
relatively well-established in EEG research (Le Van Quyen et al.

2001; Le Van Quyen and Bragin 2007; Monto et al. 2008; Yang
et al. 2012), it is important to interrogate if this analysis is sens-
ible for the BOLD signal. This has been explored only in a handful
of fMRI studies. Laird et al. (2002) applied this analysis to identify
synchronization of BOLD responses during a finger tapping ex-
periment. They demonstrated the potential of the method com-
pared with the traditional GLM approach. Deshmukh et al. (2004)
also used phase analysis to determine clusters of functionally
connected brain areas. Recently, phase analysis was proposed
to be a measure of dynamic FC (Glerean et al. 2012). In addition,
other studies have also explored the dynamics of the complex
phase of the BOLD signal using wavelet coherence phase
(Chang and Glover 2010; Müller et al. 2004). Despite these at-
tempts, phase analysis has not gained popularity in fMRI. One
possible reason is that it remains controversial as to what extent
the BOLD signal can be considered as multitude of oscillatory
waves (Buzsaki and Draguhn 2004; He and Raichle 2009; Zuo
et al. 2010) rather than pure fluctuations. In addition, as applying
narrowband filtering of data is a necessary requirement when
working with instantaneous phases, it remains to be determined
which BOLD frequency band best captures functionally relevant
information. These issues may thus demotivate one to explore
the foundations of possible phase states in BOLD signal.

Nevertheless, we approached the methodological issues of
phase analysis in fMRI signals in several ways. First, we visua-
lized the phase traces in 2 frequency bands: 0.0067–0.5 Hz,
which is the frequency band after data preprocessing, and 0.01–
0.08 Hz, which is commonly used in resting-state fMRI practice
(Biswal et al. 1995; Zou et al. 2008; Buckner et al. 2009). Note
that in both cases the data are low- and high-pass filtered, result-
ing in a relatively narrower band (compared with strictly low-
pass filtered data), making the Hilbert phase an appropriate
tool. By comparing the phase traces from the 2 frequencies, we
found that the Hilbert transform seems to capture the dominant
instantaneous phases of the signal in 0.0067–0.5 Hz, which looks
similar to the phase traces of 0.01–0.08 Hz albeitmorefluctuating.
This indicates that the phase traces from the 2 frequencies may
share similar functionally relevant information (Fig. 6A). Second,
we replicated the whole-brain FC matrices/pattern (Pearson cor-
relations) using Hilbert phase and amplitude as well as phase
synchronization analysis in both frequency ranges. This serves
as a validation of phase analysis on the basis of traditional FC.
Third, we confirmed our phase-based interaction analysis during
the task in both frequencies, andwe observed similar results (see
Supplementary Figs 5 and 6; Supplementary Table 5). Finally, we
confirmed that comparing trials with prestimulus-trough phase
(0.5π to −0.5π) to prestimulus-peak phase (−0.5π to 0.5π) by
phase-based analysis yields almost the same results as when
comparing prestimulus low and high magnitude by magnitude-
based analysis (Supplementary Fig. 4). This suggests that the in-
stantaneous phase values from fMRI signal are not something ar-
bitrary, and that they can at least capturewell the “up-and-down
states” (He and Raichle 2009). Despite the above validation and
confirmation, and given the complex relationships among the
fMRI signal, neuronalfiring, and localfiled potentials, a full under-
standing of the nature of the phase cycles of fMRI signals under-
lying the present observations warrants future investigations.

Unlike our task-fMRI session during which the button press
was monitored to ensure participant cooperation and alertness,
no measures to maintain or monitor participants’ wakefulness
were applied during our “eyes closed” resting-state fMRI acquisi-
tion. Although no subjects reported falling asleep in this session,
we remain unable to unequivocally ensure a stable wakefulness
in participants, which may potentially affect our resting-sate
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measures in characterizing spontaneous dynamic (e.g., Taglia-
zucchi and Laufs 2014). Future investigations are needed with
wakefulness monitoring during scanning, as well as during dif-
ferent levels of wakefulness such as in vegetative state and
under anesthesia (Huang et al. 2015). This may in turn allow us
to further address how the level of wakefulness impacts the
interaction between spontaneous and evoked activity.

Conclusions

To our knowledge, we have provided for the first time direct evi-
dence for a nonadditive interaction between spontaneous and
evoked brain activity and a candidate underlying mechanism,
phase-dependent excitability, along with its relationship to the
temporal structure of the spontaneous activity. Our results sug-
gest that the temporal structure of spontaneous activity (indexed
by both power-law exponent and phase–amplitude coupling)
shapes the nonadditive phase-dependent interaction between
spontaneous and evoked activity. Our findings not only contrib-
ute to our understanding of spontaneous brain activity and its
scale-free properties, but also bear important implications for
future understanding and analyses of neural activity in general.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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